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Abstract
The direct and inverse scattering problems are analyzed
for a first-order discrete system associatedwith the semi-
discrete version of the derivative nonlinear Schrödinger
(NLS) system. The Jost solutions, the scattering coeffi-
cients, the bound-state dependency and norming con-
stants are investigated and related to the correspond-
ing quantities for two particular discrete linear systems
associated with the semi-discrete version of the NLS
system. The bound-state data set with any multiplic-
ities is described in an elegant manner in terms of a
pair of constant matrix triplets. Several methods are
presented to solve the inverse problem to recover the
potential values in the first-order discrete system. One
of these methods uses a newly derived, standard dis-
crete Marchenko system using as input the scattering
data directly coming from the first-order discrete sys-
tem. This new Marchenko method is presented in a
way that it is generalizable to other first-order systems
both in the discrete and continuous cases for which a
Marchenko system and a Marchenko theory are not yet
available. Finally, using the time-evolved scattering data
set, the inverse scattering transform is applied on the cor-
responding semi-discrete derivative NLS system, and in
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the reflectionless case certain explicit solution formulas
are presented in closed form expressed in terms of the
two matrix triplets.

KEYWORDS
direct and inverse scattering, Marchenko inversion method, semi-
discrete derivative NLS system

1 INTRODUCTION

In this paper, we are interested in analyzing the direct and inverse scattering problems for the
first-order discrete system
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, 𝑛 ∈ ℤ, (1)

where 𝑧 is the spectral parameter taking values on the unit circle 𝕋 in the complex 𝑧-plane ℂ, the
quantity 𝑛 is the discrete independent variable taking values in the set of integersℤ, the complex-
valued scalar quantities 𝑞𝑛 and 𝑟𝑛 correspond to the respective values evaluated at 𝑛 for the poten-

tial pair (𝑞, 𝑟), and
[
𝛼𝑛
𝛽𝑛

]
corresponds to the value of the wavefunction at the spacial location . We

assume that 𝑞𝑛 and 𝑟𝑛 are rapidly decaying in the sense that they vanish faster than any negative
powers of |𝑛| as 𝑛 → ±∞. We also assume that

1 − 𝑞𝑛𝑟𝑛 ≠ 0, 1 + 𝑞𝑛𝑟𝑛+1 ≠ 0, 𝑛 ∈ ℤ. (2)

The complex-valued quantities 𝛼𝑛 and 𝛽𝑛 depend on the spectral parameter 𝑧, but in our notation
we usually suppress that 𝑧-dependence.
The system in (1) is used as a model for an infinite lattice where the particle with an internal

structure at the lattice point 𝑛 experiences local forces from the potential values 𝑞𝑛 and 𝑟𝑛. Since
we assume that 𝑞𝑛 and 𝑟𝑛 vanish sufficiently fast as , a scattering scenario can be established for
(1).
The direct scattering problem for (1) is described as the determination of the scattering data

set consisting of the scattering coefficients and bound-state information when the potential pair
(𝑞, 𝑟) is known. The inverse scattering problem for (1) consists of the recovery of the potential pair
(𝑞, 𝑟) when the scattering data set is given. Since 𝑞𝑛 and 𝑟𝑛 vanish sufficiently fast as 𝑛 → ±∞, it
follows from (1) that any solution to (1) has the asymptotic behavior

⎡⎢⎢⎣
𝛼𝑛

𝛽𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑎±𝑧

−𝑛[1 + 𝑜(1)]

𝑏±𝑧
𝑛[1 + 𝑜(1)]

⎤⎥⎥⎦ , 𝑛 → ±∞,

for some constants 𝑎± and 𝑏± that may depend on 𝑧 but not on 𝑛. By choosing the coefficients
𝑎+ and 𝑏+ or the coefficients 𝑎− and 𝑏− in a specific way, we obtain a particular solution to (1).
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Note that (1) has two linearly independent solutions, and its general solution can be expressed as
a linear combination of any two linearly independent solutions.
The linear discrete system (1) is related to the nonlinear integrable semi-discrete system

⎧⎪⎨⎪⎩
𝑖𝑞̇𝑛 +

𝑞𝑛+1

1−𝑞𝑛+1𝑟𝑛+1
−

𝑞𝑛

1−𝑞𝑛𝑟𝑛
−

𝑞𝑛

1+𝑞𝑛𝑟𝑛+1
+

𝑞𝑛−1

1+𝑞𝑛−1𝑟𝑛
= 0,

𝑖𝑟̇𝑛 −
𝑟𝑛+1

1+𝑞𝑛𝑟𝑛+1
+

𝑟𝑛

1+𝑞𝑛−1𝑟𝑛
+

𝑟𝑛

1−𝑞𝑛𝑟𝑛
−

𝑟𝑛−1

1−𝑞𝑛−1𝑟𝑛−1
= 0,

(3)

which is known as the semi-discrete derivative NLS system or the semi-discrete Kaup–Newell
system.1–3 From the denominators in (3), we see why we need the restriction (2). Note that an
overdot in (3) denotes the derivative with respect to the independent variable 𝑡, which is inter-
preted as the time variable and is suppressed in (3) by writing 𝑞𝑛 and 𝑟𝑛 instead of 𝑞𝑛(𝑡) and 𝑟𝑛(𝑡),
respectively. In our analysis of (1), without loss of generality, we can either assume that 𝑞𝑛 and 𝑟𝑛
are independent of 𝑡 or they contain 𝑡 as a parameter.
The reductions in the system (3) in the focusing and defocusing cases are obtained by letting

𝑟𝑛 = −𝑞∗𝑛 and 𝑟𝑛 = 𝑞∗𝑛, respectively, where the asterisk is used to denote complex conjugation.
We refer the reader to Ref. 2 and the references therein for the effect of the reductions on the
corresponding spectral and scattering problems.
Let us write (1) as

⎧⎪⎨⎪⎩
0 = −𝛼𝑛 + 𝑧𝛼𝑛+1 +

(
𝑧 −

1

𝑧

)
𝑞𝑛𝛽𝑛+1,

0 = −𝛽𝑛 + 𝑧 𝑟𝑛𝛼𝑛+1 +
[
1

𝑧
+
(
𝑧 −

1

𝑧

)
𝑞𝑛𝑟𝑛

]
𝛽𝑛+1.

(4)

In (4), we let

⎧⎪⎪⎨⎪⎪⎩

𝛼𝑛 ↦ 𝛼, 𝛽𝑛 ↦ −
1

𝜁
𝛽, 𝛼𝑛+1 ↦ 𝛼 + 𝜀𝛼′, 𝛽𝑛+1 ↦ −

1

𝜁
𝛽 −

1

𝜁
𝜀𝛽′,

𝑞𝑛 ↦ −
𝑖

2
𝑞, 𝑟𝑛 ↦ 𝜀𝑟,

𝑧 ↦ e𝑖𝜁
2𝜀 = 1 + 𝑖𝜁2𝜀 + 𝑂

(
𝜀2
)
, 𝑧−1 ↦ 𝑒−𝑖𝜁

2𝜀 = 1 − 𝑖𝜁2𝜀 + 𝑂
(
𝜀2
)
,

where 𝜀 → 0 and the prime denotes the 𝑥-derivative. By expanding the resulting equations in (4)
in powers of 𝜀, we obtain

⎧⎪⎨⎪⎩
0 = 𝜀

[
𝛼′ + 𝑖𝜁2𝛼 − 𝜁𝑞(𝑥)𝛽

]
+ 𝑂

(
𝜀2
)
,

0 = −
𝜀

𝜁

[
𝛽′ − 𝜁𝑟(𝑥)𝛼 − 𝑖𝜁2𝛽

]
+ 𝑂

(
𝜀2
)
,

from which we get the corresponding continuous system given by

⎡⎢⎢⎣
𝛼′

𝛽′

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−𝑖𝜁2 𝜁𝑞(𝑥)

𝜁𝑟(𝑥) 𝑖𝜁2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛼

𝛽

⎤⎥⎥⎦ , 𝑥 ∈ ℝ. (5)
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We remark that the first-order system (5) is related to the derivative NLS system4–6

⎧⎪⎨⎪⎩
𝑖𝑞𝑡 + 𝑞xx − 𝑖(𝑞2 𝑟)𝑥 = 0,

𝑖𝑟𝑡 − 𝑟xx − 𝑖(𝑞 𝑟2)𝑥 = 0,
(6)

where 𝑞(𝑥, 𝑡) and 𝑟(𝑥, 𝑡) are the continuous analogs of 𝑞𝑛 and 𝑟𝑛 when the latter quantities depend
on both 𝑛 and 𝑡. The nonlinear system (6) is also known6 as the Kaup–Newell system, and it is
the continuous analog of the semi-discrete nonlinear system (3).
We analyze the direct and inverse scattering problems for (1) by using the connection to the two

first-order discrete systems

⎡⎢⎢⎣
𝜉𝑛

𝜂𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑧 𝑧 𝑢𝑛

1

𝑧
𝑣𝑛

1

𝑧

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜉𝑛+1

𝜂𝑛+1

⎤⎥⎥⎦ , 𝑛 ∈ ℤ, (7)

⎡⎢⎢⎣
𝛾𝑛

𝜀𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑧 𝑧 𝑝𝑛

1

𝑧
𝑠𝑛

1

𝑧

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛾𝑛+1

𝜀𝑛+1

⎤⎥⎥⎦ , 𝑛 ∈ ℤ, (8)

where 𝑢𝑛 and 𝑣𝑛 are the values for the potential pair (𝑢, 𝑣) and 𝑝𝑛 and 𝑠𝑛 are the values for (𝑝, 𝑠).
By choosing (𝑢, 𝑣) and (𝑝, 𝑠) as in (91)–(94), we relate the relevant quantities for (1), (7), and (8)
to each other. Such relevant quantities include the Jost solutions, the scattering coefficients, and
the bound-state data sets for each of (1), (7), and (8). Those relationships involving the bound
states are described in Section 4, and the relationships involving the other aspects are described
in Section 3.
We remark that in the literature it is always assumed that the bound states for (1), (7), and (8)

are simple. In our paper, we do not make such an artificial assumption because we easily and
in an elegant way handle the bound states of any multiplicities, and this is done by using a pair
of constant matrix triplets describing the bound-state values of the spectral parameter 𝑧 and the
corresponding norming constants. The only effect of the bound states in the Marchenko theory
amounts to replacing the Fourier transforms of the reflection coefficients by the quantitiesΩ𝑘 and
Ω̄𝑘, respectively, appearing in (164). We remark on the simplicity of the additive terms 𝐶𝐴𝑘−1𝐵

and 𝐶̄(𝐴̄)−𝑘−1 𝐵̄ in (164) constructed from the matrix triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) given in (156)
and (159), respectively. In the corresponding nonlinear integrable systems, the time evolution of
the bound-state data is described in a simple and elegant way in (256) for an appropriate choice
of the matrix exponentials  and ̄ . The derivation of the additive terms 𝐶𝐴𝑘−1𝐵 and 𝐶̄(𝐴̄)−𝑘−1𝐵̄
in (164) is accomplished in Section 4 by introducing the bound-state dependency constants. This
derivation, even though lengthy, is intuitive and provides physical insight. Let us remark that
the bound states with multiplicities can also be handled mathematically by using the orthogonal
projections onto the adjoints of the kernels of the associated Jost matrices,7,8 but that alternate
mathematical description is less intuitive and does not provide as much physical insight.
The systems (7) and (8) are of importance also in their own, and they are known as the

Ablowitz–Ladik systems9,10 or as the discrete AKNS systems. It is possible3 to transform (7) and
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(8) into

⎡⎢⎢⎣
𝜉̃𝑛+1

𝜂𝑛+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑧 𝑢𝑛

𝑣𝑛
1

𝑧

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜉̃𝑛

𝜂𝑛

⎤⎥⎥⎦ , 𝑛 ∈ ℤ, (9)

