- Determine if the following are metrics on the set of real numbers:
- d(x,y)=|x-y|
- d(x,y)=|x-y|2
- d(x,y)=|x-y|1/2
- d(x,y)=|sin(x)-sin(y)|
- d(x,y)=|ex-ey|
- d(x,y)=|x-y|/(|x+y|)
- d(x,y)=|x-y|/(1+|x+y|)
- d(x,y)=√2 |x-y|
- d(x,y)=[|x-y|/(|x+y|)]1/2
- d(x,y)=|sin(x)-sin(y)|
- d(x,y)=|√|x|-√|y||
- d(x,y)=√|x|-|y|
- Determine if the following are norms on the set of real numbers:
- |x|
- |x|2
- |x|1/2
- |x|3/2
- |sin(x)|
- |ex|
- |x|(1+|x|)
- |x|/(1+|x|)
- √2 |x|
- Determine if the following are inner products on the set of real numbers:
- 〈x,y〉=sin(x)-sin(y)
- 〈x,y〉=xy
- 〈x,y〉=cos|x-y|
- 〈x,y〉=|xy|
- 〈x,y〉=|x| y
- Describe the following with appropriate notation:
- The metric space of real-valued continuous functions on the interval [a,b] with a metric related to the Lp norm
- The metric space of real-valued continuous functions on the interval [a,b] with a metric related to the sup norm
- Tuncay Aktosun
aktosun@uta.edu
Last modified: April 2, 2023