⎡⎢⎢⎣
𝛾̃𝑛+1

𝜀𝑛+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑧 𝑝𝑛

𝑠𝑛
1

𝑧

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛾̃𝑛

𝜀𝑛

⎤⎥⎥⎦ , 𝑛 ∈ ℤ. (10)

Note that (7) and (9) also differ from each other by the fact that the appearances of the wave-
function values evaluated at 𝑛 and 𝑛 + 1 are switched. The same remark also applies to (8) and
(10).
As already pointed out by Tsuchida,3 the analysis of the direct and inverse scattering problems

for an Ablowitz–Ladik system written in the form of (9) and (10) is unnecessarily complicated.
For example, the analysis provided in Ref. 11 for (9) involves separating the scattering data into
two parts containing even and odd integer powers of 𝑧, respectively. This unnecessarily makes the
analysis cumbersome. Furthermore, if we use (9) with the roles of 𝑛 and 𝑛 + 1 switched compared
to (7) and use the scattering coefficients from the right instead of the scattering coefficients from
the left as input, then the analysis of the inverse scattering problem for (9) by the Marchenko
method becomes unnecessarily complicated.
The researchers who are mainly interested in nonlinear evolution equations use only the scat-

tering coefficients from the right without referring to the scattering coefficients from the left. In
this paper, we are careful in making a distinction between the right and left scattering data sets.
The right and left transmission coefficients in a first-order discrete linear system are unequal
unless the coefficient matrix in that system has determinant equal to 1. One can verify that the
coefficientmatrix in (1) has its determinant equal to 1, whereas the corresponding determinants in
(7) and (8) are given by 1 − 𝑢𝑛𝑣𝑛 and 1 − 𝑝𝑛𝑠𝑛, respectively. Thus, the left and right transmission
coefficients for each of (7) and (8) are unequal. We refer the reader to Ref. 12 and the references
therein where the Lax pair for the discrete AKNS system is normalized. This is done by dividing
each entry in the coefficient matrix in (9) by

√
1 − 𝑢𝑛𝑣𝑛 so that the determinant of the trans-

formed coefficient matrix becomes equal to 1. Furthermore, in Ref. 12 the 𝑡-part of the Lax pair is
transformed into a matrix with zero trace. Although such a normalization of the Lax pair for the
discrete AKNS system has various advantages, it is not helpful to our own analysis because such
a normalization also complicates the asymptotics in 𝑧 of the relevant Jost solutions for each fixed
𝑛. The simplicity of the asymptotics of the respective Jost solutions as 𝑧 → 0 or 𝑧 → ∞ for each
fixed 𝑛 is crucial in our analysis of (1) and its relation to (7) and (9).
The scattering and inverse scattering problems for (1) have partially been analyzed by Tsuchida

inRef. 3.Our ownanalysis is complementary to Tsuchida’swork in the following sense. Tsuchida’s
main interest in (1) is confined to its relation to (3), and he only deals with the right scattering
coefficients. Tsuchida exploits certain gauge transformations to relate (1) to twodiscreteAblowitz–
Ladik systems, and he assumes that the bound states are all simple. Tsuchida’s expressions for the
scattering coefficients not only involve the Jost solutions to the relevant linear system but also the
Jost solutions to the corresponding adjoint system, whereas in our case the scattering coefficients
are expressed in terms of the Jost solutions to the relevant linear system only. In our opinion,
the latter description of the scattering coefficients provides physical insight and intuition into the
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analysis of direct and inverse problems. Tsuchida formulates aMarchenko system given in (4.12c)
and (4.12d) of Ref. 3, somehow similar to our own alternateMarchenko system (233) and (234), but
it lacks the appropriate symmetries existing in our alternate Marchenko system. In formulating
his Marchenko system, Tsuchida uses a Fourier transformation with respect to 𝑧2 and not with
respect to 𝑧. Furthermore, in Tsuchida’s formulation it is not quite clear how the scattering data
sets for (1), (7), and (8) are related to each other.
One of the important accomplishments of our paper is the introduction of a standard

Marchenko formalism for (1) using as input the scattering data from (1) only. The formulation
of our standard Marchenko system (209) is a significant generalization step to solve inverse prob-
lems for various other discrete and continuous systems for which a standard Marchenko theory
has not yet been formulated. Asmentioned already, we also introduce an alternateMarchenko for-
malism for (1) using as input the scattering data sets from (7) and (8). Both the standard and alter-
nate Marchenko systems we introduce have the appropriate symmetry properties and resemble
the standard Marchenko systems arising in other continuous and discrete systems. The alternate
Marchenko method in our paper corresponds to the discrete analog of the systematic approach13
we presented to solve the inverse scattering problem for the energy-dependentAKNS systemgiven
in (5). Besides Ref. 13, the most relevant reference for our current work is the important paper by
Tsuchida.3
Our paper is organized as follows. In Section 2, we introduce the Jost solutions and the scatter-

ing coefficients for each of (1), (7), and (8) and we present some relevant properties of those Jost
solutions and scattering coefficients. In that section, we also prove that the linear dependence
of the appropriate pairs of Jost solutions occurs at the poles of the corresponding transmission
coefficients for each of (1), (7), and (8). In Section 3, when the corresponding potential pairs are
related to each other as in (91)–(94), we relate the Jost solutions and scattering coefficients for
(1) to those for (7) and (8). In that section, we also present certain relevant properties of the Jost
solutions to (1) and express the potentials 𝑞𝑛 and 𝑟𝑛 in terms of the values at 𝑧 = 1 of the Jost
solutions to (7) and (8). In Section 4, we describe the bound-state data sets for each of (1), (7), and
(8) in terms of two matrix triplets, which allows us to handle bound states of any multiplicities in
a systematic manner that can also be used for other systems both in the continuous and discrete
cases. In the formulation of the Marchenko method, we show how the Marchenko kernels con-
tain the matrix triplets in a simple and elegant manner. Also in that section, when the potential
pairs for (1), (7), and (8) are related as in (91)–(94), we show how the corresponding bound-state
data sets are related to each other. In Section 5, we outline the steps to solve the direct problem
for (1). In Section 6, we introduce the Marchenko system (209) using as input the scattering data
directly related to (1) andwe describe how the potentials 𝑞𝑛 and 𝑟𝑛 are recovered from the solution
to (209). In Section 7, we present our alternate Marchenko system given in (233) and (234) using
as input the scattering data sets from (7) and (8), and we also show how 𝑞𝑛 and 𝑟𝑛 are recovered
from the solution to the alternate Marchenko system. In Section 8, we describe various methods
to solve the inverse problem for (1) by using as input the scattering data for (1) and outline how the
potentials 𝑞𝑛 and 𝑟𝑛 are recovered. Finally, in Section 9, we provide the solution to the integrable
nonlinear system (3) via the inverse scattering transform. This is done by providing the time evo-
lution of the scattering data for (1) and by determining the corresponding time-evolved potentials
𝑞𝑛 and 𝑟𝑛. In that section, we also present some explicit solution formulas for (3) corresponding
to time-evolved reflectionless scattering data for (1), and such solutions are explicitly expressed in
terms of the two matrix triplets describing the time-evolved bound-state data for (1).
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2 THE JOST SOLUTIONS AND SCATTERING COEFFICIENTS

In this section, we introduce the Jost solutions and the scattering coefficients for each of the linear
systems given in (1), (7), and (8), andwe present some of their relevant properties. For clarification,
we use the superscript (𝑞, 𝑟) to denote the quantities relevant to (1), use (𝑢, 𝑣) for those relevant to
(7), and use (𝑝, 𝑠) for those relevant to (8). When these three potential pairs decay rapidly in their
respective equations as 𝑛 → ±∞, the corresponding coefficient matrices all reduce to the same
unperturbed coefficient matrix. In other words, each of (1), (7), and (8) corresponds to the same
unperturbed system

Ψ̊𝑛 =
⎡⎢⎢⎣
𝑧 0

0
1

𝑧

⎤⎥⎥⎦ Ψ̊𝑛+1, 𝑛 ∈ ℤ,

where the general solution is a linear combination of the two linearly independent solutions
[
𝑧−𝑛

0

]
and

[
0

𝑧𝑛

]
, that is, we have

Ψ̊𝑛 = 𝑎
⎡⎢⎢⎣
𝑧−𝑛

0

⎤⎥⎥⎦ + 𝑏
⎡⎢⎢⎣
0

𝑧𝑛

⎤⎥⎥⎦ , 𝑛 ∈ ℤ, (11)

with 𝑎 and 𝑏 being two complex-valued scalars that are independent of 𝑛 but may depend on 𝑧.
There are four Jost solutions to each of (1), (7), and (8), and they are obtained by assigning

specific values to 𝑎 and 𝑏 as 𝑛 → +∞ or 𝑛 → −∞. We uniquely define the four Jost solutions 𝜓𝑛,
𝜙𝑛, 𝜓̄𝑛, 𝜙̄𝑛 to each of (1), (7), and (8) so that they satisfy the respective asymptotics

𝜓𝑛 =
⎡⎢⎢⎣

𝑜(1)

𝑧𝑛[1 + 𝑜(1)]

⎤⎥⎥⎦ , 𝑛 → +∞, (12)

𝜙𝑛 =
⎡⎢⎢⎣
𝑧−𝑛[1 + 𝑜(1)]

𝑜(1)

⎤⎥⎥⎦ , 𝑛 → −∞, (13)

𝜓̄𝑛 =
⎡⎢⎢⎣
𝑧−𝑛[1 + 𝑜(1)]

𝑜(1)

⎤⎥⎥⎦ , 𝑛 → +∞, (14)

𝜙̄𝑛 =
⎡⎢⎢⎣

𝑜(1)

𝑧𝑛[1 + 𝑜(1)]

⎤⎥⎥⎦ , 𝑛 → −∞. (15)

We remark that an overbar does not denote complex conjugation. We will use the notation 𝜓(𝑞,𝑟)𝑛 ,
𝜙
(𝑞,𝑟)
𝑛 , 𝜓̄(𝑞,𝑟)𝑛 , 𝜙̄(𝑞,𝑟)𝑛 to refer to the respective Jost solutions to (1); use𝜓(𝑢,𝑣)𝑛 ,𝜙(𝑢,𝑣)𝑛 , 𝜓̄(𝑢,𝑣)𝑛 , 𝜙̄(𝑢,𝑣)𝑛 for the
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respective Jost solutions to (7); and use 𝜓(𝑝,𝑠)𝑛 , 𝜙(𝑝,𝑠)𝑛 , 𝜓̄(𝑝,𝑠)𝑛 , 𝜙̄(𝑝,𝑠)𝑛 for the respective Jost solutions
to (8).
The asymptotics of the Jost solutions complementary to (12)–(15) are used to define the corre-

sponding scattering coefficients compatible with (11). We have

𝜓𝑛 =

⎡⎢⎢⎢⎣
𝐿

𝑇l
𝑧−𝑛 [1 + 𝑜(1)]

1

𝑇l
𝑧𝑛 [1 + 𝑜(1)]

⎤⎥⎥⎥⎦ , 𝑛 → −∞, (16)

𝜙𝑛 =

⎡⎢⎢⎢⎣
1

𝑇r
𝑧−𝑛 [1 + 𝑜(1)]

𝑅

𝑇r
𝑧𝑛 [1 + 𝑜(1)]

⎤⎥⎥⎥⎦ , 𝑛 → +∞, (17)

𝜓̄𝑛 =

⎡⎢⎢⎢⎣
1

𝑇̄l
𝑧−𝑛 [1 + 𝑜(1)]

𝐿̄

𝑇̄l
𝑧𝑛 [1 + 𝑜(1)]

⎤⎥⎥⎥⎦ , 𝑛 → −∞, (18)

𝜙̄𝑛 =

⎡⎢⎢⎢⎣
𝑅̄

𝑇̄r
𝑧−𝑛 [1 + 𝑜(1)]

1

𝑇̄r
𝑧𝑛 [1 + 𝑜(1)]

⎤⎥⎥⎥⎦ , 𝑛 → +∞, (19)

where 𝑇l and 𝑇̄l are the transmission coefficients from the left, 𝑇r and 𝑇̄r are the transmission
coefficients from the right, 𝑅 and 𝑅̄ are the reflection coefficients from the right, and 𝐿 and 𝐿̄

are the reflection coefficients from the left. We will also say left scattering coefficients instead
of scattering coefficients from the left, and similarly we will use right scattering coefficients and
scattering coefficients from the right interchangeably.
Note that we will use 𝑇(𝑞,𝑟)r , 𝑇(𝑞,𝑟)

l
, 𝑅(𝑞,𝑟), 𝐿(𝑞,𝑟), 𝑇̄(𝑞,𝑟)r , 𝑇̄(𝑞,𝑟)

l
, 𝑅̄(𝑞,𝑟), 𝐿̄(𝑞,𝑟) to refer to the scatter-

ing coefficients for (1); use 𝑇(𝑢,𝑣)r , 𝑇(𝑢,𝑣)
l

, 𝑅(𝑢,𝑣), 𝐿(𝑢,𝑣), 𝑇̄(𝑢,𝑣)r , 𝑇̄(𝑢,𝑣)
l

, 𝑅̄(𝑢,𝑣), 𝐿̄(𝑢,𝑣) for the scattering
coefficients for (7); and use 𝑇(𝑝,𝑠)r , 𝑇(𝑝,𝑠)

l
, 𝑅(𝑝,𝑠), 𝐿(𝑝,𝑠), 𝑇̄(𝑝,𝑠)r , 𝑇̄(𝑝,𝑠)

l
, 𝑅̄(𝑝,𝑠), 𝐿̄(𝑝,𝑠) for the scattering

coefficients for (8).
Related to the linear system (7), let us introduce the quantities 𝐷(𝑢,𝑣)

𝑛 and 𝐷(𝑢,𝑣)
∞ as

𝐷
(𝑢,𝑣)
𝑛 ∶=

𝑛∏
𝑗=−∞

(1 − 𝑢𝑗 𝑣𝑗), 𝐷
(𝑢,𝑣)
∞ ∶=

∞∏
𝑗=−∞

(1 − 𝑢𝑗 𝑣𝑗). (20)

From the fact that 𝑢𝑛 and 𝑣𝑛 are rapidly decaying and that 1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ, it follows that
𝐷
(𝑢,𝑣)
𝑛 and 𝐷(𝑢,𝑣)

∞ are each well defined and nonzero. Similarly, related to the linear system (8), we
let

𝐷
(𝑝,𝑠)
𝑛 ∶=

𝑛∏
𝑗=−∞

(1 − 𝑝𝑗 𝑠𝑗), 𝐷
(𝑝,𝑠)
∞ ∶=

∞∏
𝑗=−∞

(1 − 𝑝𝑗 𝑠𝑗). (21)



AKTOSUN and ERCAN 9

From the fact that 𝑝𝑛 and 𝑠𝑛 are decaying rapidly and that 1 − 𝑝𝑛𝑠𝑛 ≠ 0 for 𝑛 ∈ ℤ, we see that
𝐷
(𝑝,𝑠)
𝑛 and 𝐷(𝑝,𝑠)

∞ are each well defined and nonzero. We remark that 𝐷(𝑢,𝑣)
∞ and 𝐷(𝑝,𝑠)

∞ correspond
to conserved quantities4,5,14–17 in the sense that if the scattering data sets corresponding to the
potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) evolve in time 𝑡 according to the inverse scattering transform, even
though each of the potential values 𝑢𝑛, 𝑣𝑛, 𝑝𝑛, 𝑠𝑛 depends on 𝑡, the quantities 𝐷

(𝑢,𝑣)
∞ and 𝐷(𝑝,𝑠)

∞ are
independent of 𝑡.
In the next theorem, we list some relevant analyticity properties of the Jost solutions to (7).

Theorem 1. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and 1 −
𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, the corresponding Jost solutions to (7) satisfy the following:

(a) For each 𝑛 ∈ ℤ, the quantities 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 , 𝑧𝑛 𝜙(𝑢,𝑣)𝑛 , 𝑧𝑛 𝜓̄(𝑢,𝑣)𝑛 , 𝑧−𝑛 𝜙̄(𝑢,𝑣)𝑛 are even in 𝑧 in their
respective domains.

(b) The quantity 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 is analytic in |𝑧| < 1 and continuous in |𝑧| ≤ 1.
(c) The quantity 𝑧𝑛 𝜙(𝑢,𝑣)𝑛 is analytic in |𝑧| < 1 and continuous in |𝑧| ≤ 1.
(d) The quantity 𝑧𝑛 𝜓̄(𝑢,𝑣)𝑛 is analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.
(e) The quantity 𝑧−𝑛 𝜙̄(𝑢,𝑣)𝑛 is analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.
(f) The Jost solution 𝜓(𝑢,𝑣)𝑛 has the expansion

𝜓
(𝑢,𝑣)
𝑛 =

∞∑
𝑙=𝑛

𝐾
(𝑢,𝑣)
𝑛𝑙

𝑧𝑙, |𝑧| ≤ 1, (22)

with the double-indexed quantities 𝐾(𝑢,𝑣)
𝑛𝑙

for which we have

𝐾
(𝑢,𝑣)
𝑛𝑛 =

⎡⎢⎢⎣
0

1

⎤⎥⎥⎦ , 𝐾
(𝑢,𝑣)

𝑛(𝑛+2)
=

⎡⎢⎢⎢⎢⎣
𝑢𝑛

∞∑
𝑘=𝑛

𝑢𝑘+1 𝑣𝑘

⎤⎥⎥⎥⎥⎦
, (23)

and that 𝐾(𝑢,𝑣)
𝑛𝑙

= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.
(g) The Jost solution 𝜓̄(𝑢,𝑣)𝑛 has the expansion

𝜓̄
(𝑢,𝑣)
𝑛 =

∞∑
𝑙=𝑛

𝐾̄
(𝑢,𝑣)
𝑛𝑙

1

𝑧𝑙
, |𝑧| ≥ 1, (24)

with the double-indexed quantities 𝐾̄(𝑢,𝑣)
𝑛𝑙

for which we have

𝐾̄
(𝑢,𝑣)
𝑛𝑛 =

⎡⎢⎢⎣
1

0

⎤⎥⎥⎦ , 𝐾̄
(𝑢,𝑣)

𝑛(𝑛+2)
=

⎡⎢⎢⎢⎣
∞∑
𝑘=𝑛

𝑢𝑘 𝑣𝑘+1

𝑣𝑛

⎤⎥⎥⎥⎦ , (25)

and that 𝐾̄(𝑢,𝑣)
𝑛𝑙

= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.
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(h) For the Jost solution 𝜙(𝑢,𝑣)𝑛 , we have the expansion

𝑧𝑛 𝜙
(𝑢,𝑣)
𝑛 =

∞∑
𝑙=0

𝑃
(𝑢,𝑣)
𝑛𝑙

𝑧𝑙, |𝑧| ≤ 1, (26)

with the double-indexed quantities 𝑃(𝑢,𝑣)
𝑛𝑙

for which we have

𝑃
(𝑢,𝑣)
𝑛0 =

1

𝐷
(𝑢,𝑣)
𝑛−1

⎡⎢⎢⎣
1

−𝑣𝑛−1

⎤⎥⎥⎦ , (27)

𝑃
(𝑢,𝑣)
𝑛2 =

1

𝐷
(𝑢,𝑣)
𝑛−1

⎡⎢⎢⎢⎢⎢⎣

𝑛−2∑
𝑘=−∞

𝑢𝑘+1 𝑣𝑘

−𝑣𝑛−2 − 𝑣𝑛−1

𝑛−3∑
𝑘=−∞

𝑢𝑘+1 𝑣𝑘

⎤⎥⎥⎥⎥⎥⎦
,

with 𝐷(𝑢,𝑣)
𝑛 being the quantity defined in (20) and that 𝑃(𝑢,𝑣)

𝑛𝑙
= 0 when 𝑙 is odd or 𝑙 < 0.

(i) For the Jost solution 𝜙̄(𝑢,𝑣)𝑛 , we have the expansion

𝑧−𝑛 𝜙̄
(𝑢,𝑣)
𝑛 =

∞∑
𝑙=0

𝑃̄
(𝑢,𝑣)
𝑛𝑙

1

𝑧𝑙
, |𝑧| ≥ 1,

with the double-indexed quantities 𝑃̄(𝑢,𝑣)
𝑛𝑙

for which we have

𝑃̄
(𝑢,𝑣)
𝑛0 =

1

𝐷
(𝑢,𝑣)
𝑛−1

⎡⎢⎢⎣
−𝑢𝑛−1

1

⎤⎥⎥⎦ ,

𝑃̄
(𝑢,𝑣)
𝑛2 =

1

𝐷
(𝑢,𝑣)
𝑛−1

⎡⎢⎢⎢⎢⎢⎣
−𝑢𝑛−2 − 𝑢𝑛−1

𝑛−3∑
𝑘=−∞

𝑢𝑘 𝑣𝑘+1

𝑛−2∑
𝑘=−∞

𝑢𝑘 𝑣𝑘+1

⎤⎥⎥⎥⎥⎥⎦
,

and that 𝑃̄(𝑢,𝑣)
𝑛𝑙

= 0 when 𝑙 is odd or 𝑙 < 0.
(j) The scattering coefficients for (7) are even in 𝑧 in their respective domains. The domain for the

reflection coefficients is the unit circle𝕋 and the domains for the transmission coefficients consist
of the union of 𝕋 and their regions of extensions.

(k) The quantities 1∕𝑇(𝑢,𝑣)
l

and 1∕𝑇(𝑢,𝑣)r have analytic extensions in 𝑧 from 𝑧 ∈ 𝕋 to |𝑧| < 1 and
those extensions are continuous for |𝑧| ≤ 1. Similarly, the quantities 1∕𝑇̄(𝑢,𝑣)

l
and 1∕𝑇̄(𝑢,𝑣)r have

extensions from 𝑧 ∈ 𝕋 so that they are analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.
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Proof. We can write (7) for 𝜓(𝑢,𝑣)𝑛 in the equivalent form

𝑧−𝑛 𝜓
(𝑢,𝑣)
𝑛 =

⎡⎢⎢⎣
𝑧2 𝑧2 𝑢𝑛

𝑣𝑛 1

⎤⎥⎥⎦ 𝑧−𝑛−1 𝜓(𝑢,𝑣)𝑛+1 , 𝑛 ∈ ℤ. (28)

From (28), via iteration, for 𝑘 ≥ 𝑛, we get

𝑧−𝑛 𝜓
(𝑢,𝑣)
𝑛 =

⎡⎢⎢⎣
𝑧2 𝑧2 𝑢𝑛

𝑣𝑛 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑧2 𝑧2 𝑢𝑛+1

𝑣𝑛+1 1

⎤⎥⎥⎦…
⎡⎢⎢⎣
𝑧2 𝑧2 𝑢𝑘

𝑣𝑘 1

⎤⎥⎥⎦ 𝑧−𝑘−1 𝜓(𝑢,𝑣)𝑘+1
. (29)

By letting 𝑘 → +∞ in (29), we see that for each fixed 𝑛 the quantity 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 is expressed as a
Maclaurin series containing only even powers of 𝑧. This proves (a) for 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 . The coefficients
in theMaclaurin series for 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 involves product and sums of the values of𝑢𝑗 and 𝑣𝑗 for 𝑗 ≥ 𝑛.
When the potentials 𝑢𝑛 and 𝑣𝑛 are rapidly decaying, each partial sum in the Maclaurin series is
analytic in |𝑧| < 1 and continuous in |𝑧| ≤ 1. Furthermore, the Maclaurin series converges abso-
lutely in |𝑧| ≤ 1, and in fact the convergence is uniform because the series is a Maclaurin series.
Thus, by a theorem of Weierstrass,18 the sum of the series, that is, 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛 , is analytic in |𝑧| < 1

and continuous in |𝑧| ≤ 1. Hence, the proof of (b) is complete. The Maclaurin series for 𝑧−𝑛 𝜓(𝑢,𝑣)𝑛

is given by (22) and the coefficients 𝐾(𝑢,𝑣)
𝑛𝑛 and 𝐾

(𝑢,𝑣)

𝑛(𝑛+2)
given in (23) are directly obtained from

the iteration described in (29). Hence, the proof of (f) is complete. The proofs for (c), (d), (e), (g),
(h), and (i) are obtained in a similar manner. Using (a)–(e) in (16)–(19), we establish (j). Finally,
using (b) and the second component of the column-vector asymptotics in (16), we establish (k) for
1∕𝑇

(𝑢,𝑣)
l

. The remaining proofs for (k) are obtained in a similar manner. ■

We remark that the results in Theorem 1 hold also for (8). For the convenience of citing those
results, we present the following corollary.

Corollary 1. Assume that the potentials 𝑝𝑛 and 𝑠𝑛 appearing in (8) are rapidly decaying and 1 −
𝑝𝑛𝑠𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, the corresponding Jost solutions to (8) satisfy all the properties stated in
Theorem 1. In particular, we have the following:

(a) The Jost solution 𝜓(𝑝,𝑠)𝑛 has the expansion

𝜓
(𝑝,𝑠)
𝑛 =

∞∑
𝑙=𝑛

𝐾
(𝑝,𝑠)

𝑛𝑙
𝑧𝑙, |𝑧| ≤ 1, (30)

with the double-indexed quantities 𝐾(𝑝,𝑠)

𝑛𝑙
for which we have

𝐾
(𝑝,𝑠)
𝑛𝑛 =

⎡⎢⎢⎣
0

1

⎤⎥⎥⎦ , 𝐾
(𝑝,𝑠)

𝑛(𝑛+2)
=

⎡⎢⎢⎢⎢⎣
𝑝𝑛

∞∑
𝑘=𝑛

𝑝𝑘+1 𝑠𝑘

⎤⎥⎥⎥⎥⎦
, (31)

and that 𝐾(𝑝,𝑠)

𝑛𝑙
= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.
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(b) The Jost solution 𝜓̄(𝑝,𝑠)𝑛 has the expansion

𝜓̄
(𝑝,𝑠)
𝑛 =

∞∑
𝑙=𝑛

𝐾̄
(𝑝,𝑠)

𝑛𝑙

1

𝑧𝑙
, |𝑧| ≥ 1, (32)

with the double-indexed quantities 𝐾̄(𝑝,𝑠)

𝑛𝑙
for which we have

𝐾̄
(𝑝,𝑠)
𝑛𝑛 =

⎡⎢⎢⎣
1

0

⎤⎥⎥⎦ , 𝐾̄
(𝑝,𝑠)

𝑛(𝑛+2)
=

⎡⎢⎢⎢⎣
∞∑
𝑘=𝑛

𝑝𝑘 𝑠𝑘+1

𝑠𝑛

⎤⎥⎥⎥⎦ , (33)

and that 𝐾̄(𝑝,𝑠)

𝑛𝑙
= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.

In the next theorem, we summarize the relevant properties of the scattering coefficients for (7).

Theorem 2. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and that
1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. The corresponding scattering coefficients in their respective domains satisfy

𝑇
(𝑢,𝑣)
r = 𝐷

(𝑢,𝑣)
∞ 𝑇

(𝑢,𝑣)
l

, 𝑇̄
(𝑢,𝑣)
r = 𝐷

(𝑢,𝑣)
∞ 𝑇̄

(𝑢,𝑣)
l

, (34)

𝑇
(𝑢,𝑣)
r 𝑇̄

(𝑢,𝑣)
r = 𝐷

(𝑢,𝑣)
∞

[
1 − 𝑅(𝑢,𝑣) 𝑅̄(𝑢,𝑣)

]
, (35)

𝑇
(𝑢,𝑣)
l

𝑇̄
(𝑢,𝑣)
l

= 𝐷
(𝑢,𝑣)
∞

[
1 − 𝐿(𝑢,𝑣) 𝐿̄(𝑢,𝑣)

]
, (36)

𝐿(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

= −𝐷
(𝑢,𝑣)
∞

𝑅̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
r

, (37)

𝐿̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
l

= −𝐷
(𝑢,𝑣)
∞

𝑅(𝑢,𝑣)

𝑇
(𝑢,𝑣)
r

, (38)

where 𝐷(𝑢,𝑣)
∞ is the quantity defined in (20).

Proof. From (7), we get the matrix equations

[
𝜙
(𝑢,𝑣)
𝑛 𝜓

(𝑢,𝑣)
𝑛

]
=
⎡⎢⎢⎣
𝑧 𝑧 𝑢𝑛

1

𝑧
𝑣𝑛

1

𝑧

⎤⎥⎥⎦
[
𝜙
(𝑢,𝑣)
𝑛+1 𝜓

(𝑢,𝑣)
𝑛+1

]
, 𝑛 ∈ ℤ, (39)

[
𝜓̄
(𝑢,𝑣)
𝑛 𝜙̄

(𝑢,𝑣)
𝑛

]
=
⎡⎢⎢⎣
𝑧 𝑧 𝑢𝑛

1

𝑧
𝑣𝑛

1

𝑧

⎤⎥⎥⎦
[
𝜓̄
(𝑢,𝑣)
𝑛+1 𝜙̄

(𝑢,𝑣)
𝑛+1

]
, 𝑛 ∈ ℤ. (40)
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Using iteration on the determinants of both sides of (39) and (40), respectively, for any pair of
integers 𝑛 and𝑚 with𝑚 > 𝑛, we get

det
[
𝜙
(𝑢,𝑣)
𝑛 𝜓

(𝑢,𝑣)
𝑛

]
= (1 − 𝑢𝑛𝑣𝑛)⋯ (1 − 𝑢𝑚𝑣𝑚) det

[
𝜙
(𝑢,𝑣)
𝑚+1 𝜓

(𝑢,𝑣)
𝑚+1

]
, (41)

det
[
𝜓̄
(𝑢,𝑣)
𝑛 𝜙̄

(𝑢,𝑣)
𝑛

]
= (1 − 𝑢𝑛𝑣𝑛)⋯ (1 − 𝑢𝑚𝑣𝑚) det

[
𝜓̄
(𝑢,𝑣)
𝑚+1 𝜙̄

(𝑢,𝑣)
𝑚+1

]
. (42)

Letting 𝑛 → −∞ and𝑚 → +∞ in (41), with the help of (12), (13), (16), (17), and (20), we obtain

||||||||
1

𝐿(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

0
1

𝑇
(𝑢,𝑣)
l

|||||||| = 𝐷
(𝑢,𝑣)
∞

||||||||
1

𝑇
(𝑢,𝑣)
r

0

𝑅(𝑢,𝑣)

𝑇
(𝑢,𝑣)
r

1

|||||||| . (43)

Similarly, letting 𝑛 → −∞ and𝑚 → +∞ in (42) and using (14), (15), (18), (19), and (20), we get

||||||||
1

𝑇̄
(𝑢,𝑣)
l

0

𝐿̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
l

1

|||||||| = 𝐷
(𝑢,𝑣)
∞

||||||||
1

𝑅̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
r

0
1

𝑇̄
(𝑢,𝑣)
r

|||||||| . (44)

From (43) and (44), we obtain (34). On the other hand, with the help of Theorem 1, we conclude
that any two of the four Jost solutions 𝜓(𝑢,𝑣)𝑛 , 𝜙(𝑢,𝑣)𝑛 , 𝜓̄(𝑢,𝑣)𝑛 ,𝜙̄(𝑢,𝑣)𝑛 form a linearly independent set of
solutions to (7) when 𝑧 is on the unit circle 𝕋. We can express 𝜙(𝑢,𝑣)𝑛 and 𝜙̄(𝑢,𝑣)𝑛 as linear combina-
tions of 𝜓(𝑢,𝑣)𝑛 and 𝜓̄(𝑢,𝑣)𝑛 in a matrix form, with appropriate interpretation of the matrix product,
as

⎡⎢⎢⎣
𝜙
(𝑢,𝑣)
𝑛

𝜙̄
(𝑢,𝑣)
𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

1

𝑇
(𝑢,𝑣)
r

𝑅(𝑢,𝑣)

𝑇
(𝑢,𝑣)
r

𝑅̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
r

1

𝑇̄
(𝑢,𝑣)
r

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝜓̄
(𝑢,𝑣)
𝑛

𝜓
(𝑢,𝑣)
𝑛

⎤⎥⎥⎦ , 𝑧 ∈ 𝕋, (45)

where the entries in the coefficient matrix are obtained with the help of (12), (14), (17), and (19)
for the Jost solutions to (7). In a similar way, with the help of (13), (15), (16), and (18) for the Jost
solutions to (7), we get

⎡⎢⎢⎣
𝜓̄
(𝑢,𝑣)
𝑛

𝜓
(𝑢,𝑣)
𝑛

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

1

𝑇̄
(𝑢,𝑣)
l

𝐿̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
l

𝐿(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

1

𝑇
(𝑢,𝑣)
l

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝜙
(𝑢,𝑣)
𝑛

𝜙̄
(𝑢,𝑣)
𝑛

⎤⎥⎥⎦ , 𝑧 ∈ 𝕋. (46)

For the compatibility of (45) and (46), we must have

⎡⎢⎢⎢⎣
1

𝑇
(𝑢,𝑣)
r

𝑅(𝑢,𝑣)

𝑇
(𝑢,𝑣)
r

𝑅̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
r

1

𝑇̄
(𝑢,𝑣)
r

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

𝑇̄
(𝑢,𝑣)
l

𝐿̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
l

𝐿(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

1

𝑇
(𝑢,𝑣)
l

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
1 0

0 1

⎤⎥⎥⎦ , 𝑧 ∈ 𝕋. (47)
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Then, using (34) and (47), we obtain (35)–(38). ■

The above theorem indicates that the set of left scattering coefficients 𝑇(𝑢,𝑣)
l

,𝑇̄(𝑢,𝑣)
l

, 𝐿(𝑢,𝑣),𝐿̄(𝑢,𝑣)

can be expressed in terms of the set of right scattering coefficients 𝑇(𝑢,𝑣)r , 𝑇̄
(𝑢,𝑣)
r , 𝑅(𝑢,𝑣), 𝑅̄(𝑢,𝑣), and

vice versa.
In the next proposition, we provide the asymptotics of the transmission coefficients for (7).

Proposition 1. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and
that 1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, the transmission coefficients for (7) have their asymptotics given
by

𝑇
(𝑢,𝑣)
l

= 1 − 𝑧2
∞∑

𝑘=−∞

𝑢𝑘+1 𝑣𝑘 + 𝑂
(
𝑧4
)
, 𝑧 → 0, (48)

𝑇
(𝑢,𝑣)
r = 𝐷

(𝑢,𝑣)
∞

[
1 − 𝑧2

∞∑
𝑘=−∞

𝑢𝑘+1 𝑣𝑘 + 𝑂
(
𝑧4
)]
, 𝑧 → 0, (49)

𝑇̄
(𝑢,𝑣)
l

= 1 −
1

𝑧2

∞∑
𝑘=−∞

𝑢𝑘 𝑣𝑘+1 + 𝑂

(
1

𝑧4

)
, 𝑧 → ∞, (50)

𝑇̄
(𝑢,𝑣)
r = 𝐷

(𝑢,𝑣)
∞

[
1 −

1

𝑧2

∞∑
𝑘=−∞

𝑢𝑘 𝑣𝑘+1 + 𝑂

(
1

𝑧4

)]
, 𝑧 → ∞, (51)

where 𝐷(𝑢,𝑣)
∞ is the quantity defined in (20).

Proof. From Theorem 1(k), we know that 1∕𝑇(𝑢,𝑣)
l

and 1∕𝑇(𝑢,𝑣)r are analytic in |𝑧| < 1 and that
1∕𝑇̄

(𝑢,𝑣)
l

and 1∕𝑇̄(𝑢,𝑣)r are analytic in |𝑧| > 1. Premultiplying both sides of (22) by 𝑧−𝑛[0 1], then
letting 𝑛 → −∞ in the resulting equation, and using (16) with 𝜓

(𝑢,𝑣)
𝑛 and (23), we obtain (48).

Similarly, premultiplying both sides of (24) by 𝑧𝑛[1 0], then letting 𝑛 → −∞ in the resulting
equation, and using (18) with 𝜓̄(𝑢,𝑣)𝑛 and (25), we obtain (50). Finally, with the help of (34), (48),
and (50), we get (49) and (51). ■

When the scattering data evolve in time in the inverse scattering transform, the transmission
coefficients, and hence also the coefficients in the 𝑧-asymptotics of the transmission coefficients,
remain unchanged in time. Thus, we observe that the infinite summations appearing in (48)–
(51) correspond to some conserved quantities associated with the integrable semi-discrete NLS
system4,5,11

⎧⎪⎨⎪⎩
𝑖𝑢̇𝑛 + 𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1 − 𝑢𝑛𝑢𝑛+1𝑣𝑛 − 𝑢𝑛−1𝑢𝑛𝑣𝑛 = 0,

𝑖𝑣̇𝑛 − 𝑣𝑛+1 + 2𝑣𝑛 − 𝑣𝑛−1 + 𝑢𝑛𝑣𝑛𝑣𝑛+1 + 𝑢𝑛𝑣𝑛−1𝑣𝑛 = 0,

(52)

where the overdot denotes the 𝑡-derivative.
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In the next theorem, we provide various other relevant properties of the transmission coeffi-
cients for (7).

Theorem 3. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and that
1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, the transmission coefficients for (7) have the following properties:

(a) None of 𝑇(𝑢,𝑣)
l

, 𝑇(𝑢,𝑣)r , 𝑇̄(𝑢,𝑣)
l

, 𝑇̄(𝑢,𝑣)r can vanish when 𝑧 ∈ 𝕋.
(b) We have

1

𝑇
(𝑢,𝑣)
l

(0)
= 1,

1

𝑇
(𝑢,𝑣)
r (0)

=
1

𝐷
(𝑢,𝑣)
∞

≠ 0, (53)

1

𝑇̄
(𝑢,𝑣)
l

(∞)
= 1,

1

𝑇̄
(𝑢,𝑣)
r (∞)

=
1

𝐷
(𝑢,𝑣)
∞

≠ 0.

(c) The quantity 1∕𝑇(𝑢,𝑣)
l

has at most a finite number of zeros in 0 < |𝑧| < 1 and the multiplicity of
each such zero is finite. The zeros of 1∕𝑇(𝑢,𝑣)r and the multiplicities of those zeros are the same as
those for 1∕𝑇(𝑢,𝑣)

l
.

(d) The quantity 1∕𝑇̄(𝑢,𝑣)
l

has at most a finite number of zeros in |𝑧| > 1 and the multiplicity of each
such zero is finite. The zeros of 1∕𝑇̄(𝑢,𝑣)r and the multiplicities of those zeros are the same as those
for 1∕𝑇̄(𝑢,𝑣)

l
.

(e) The quantities 𝑇(𝑢,𝑣)
l

and 𝑇(𝑢,𝑣)r are meromorphic in |𝑧| < 1. The number of their poles and the
multiplicities of those poles are both finite. Similarly, the quantities 𝑇̄(𝑢,𝑣)

l
and 𝑇̄(𝑢,𝑣)r are mero-

morphic in |𝑧| > 1, and the number of their poles and the multiplicities of those poles are both
finite.

(f) If 𝑧𝑗 is a pole of 𝑇
(𝑢,𝑣)
l

and 𝑇(𝑢,𝑣)r in 0 < |𝑧| < 1, then−𝑧𝑗 is also a pole of those two transmission
coefficients. Similarly, if 𝑧̄𝑗 is a pole of 𝑇̄

(𝑢,𝑣)
l

and 𝑇̄(𝑢,𝑣)r in |𝑧| > 1, then−𝑧̄𝑗 is also a pole of 𝑇̄
(𝑢,𝑣)
l

and 𝑇̄(𝑢,𝑣)r .

Proof. We can write (36) as

1

𝐷
(𝑢,𝑣)
∞

=
1

𝑇
(𝑢,𝑣)
l

𝑇̄
(𝑢,𝑣)
l

−
𝐿(𝑢,𝑣) 𝐿̄(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

𝑇̄
(𝑢,𝑣)
l

, 𝑧 ∈ 𝕋.

Because of the continuity of 𝐿(𝑢,𝑣)∕𝑇(𝑢,𝑣)
l

, we can conclude that if 𝑇(𝑢,𝑣)
l

vanished at some point on
𝕋, then 𝐿(𝑢,𝑣) would have to vanish at that same point on 𝕋. However, this cannot happen because
it would contradict (36) as we have 𝐷(𝑢,𝑣)

∞ ≠ 0. The remaining proofs in (a) are established in a
similar manner. Note that (b) is obtained directly from (48)–(51). The proof of (c) for 𝑇(𝑢,𝑣)

l
can be

given as follows. From Theorem 1(k), we know that 1∕𝑇(𝑢,𝑣)
l

is analytic in |𝑧| < 1 and continuous
in |𝑧| ≤ 1, and from (a) we know that 1∕𝑇(𝑢,𝑣)

l
cannot vanish on 𝕋. Hence, any zeros of 1∕𝑇(𝑢,𝑣)

l

must occur in the bounded region |𝑧| < 1. Thus, the zeros of 1∕𝑇(𝑢,𝑣)
l

in |𝑧| < 1must be finite in
number and each such zero must have a finite multiplicity. The remaining proof of (c) is obtained
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by using the first equality in (34). The proofs of (d) and (e) are obtained in a manner similar to the
proof of (c). Finally, we note that (f) follows from (c), (d), (e), and Theorem 1(j). ■

We remark that the analogs of the results presented for the potential pair (𝑢, 𝑣) in Proposition 1
and Theorems 1, 2, and 3 are also valid for the potential pair (𝑝, 𝑠).
Next, let us consider the properties of the scattering coefficients for (1). Because the coefficient

matrix in (1) has determinant equal to 1, in this case we can express the scattering coefficients
for (1) in terms of the Wronskians each defined as a determinant of a 2×2 matrix where the two
columns are the appropriate Jost solutions to (1). We define the Wronskian of two column-vector

solutions
[
𝛼𝑛
𝛽𝑛

]
and

[
𝛼̂𝑛
𝛽𝑛

]
to (1) as

⎡⎢⎢⎣
⎡⎢⎢⎣
𝛼𝑛

𝛽𝑛

⎤⎥⎥⎦ ;
⎡⎢⎢⎣
𝛼̂𝑛

𝛽𝑛

⎤⎥⎥⎦
⎤⎥⎥⎦ ∶= det

⎡⎢⎢⎣
𝛼𝑛 𝛼̂𝑛

𝛽𝑛 𝛽𝑛

⎤⎥⎥⎦ =
||||||
𝛼𝑛 𝛼̂𝑛

𝛽𝑛 𝛽𝑛

|||||| . (54)

We recall that the scattering coefficients for (7) cannot be obtained from theWronskians of any
two solutions to (7) because the coefficient matrix in (7) does not have the determinant equal to 1.
In that case, in order to obtain the scattering coefficients, one can use theWronskians of a solution
to (7) and a solution to the adjoint equation corresponding to (7). However, we prefer to express
the scattering coefficients via the asymptotics of the Jost solutions as in (16)–(19) and this allows
us to investigate the scattering coefficients in a unified way for any of the three systems (1), (7),
and (8).
With the help of (1) and (54), one can directly verify that the determinant used in (54) is indepen-

dent of 𝑛. In terms of the Jost solutions 𝜓(𝑞,𝑟)𝑛 , 𝜙(𝑞,𝑟)𝑛 , 𝜓̄(𝑞,𝑟)𝑛 , 𝜙̄(𝑞,𝑟)𝑛 satisfying (1) and the respective
asymptotics given in (12)–(15), with the help of (16)–(19), we express the scattering coefficients
𝑇
(𝑞,𝑟)

l
, 𝑇̄(𝑞,𝑟)

l
, 𝑇(𝑞,𝑟)r , 𝑇̄(𝑞,𝑟)r , 𝑅(𝑞,𝑟), 𝑅̄(𝑞,𝑟), 𝐿(𝑞,𝑟), 𝐿̄(𝑞,𝑟) as

1

𝑇
(𝑞,𝑟)

l

=
|||𝜙(𝑞,𝑟)𝑛 𝜓

(𝑞,𝑟)
𝑛
||| , 1

𝑇̄
(𝑞,𝑟)

l

=
|||𝜓̄(𝑞,𝑟)𝑛 𝜙̄

(𝑞,𝑟)
𝑛
||| , (55)

1

𝑇
(𝑞,𝑟)
r

=
|||𝜙(𝑞,𝑟)𝑛 𝜓

(𝑞,𝑟)
𝑛
||| , 1

𝑇̄
(𝑞,𝑟)
r

=
|||𝜓̄(𝑞,𝑟)𝑛 𝜙̄

(𝑞,𝑟)
𝑛
||| , (56)

𝐿(𝑞,𝑟)

𝑇
(𝑞,𝑟)

l

=
|||𝜓(𝑞,𝑟)𝑛 𝜙̄

(𝑞,𝑟)
𝑛
||| , 𝐿̄(𝑞,𝑟)

𝑇̄
(𝑞,𝑟)

l

=
|||𝜙(𝑞,𝑟)𝑛 𝜓̄

(𝑞,𝑟)
𝑛
||| , (57)

𝑅(𝑞,𝑟)

𝑇
(𝑞,𝑟)
r

=
|||𝜓̄(𝑞,𝑟)𝑛 𝜙

(𝑞,𝑟)
𝑛
||| , 𝑅̄(𝑞,𝑟)

𝑇̄
(𝑞,𝑟)
r

=
|||𝜙̄(𝑞,𝑟)𝑛 𝜓

(𝑞,𝑟)
𝑛
||| . (58)

In the next theorem, we list some relevant properties of the scattering coefficients for (1).

Theorem 4. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, we have the following:
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(a) The left and right transmission coefficients for (1) are equal to each other, that is, we have

𝑇
(𝑞,𝑟)

l
= 𝑇

(𝑞,𝑟)
r , 𝑇̄

(𝑞,𝑟)

l
= 𝑇̄

(𝑞,𝑟)
r . (59)

Wewill use 𝑇(𝑞,𝑟) to denote the common value of 𝑇(𝑞,𝑟)
l

and 𝑇(𝑞,𝑟)r , and we will use 𝑇̄(𝑞,𝑟) to denote
the common value of 𝑇̄(𝑞,𝑟)

l
and 𝑇̄(𝑞,𝑟)r . The transmission coefficient 𝑇(𝑞,𝑟) has a meromorphic

extension from 𝑧 ∈ 𝕋 to |𝑧| < 1 and the transmission coefficient 𝑇̄(𝑞,𝑟) has ameromorphic exten-
sion from 𝑧 ∈ 𝕋 to |𝑧| > 1.

(b) For 𝑧 ∈ 𝕋, the left and right reflection coefficients for (1) satisfy

𝐿(𝑞,𝑟)

𝑇(𝑞,𝑟)
= −

𝑅̄(𝑞,𝑟)

𝑇̄(𝑞,𝑟)
,

𝐿̄(𝑞,𝑟)

𝑇̄(𝑞,𝑟)
= −

𝑅(𝑞,𝑟)

𝑇(𝑞,𝑟)
, (60)

𝑇(𝑞,𝑟) 𝑇̄(𝑞,𝑟) = 1 − 𝐿(𝑞,𝑟) 𝐿̄(𝑞,𝑟) = 1 − 𝑅(𝑞,𝑟) 𝑅̄(𝑞,𝑟). (61)

Proof. The proof can be obtained as in the proof of Theorem 2. As an alternate proof, we see that
(59) follows from (55) and (56); (60) follows from (57) and (58); and that (61) is established by using
the fact that the Wronskian of 𝜓̄(𝑞,𝑟)𝑛 and 𝜓(𝑞,𝑟)𝑛 as in (54) yields the same value as 𝑛 → −∞ and
𝑛 → +∞. Finally, the aforementioned meromorphic extensions for the transmission coefficients
follow from the fact that the Jost solutions 𝜓(𝑞,𝑟)𝑛 and 𝜙(𝑞,𝑟)𝑛 have analytic extensions in 𝑧 to |𝑧| < 1

and that the Jost solutions 𝜓̄(𝑞,𝑟)𝑛 and 𝜙̄
(𝑞,𝑟)
𝑛 have analytic extensions in 𝑧 to |𝑧| > 1, where the

analytic extensions can be established by iterating (1) and by using (12)–(15). ■

We see from (59) that the left and right transmission coefficients for (1) are equal, whereas the
same does not hold for (7). Similar to (20), we define the related quantities 𝐷(𝑞,𝑟)

𝑛 and 𝐷(𝑞,𝑟)
∞ for (1)

as

𝐷
(𝑞,𝑟)
𝑛 ∶=

𝑛∏
𝑗=−∞

(
1 − 𝑞𝑗 𝑟𝑗

)
, 𝐷

(𝑞,𝑟)
∞ ∶=

∞∏
𝑗=−∞

(
1 − 𝑞𝑗 𝑟𝑗

)
. (62)

For (1), we also define the quantities 𝐸(𝑞,𝑟)𝑛 and 𝐸(𝑞,𝑟)∞ as

𝐸
(𝑞,𝑟)
𝑛 ∶=

𝑛∏
𝑗=−∞

(
1 + 𝑞𝑗 𝑟𝑗+1

)
, 𝐸

(𝑞,𝑟)
∞ ∶=

∞∏
𝑗=−∞

(
1 + 𝑞𝑗 𝑟𝑗+1

)
. (63)

From (2) and the fact that 𝑞𝑛 and 𝑟𝑛 are rapidly decaying, it follows that the quantities𝐷
(𝑞,𝑟)
𝑛 ,𝐷(𝑞,𝑟)

∞ ,
𝐸
(𝑞,𝑟)
𝑛 , 𝐷(𝑞,𝑟)

∞ are each well defined and nonzero.
Let us introduce the scalar quantities 𝑆(𝑞,𝑟)𝑛 and 𝑄(𝑞,𝑟)

𝑛 as

𝑆
(𝑞,𝑟)
𝑛 ∶=

𝑛∑
𝑘=−∞

𝑟𝑘(𝑞𝑘 − 𝑞𝑘+1 − 𝑞𝑘 𝑞𝑘+1 𝑟𝑘+1)

(1 − 𝑞𝑘 𝑟𝑘)(1 − 𝑞𝑘+1 𝑟𝑘+1)
, (64)
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𝑄
(𝑞,𝑟)
𝑛 ∶=

𝑛∑
𝑘=−∞

𝑟𝑘+2(𝑞𝑘 − 𝑞𝑘+1 − 𝑞𝑘 𝑞𝑘+1 𝑟𝑘+1)

(1 + 𝑞𝑘 𝑟𝑘+1)(1 + 𝑞𝑘+1 𝑟𝑘+2)
. (65)

Letting 𝑛 → +∞ in (64) and (65), we get

𝑆
(𝑞,𝑟)
∞ ∶=

∞∑
𝑘=−∞

𝑟𝑘(𝑞𝑘 − 𝑞𝑘+1 − 𝑞𝑘 𝑞𝑘+1 𝑟𝑘+1)

(1 − 𝑞𝑘 𝑟𝑘)(1 − 𝑞𝑘+1 𝑟𝑘+1)
, (66)

𝑄
(𝑞,𝑟)
∞ ∶=

∞∑
𝑘=−∞

𝑟𝑘+2(𝑞𝑘 − 𝑞𝑘+1 − 𝑞𝑘 𝑞𝑘+1 𝑟𝑘+1)

(1 + 𝑞𝑘 𝑟𝑘+1)(1 + 𝑞𝑘+1 𝑟𝑘+2)
. (67)

As stated in Theorem 4(a), the transmission coefficient 𝑇(𝑞,𝑟) for (1) has a meromorphic exten-
sion to the region |𝑧| < 1 and the transmission coefficient 𝑇̄(𝑞,𝑟) for (1) has a meromorphic exten-
sion to |𝑧| > 1. The asymptotics of those two transmission coefficients are presented next.

Proposition 2. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and
satisfy (2). Then, the small-𝑧 asymptotics of the transmission coefficient 𝑇(𝑞,𝑟) for (1) is given by

𝑇(𝑞,𝑟) =
1

𝐷
(𝑞,𝑟)
∞

[
1 − 𝑧2 𝑆

(𝑞,𝑟)
∞ + 𝑂

(
𝑧4
)]
, 𝑧 → 0, (68)

where 𝐷(𝑞,𝑟)
∞ and 𝑆(𝑞,𝑟)∞ are the scalar quantities defined in (62) and (66), respectively. Similarly, the

large-𝑧 asymptotics of the transmission coefficient 𝑇̄(𝑞,𝑟) for (1) is given by

𝑇̄(𝑞,𝑟) =
1

𝐸
(𝑞,𝑟)
∞

[
1 −

1

𝑧2
𝑄
(𝑞,𝑟)
∞ + 𝑂

(
1

𝑧4

)]
, 𝑧 → ∞, (69)

where 𝐸(𝑞,𝑟)∞ and 𝑄(𝑞,𝑟)
∞ are the scalar quantities defined in (63) and (67), respectively.

Proof. The proof is lengthy but straightforward. To obtain (68), we use (1) with the Jost solution
𝜓
(𝑞,𝑟)
𝑛 , premultiply both sides of (1) with 𝑧−𝑛[0 1], iterate the resulting equation, and for 𝑚 ≥ 𝑛

we get [
0 1

]
𝑧−𝑛 𝜓

(𝑞,𝑟)
𝑛 =

[
0 1

]
Ξ𝑛 Ξ𝑛+1⋯Ξ𝑚 𝑧−𝑚−1 𝜓

(𝑞,𝑟)
𝑚+1, (70)

where we have defined

Ξ𝑛 ∶=
⎡⎢⎢⎣
0 −𝑞𝑛

0 1 − 𝑞𝑛𝑟𝑛

⎤⎥⎥⎦ + 𝑧2
⎡⎢⎢⎣
1 𝑞𝑛

𝑟𝑛 𝑞𝑛𝑟𝑛

⎤⎥⎥⎦ .
We note that in the limit 𝑛 → −∞ the left-hand side of (70) yields 1∕𝑇(𝑞,𝑟). Letting 𝑛 → −∞ and
𝑚 → +∞ in (70), using (12) and (16) for𝜓(𝑞,𝑟)𝑛 and also using𝐷(𝑞,𝑟)

∞ defined in (62) and 𝑆(𝑞,𝑟)∞ defined
in (66), after some straightforward algebra, we get (68). The proof of (69) is similarly obtained by
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using (1) with the Jost solution 𝜓̄(𝑞,𝑟)𝑛 , premultiplying both sides of (1) with 𝑧𝑛[1 0], iterating the
resulting equation, and using (14) and (18) for 𝜓̄(𝑞,𝑟)𝑛 and also using 𝐸(𝑞,𝑟)∞ defined in (63) and 𝑄(𝑞,𝑟)

∞

defined in (67). ■

We remark that the four quantities 𝐷(𝑞,𝑟)
∞ , 𝐸(𝑞,𝑟)∞ , 𝑆(𝑞,𝑟)∞ , 𝑄(𝑞,𝑟)

∞ appearing in the 𝑧-asymptotics in
(68) and (69) are among the conserved quantities for the integrable system in (3).
In the next theorem, we provide some further relevant properties of the transmission coeffi-

cients for (1).

Theorem 5. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, for the transmission coefficients 𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) of (1) we have the following:

(a) Neither 𝑇(𝑞,𝑟) nor 𝑇̄(𝑞,𝑟) can vanish when 𝑧 ∈ 𝕋.
(b) We have

1

𝑇(𝑞,𝑟)(0)
= 𝐷

(𝑞,𝑟)
∞ ,

1

𝑇̄(𝑞,𝑟)(∞)
= 𝐸

(𝑞,𝑟)
∞ . (71)

(c) The quantity 1∕𝑇(𝑞,𝑟) has at most a finite number of zeros in 0 < |𝑧| < 1 and the multiplicity of
each such zero is finite.

(d) The quantity 1∕𝑇̄(𝑞,𝑟) has at most a finite number of zeros in |𝑧| > 1 and the multiplicity of each
such zero is finite.

(e) The transmission coefficient 𝑇(𝑞,𝑟) is meromorphic in |𝑧| < 1, and the number of its poles and
the multiplicities of those poles are both finite. Similarly, 𝑇̄(𝑞,𝑟) is meromorphic in |𝑧| > 1, and
the number of its poles and the multiplicities of those poles are both finite.

(f) If 𝑧𝑗 is a pole of 𝑇(𝑞,𝑟) in 0 < |𝑧| < 1, then −𝑧𝑗 is also a pole of 𝑇(𝑞,𝑟). Similarly, if 𝑧̄𝑗 is a pole of
𝑇̄(𝑞,𝑟) in |𝑧| > 1, then −𝑧̄𝑗 is also a pole of 𝑇̄(𝑞,𝑟).

Proof. We note that (71) follows from (68) and (69). The rest of the proof can be given in a way
similar to the proof of Theorem 3. ■

Finally, in this section we clarify the relationship between the poles of the transmission coef-
ficients and the linear dependence of the relevant Jost solutions for each of the linear systems
(1), (7), and (8). This clarification has many important consequences. It allows us to introduce
the dependency constants at the bound states. It also allows us to deal with bound states of any
multiplicities in an elegant manner. The treatment given here for the linear systems (1), (7), and
(8) can be readily generalized to other linear systems both in the discrete and continuous cases.
In terms of the Jost solutions 𝜓𝑛, 𝜙𝑛, 𝜓̄𝑛, 𝜙̄𝑛 appearing in (12)–(15) for each of the linear systems

(1), (7), and (8), we define

𝑎
(𝑞,𝑟)
𝑛 ∶=

|||𝜙(𝑞,𝑟)𝑛 𝜓
(𝑞,𝑟)
𝑛
||| , 𝑎̄

(𝑞,𝑟)
𝑛 ∶=

|||𝜙̄(𝑞,𝑟)𝑛 𝜓̄
(𝑞,𝑟)
𝑛
||| , (72)

𝑎
(𝑢,𝑣)
𝑛 ∶=

|||𝜙(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛

||| , 𝑎̄
(𝑢,𝑣)
𝑛 ∶=

|||𝜙̄(𝑢,𝑣)𝑛 𝜓̄
(𝑢,𝑣)
𝑛

||| , (73)
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𝑎
(𝑝,𝑠)
𝑛 ∶=

|||𝜙(𝑝,𝑠)𝑛 𝜓
(𝑝,𝑠)
𝑛
||| , 𝑎̄

(𝑝,𝑠)
𝑛 ∶=

|||𝜙̄(𝑝,𝑠)𝑛 𝜓̄
(𝑝,𝑠)
𝑛
||| , (74)

where on the right-hand sides we have the Wronskian determinants.
The relationships among 𝑎(𝑞,𝑟)𝑛 , 𝑎̄(𝑞,𝑟)𝑛 , and the transmission coefficients 𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) for (1)

are clarified in the following theorem.

Theorem 6. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, we have the following:

(a) The scalar quantities 𝑎(𝑞,𝑟)𝑛 and 𝑎̄(𝑞,𝑟)𝑛 defined in (72) are independent of 𝑛, depend only on 𝑧,
and are related to the transmission coefficients 𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) appearing in (55), (56), (59) as

𝑎
(𝑞,𝑟)
𝑛 =

1

𝑇(𝑞,𝑟)
, 𝑎̄

(𝑞,𝑟)
𝑛 = −

1

𝑇̄(𝑞,𝑟)
. (75)

(b) Consequently, the linear dependence of the Jost solutions 𝜙(𝑞,𝑟)𝑛 and 𝜓(𝑞,𝑟)𝑛 occurs at the poles of
𝑇(𝑞,𝑟) in 0 < |𝑧| < 1. Similarly, the linear dependence of the Jost solutions 𝜙̄(𝑞,𝑟)𝑛 and 𝜓̄(𝑞,𝑟)𝑛 occurs
at the poles of 𝑇̄(𝑞,𝑟) in |𝑧| > 1.

(c) In particular, if 𝑇(𝑞,𝑟) has a pole at 𝑧 = ±𝑧𝑗 each with multiplicity𝑚𝑗 , then we have

𝑑𝑘𝑎
(𝑞,𝑟)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1, 𝑛 ∈ ℤ. (76)

Similarly, if 𝑇̄(𝑞,𝑟) has a pole at 𝑧 = ±𝑧̄𝑗 each with multiplicity 𝑚̄𝑗 , we then have

𝑑𝑘𝑎̄
(𝑞,𝑟)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧̄𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1, 𝑛 ∈ ℤ. (77)

Proof. Note that (75) is obtained directly from (55), (56), (59), and (72). Since each of 𝜓(𝑞,𝑟)𝑛 , 𝜙(𝑞,𝑟)𝑛 ,
𝜓̄
(𝑞,𝑟)
𝑛 , 𝜙̄(𝑞,𝑟)𝑛 satisfies the same linear system (1), the linear dependence and the vanishing of the

Wronskian determinant are equivalent. We also note that (76) and (77) directly follow (75). ■

In the next theorem, we clarify the relationships among 𝑎(𝑢,𝑣)𝑛 , 𝑎̄(𝑢,𝑣)𝑛 , and the transmission coef-
ficients for (7).

Theorem 7. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and that
1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, we have the following:

(a) The scalar quantities 𝑎(𝑢,𝑣)𝑛 and 𝑎̄
(𝑢,𝑣)
𝑛 defined in (73) depend both on 𝑛 and 𝑧, and they are

related to the transmission coefficients 𝑇(𝑢,𝑣)r and 𝑇̄(𝑢,𝑣)r appearing in (34) and (35) as

𝑎
(𝑢,𝑣)
𝑛 =

𝐷
(𝑢,𝑣)
∞

𝐷
(𝑢,𝑣)
𝑛−1

1

𝑇
(𝑢,𝑣)
r

, 𝑎̄
(𝑢,𝑣)
𝑛 = −

𝐷
(𝑢,𝑣)
∞

𝐷
(𝑢,𝑣)
𝑛−1

1

𝑇̄
(𝑢,𝑣)
r

, (78)
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where 𝐷(𝑢,𝑣)
𝑛 and 𝐷(𝑢,𝑣)

∞ are the scalar quantities defined in (20).
(b) Since 𝐷(𝑢,𝑣)

∞ ≠ 0 and 𝐷(𝑢,𝑣)
𝑛 ≠ 0 for 𝑛 ∈ ℤ and these quantities do not contain 𝑧, we conclude

from (73) and (78) that the linear dependence of the Jost solutions 𝜙(𝑢,𝑣)𝑛 and 𝜓(𝑢,𝑣)𝑛 occurs at the
poles of 𝑇(𝑢,𝑣)r and that the linear dependence of the Jost solutions 𝜙̄(𝑢,𝑣)𝑛 and 𝜓̄(𝑢,𝑣)𝑛 occurs at the
poles of 𝑇̄(𝑢,𝑣)r .

(c) In particular, if 𝑇(𝑢,𝑣)r has a pole at 𝑧 = ±𝑧𝑗 each with multiplicity𝑚𝑗 , then we have

𝑑𝑘𝑎
(𝑢,𝑣)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1, 𝑛 ∈ ℤ. (79)

Similarly, if 𝑇̄(𝑢,𝑣)r has a pole at 𝑧 = ±𝑧̄𝑗 each with multiplicity 𝑚̄𝑗 , then we have

𝑑𝑘𝑎̄
(𝑢,𝑣)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧̄𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1, 𝑛 ∈ ℤ. (80)

Proof. Let us use 𝑛 and |𝑛| to denote the coefficient matrix in (7) and its determinant, respec-
tively, that is,

𝑛 ∶=
⎡⎢⎢⎣
𝑧 𝑧 𝑢𝑛

1

𝑧
𝑣𝑛

1

𝑧

⎤⎥⎥⎦ , |𝑛| ∶= 1 − 𝑢𝑛𝑣𝑛. (81)

From (7) and (73), we get

𝑎
(𝑢,𝑣)
𝑛 =

|||𝑛 𝜙
(𝑢,𝑣)
𝑛+1 𝑛 𝜓

(𝑢,𝑣)
𝑛+1

||| ,
or equivalently

𝑎
(𝑢,𝑣)
𝑛 =

|||𝑛
||| |||𝜙(𝑢,𝑣)𝑛+1 𝜓

(𝑢,𝑣)
𝑛+1

||| .
Iterating in this manner, from (7) and (73), for𝑚 ≥ 𝑛 we obtain

𝑎
(𝑢,𝑣)
𝑛 =

|||𝑛
||| |||𝑛+1

|||⋯ |||𝑚
||| |||𝜙(𝑢,𝑣)𝑚+1 𝜓

(𝑢,𝑣)
𝑚+1

||| . (82)

Letting𝑚 → +∞ in (82) and using (12) and (17) for the potential pair (𝑢, 𝑣), with the help of (81),
we get

𝑎
(𝑢,𝑣)
𝑛 =

(
∞∏
𝑘=𝑛

(1 − 𝑢𝑘 𝑣𝑘)

)
1

𝑇
(𝑢,𝑣)
r

,

which is equivalent to

𝑎
(𝑢,𝑣)
𝑛 =

(∏∞

𝑘=−∞
(1 − 𝑢𝑘 𝑣𝑘)∏𝑛−1

𝑘=−∞
(1 − 𝑢𝑘 𝑣𝑘)

)
1

𝑇
(𝑢,𝑣)
r

. (83)
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Using (20) in (83), we get the first equality in (78). The second equality in (78) is obtained by
iterating (7) so that

|||𝜙̄(𝑢,𝑣)𝑛 𝜓̄
(𝑢,𝑣)
𝑛

||| = |||𝑛
||| |||𝑛+1

|||⋯ |||𝑚
||| |||𝜙̄(𝑢,𝑣)𝑚+1 𝜓̄

(𝑢,𝑣)
𝑚+1

||| ,
and letting 𝑚 → +∞ and using (14) and (19) for the potential pair (𝑢, 𝑣). We finally remark that
(b) and (c) are direct consequences of (a). ■

The result of Theorem 7 is remarkable in the following sense. Because the coefficient matrix
in (7) does not have its determinant equal to 1, the Wronskians of the Jost solutions to (7) are
not independent of the spacial variable 𝑛. In such a case, it is customary to define the scattering
coefficients in terms of Wronskians of a Jost solution to (7) and a solution to the adjoint system
corresponding to (7), as done in Section 3.2 of Ref. 3. However, we prefer defining the scattering
coefficients in terms of the spacial asymptotics given in (16)–(19). Even though the two definitions
yield equivalent results, we feel that the latter provides physical insight and allows us to avoid the
analysis of the solutions to the adjoint system. The result of Theorem 7 shows that, even though
the scattering coefficients for (7) cannot be defined as some Wronskians of the Jost solutions to
(7) as in (55)–(58), we have the relations given by

1

𝑇
(𝑢,𝑣)
r

=
𝐷
(𝑢,𝑣)
𝑛−1

𝐷
(𝑢,𝑣)
∞

|||𝜙(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛

||| , 1

𝑇̄
(𝑢,𝑣)
r

=
𝐷
(𝑢,𝑣)
𝑛−1

𝐷
(𝑢,𝑣)
∞

|||𝜓̄(𝑢,𝑣)𝑛 𝜙̄
(𝑢,𝑣)
𝑛

||| , (84)

1

𝑇
(𝑢,𝑣)
l

=
1

𝐷
(𝑢,𝑣)
𝑛−1

|||𝜙(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛

||| , 1

𝑇̄
(𝑢,𝑣)
l

=
1

𝐷
(𝑢,𝑣)
𝑛−1

|||𝜓̄(𝑢,𝑣)𝑛 𝜙̄
(𝑢,𝑣)
𝑛

||| , (85)

𝑅(𝑢,𝑣)

𝑇
(𝑢,𝑣)
r

=
𝐷
(𝑢,𝑣)
𝑛−1

𝐷
(𝑢,𝑣)
∞

|||𝜓̄(𝑢,𝑣)𝑛 𝜙
(𝑢,𝑣)
𝑛

||| , 𝑅̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
r

=
𝐷
(𝑢,𝑣)
𝑛−1

𝐷
(𝑢,𝑣)
∞

|||𝜙̄(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛

||| , (86)

𝐿(𝑢,𝑣)

𝑇
(𝑢,𝑣)
l

=
1

𝐷
(𝑢,𝑣)
𝑛−1

|||𝜓(𝑢,𝑣)𝑛 𝜙̄
(𝑢,𝑣)
𝑛

||| , 𝐿̄(𝑢,𝑣)

𝑇̄
(𝑢,𝑣)
l

=
1

𝐷
(𝑢,𝑣)
𝑛−1

|||𝜙(𝑢,𝑣)𝑛 𝜓̄
(𝑢,𝑣)
𝑛

||| , (87)

where the scattering coefficients for (7) are explicitly expressed in terms of the Wronskians of the
Jost solutions to (7) via 𝑛-dependent, 𝑧-independent, nonzero coefficients. Note that (84) and (86)
can be obtained by using a forward iteration as in (82) and that (85) and (87) can be obtained via
a backward iteration on (7). For example, the first equality in (85) is obtained by letting𝑚 → −∞

in

|||𝜙(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛

||| = |||−1
𝑛−1
||| |||−1

𝑛−2
|||⋯ |||−1

𝑚
||| |||𝜙(𝑢,𝑣)𝑚 𝜓

(𝑢,𝑣)
𝑚

||| .
Note that the scalar quantity 𝐷(𝑢,𝑣)

∞ in (84) is independent of 𝑧 and nonzero. Furthermore, each
𝐷
(𝑢,𝑣)
𝑛 for 𝑛 ∈ ℤ is independent of 𝑧 and nonzero. Thus, (84) allows us to directly relate the poles

of 𝑇(𝑢,𝑣)r to the zeros of the Wronskian determinant |𝜙(𝑢,𝑣)𝑛 𝜓
(𝑢,𝑣)
𝑛 |, and similarly we can directly

relate the poles of 𝑇̄(𝑢,𝑣)r to the zeros of the Wronskian determinant |𝜙̄(𝑢,𝑣)𝑛 𝜓̄
(𝑢,𝑣)
𝑛 |.
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The results stated in Theorem 7 hold for (8) as well. In the following corollary, we state those
results without a proof since that proof is similar to the proof of Theorem 7.

Corollary 2. Assume that the potentials 𝑝𝑛 and 𝑠𝑛 appearing in (8) are rapidly decaying and that
1 − 𝑝𝑛𝑠𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, we have the following:

(a) The scalar quantities𝑎(𝑝,𝑠)𝑛 and 𝑎̄(𝑝,𝑠)𝑛 defined in (74) depend both on𝑛 and 𝑧, and they are related
to the transmission coefficients 𝑇(𝑝,𝑠)r and 𝑇̄(𝑝,𝑠)r appearing in (17) and (19) for the potential pair
(𝑝, 𝑠) as

𝑎
(𝑝,𝑠)
𝑛 =

𝐷
(𝑝,𝑠)
∞

𝐷
(𝑝,𝑠)
𝑛−1

1

𝑇
(𝑝,𝑠)
r

, 𝑎̄
(𝑝,𝑠)
𝑛 = −

𝐷
(𝑝,𝑠)
∞

𝐷
(𝑝,𝑠)
𝑛−1

1

𝑇̄
(𝑝,𝑠)
r

, (88)

where 𝐷(𝑝,𝑠)
𝑛 and 𝐷(𝑝,𝑠)

∞ are the scalar quantities defined in (21).
(b) Since 𝐷(𝑝,𝑠)

∞ ≠ 0 and 𝐷(𝑝,𝑠)
𝑛 ≠ 0 for 𝑛 ∈ ℤ and these quantities do not contain 𝑧, we conclude

from (74) and (88) that the linear dependence of the Jost solutions 𝜙(𝑝,𝑠)𝑛 and 𝜓(𝑝,𝑠)𝑛 occurs at the
poles of 𝑇(𝑝,𝑠)r and that the linear dependence of the Jost solutions 𝜙̄(𝑝,𝑠)𝑛 and 𝜓̄(𝑝,𝑠)𝑛 occurs at the
poles of 𝑇̄(𝑝,𝑠)r .

(c) In particular, if 𝑇(𝑝,𝑠)r has a pole at 𝑧 = ±𝑧𝑗 each with multiplicity𝑚𝑗 , then we have

𝑑𝑘𝑎
(𝑝,𝑠)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1, 𝑛 ∈ ℤ. (89)

Similarly, if 𝑇̄(𝑝,𝑠)r has a pole at 𝑧 = ±𝑧̄𝑗 each with multiplicity 𝑚̄𝑗 , then we have

𝑑𝑘𝑎̄
(𝑝,𝑠)
𝑛

𝑑𝑧𝑘

||||𝑧=±𝑧̄𝑗 = 0, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1, 𝑛 ∈ ℤ. (90)

3 THE TRANSFORMATIONS

In this section, we relate the linear systems (1), (7), and (8) to each other by choosing the potential
pairs (𝑢, 𝑣) and (𝑝, 𝑠) in terms of the potential pair (𝑞, 𝑟) in a particular way, namely as

𝑢𝑛 = 𝑞𝑛
𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
𝑛

, (91)

𝑣𝑛 = (−𝑟𝑛 + 𝑟𝑛+1 − 𝑞𝑛 𝑟𝑛 𝑟𝑛+1)
𝐷
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
𝑛

, (92)
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𝑝𝑛 = (𝑞𝑛 − 𝑞𝑛+1 − 𝑞𝑛 𝑞𝑛+1 𝑟𝑛+1)
𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
𝑛+1

, (93)

𝑠𝑛 = 𝑟𝑛+1
𝐷
(𝑞,𝑟)
𝑛

𝐸
(𝑞,𝑟)
𝑛

, (94)

where 𝐷(𝑞,𝑟)
𝑛 and 𝐸(𝑞,𝑟)𝑛 are the quantities defined in (62) and (63), respectively. This helps us to

express the Jost solutions and the scattering coefficients for (7) and (8) in terms of the correspond-
ing quantities for (1). In this section, we also present certain relevant properties of the Jost solu-
tions to (1), and we express 𝑞𝑛 and 𝑟𝑛 in terms of the values at 𝑧 = 1 of the Jost solutions to (7)
and (8). The results presented in this section play a crucial role in solving the direct and inverse
scattering problems for (1) by exploiting the techniques for the corresponding problems for (7)
and (8).
In the next proposition, when (91)–(94) are valid we present some relationships among the

quantities for the potential pairs (𝑞, 𝑟), (𝑢, 𝑣), and (𝑝, 𝑠).

Proposition 3. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and
satisfy (2). Let the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). We then have

1 − 𝑢𝑛𝑣𝑛 =
1

(1 − 𝑞𝑛 𝑟𝑛)(1 + 𝑞𝑛 𝑟𝑛+1)
, (95)

1 − 𝑝𝑛𝑠𝑛 =
1

(1 − 𝑞𝑛+1 𝑟𝑛+1)(1 + 𝑞𝑛 𝑟𝑛+1)
, (96)

𝐷
(𝑢,𝑣)
𝑛 =

1

𝐷
(𝑞,𝑟)
𝑛 𝐸

(𝑞,𝑟)
𝑛

, 𝐷
(𝑢,𝑣)
∞ =

1

𝐷
(𝑞,𝑟)
∞ 𝐸

(𝑞,𝑟)
∞

, (97)

𝐷
(𝑝,𝑠)
𝑛 =

1

𝐷
(𝑞,𝑟)
𝑛+1 𝐸

(𝑞,𝑟)
𝑛

, 𝐷
(𝑝,𝑠)
∞ =

1

𝐷
(𝑞,𝑟)
∞ 𝐸

(𝑞,𝑟)
∞

, (98)

where we recall that 𝐷(𝑢,𝑣)
𝑛 and 𝐷(𝑢,𝑣)

∞ are as in (20), 𝐷(𝑝,𝑠)
𝑛 and 𝐷(𝑝,𝑠)

∞ are as in (21), 𝐷(𝑞,𝑟)
𝑛 and 𝐷(𝑞,𝑟)

∞

are as in (62), and 𝐸(𝑞,𝑟)𝑛 and 𝐸(𝑞,𝑟)∞ are as in (63).

Proof. We evaluate the left-hand side of (95) with the help of (62), (63), (91), (92), and after a brief
simplification we establish (95). Similarly, we obtain (96) with the help of (62), (63), (93), and (94).
Then, we establish (97) by using (95) in (20), (62), and (63). Similarly, we get (98) by using (96) in
(21), (62), and (63). ■

The following proposition will be useful in solving the inverse problem for (1) by using the
method described in (e) of Section 8.
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Proposition 4. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and
satisfy (2). Let the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) be related to (𝑞, 𝑟) as in (91)–(94). Then, we have

𝐷
(𝑞,𝑟)
𝑛 =

1
𝑛−1∏

𝑘=−∞

(1 + 𝑢𝑘+1 𝑠𝑘)

, (99)

𝐸
(𝑞,𝑟)
𝑛 =

1
𝑛∏

𝑘=−∞

(1 − 𝑢𝑘 𝑠𝑘)

, (100)

𝑞𝑛 = 𝑢𝑛

𝑛−1∏
𝑘=−∞

1 − 𝑢𝑘 𝑠𝑘
1 + 𝑢𝑘+1 𝑠𝑘

, (101)

𝑟𝑛 = 𝑠𝑛−1

𝑛−1∏
𝑘=−∞

1 + 𝑢𝑘 𝑠𝑘−1
1 − 𝑢𝑘 𝑠𝑘

, (102)

where 𝐷(𝑞,𝑟)
𝑛 and 𝐸(𝑞,𝑟)𝑛 are the scalar quantities defined in (62) and (63), respectively.

Proof. From (91) and (94), we obtain

1 − 𝑢𝑛 𝑠𝑛 = 1 − 𝑞𝑛
𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛+1
𝐷
(𝑞,𝑟)
𝑛

𝐸
(𝑞,𝑟)
𝑛

,

which, with the help of (63), simplifies to

1 − 𝑢𝑛 𝑠𝑛 =
1

1 + 𝑞𝑛 𝑟𝑛+1
. (103)

Similarly, from (91) and (94), we get

1 + 𝑢𝑛 𝑠𝑛−1 = 1 + 𝑞𝑛
𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛
𝐷
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
𝑛−1

,

which, with the help of (62), simplifies to

1 + 𝑢𝑛 𝑠𝑛−1 =
1

1 − 𝑞𝑛 𝑟𝑛
. (104)

From (103) and (104), we, respectively, get

𝑛∏
𝑘=−∞

(1 − 𝑢𝑘 𝑠𝑘) =
1

𝑛∏
𝑘=−∞

(1 + 𝑞𝑘 𝑟𝑘+1)

,
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𝑛∏
𝑘=−∞

(1 + 𝑢𝑘 𝑠𝑘−1) =
1

𝑛∏
𝑘=−∞

(1 − 𝑞𝑘 𝑟𝑘)

,

which yield (100) and (99), respectively. Finally, by using (99) and (100) in (91) and (94), we obtain
(101) and (102), respectively. ■

In the next theorem, when the potential pairs are related to each other as in (91)–(94), we show
how the Jost solutions to (1) are related to the Jost solutions to (7) and also to the Jost solutions to
(8).

Theorem 8. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2), and let the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) be related to the potential pair (𝑞, 𝑟) as in (91)–(94).
Then, the four Jost solutions 𝜓(𝑞,𝑟)𝑛 , 𝜙(𝑞,𝑟)𝑛 , 𝜓̄(𝑞,𝑟)𝑛 , 𝜙̄(𝑞,𝑟)𝑛 to (1) are related to the Jost solutions 𝜓(𝑢,𝑣)𝑛 ,
𝜙
(𝑢,𝑣)
𝑛 , 𝜓̄(𝑢,𝑣)𝑛 , 𝜙̄(𝑢,𝑣)𝑛 to (7) and the Jost solutions 𝜓(𝑝,𝑠)𝑛 , 𝜙(𝑝,𝑠)𝑛 , 𝜓̄(𝑝,𝑠)𝑛 , 𝜙̄(𝑝,𝑠)𝑛 to (8) as

𝜓
(𝑞,𝑟)
𝑛 = 𝐷

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎣
(
1 −

1

𝑧2

)
1

𝐸
(𝑞,𝑟)
𝑛−1

0

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦𝜓
(𝑢,𝑣)
𝑛 , (105)

𝜓
(𝑞,𝑟)
𝑛 = 𝐷

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
𝑛−1

−
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦𝜓
(𝑝,𝑠)
𝑛 , (106)

𝜙
(𝑞,𝑟)
𝑛 =

1

1 −
1

𝑧2

⎡⎢⎢⎢⎣
(
1 −

1

𝑧2

)
1

𝐸
(𝑞,𝑟)
𝑛−1

0

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦𝜙
(𝑢,𝑣)
𝑛 , (107)

𝜙
(𝑞,𝑟)
𝑛 =

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
𝑛−1

−
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦𝜙
(𝑝,𝑠)
𝑛 , (108)

𝜓̄
(𝑞,𝑟)
𝑛 =

𝐸
(𝑞,𝑟)
∞

1 −
1

𝑧2

⎡⎢⎢⎢⎣
(
1 −

1

𝑧2

)
1

𝐸
(𝑞,𝑟)
𝑛−1

0

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ 𝜓̄
(𝑢,𝑣)
𝑛 , (109)

𝜓̄
(𝑞,𝑟)
𝑛 = 𝐸

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
𝑛−1

−
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ 𝜓̄
(𝑝,𝑠)
𝑛 , (110)
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𝜙̄
(𝑞,𝑟)
𝑛 =

⎡⎢⎢⎢⎣
(
1 −

1

𝑧2

)
1

𝐸
(𝑞,𝑟)
𝑛−1

0

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ 𝜙̄
(𝑢,𝑣)
𝑛 , (111)

𝜙̄
(𝑞,𝑟)
𝑛 =

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
𝑛−1

−
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ 𝜙̄
(𝑝,𝑠)
𝑛 , (112)

where we recall that 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are the constants defined in (62) and (63), respectively.

Proof. We only present the proof for (105) because the proofs for (106)–(112) can be obtained in a
similar manner. To establish (105), we let

𝜓
(𝑞,𝑟)
𝑛 = Γ

(𝑞,𝑟)
𝑛 𝜓

(𝑢,𝑣)
𝑛 , (113)

where Γ(𝑞,𝑟)𝑛 is a 2×2 matrix to be determined. Since 𝜓(𝑞,𝑟)𝑛 satisfies (1) and 𝜓(𝑢,𝑣)𝑛 satisfies (7), from
(1), (7), and (113), we obtain Γ(𝑞,𝑟)𝑛 as listed in (105). As an alternate proof we remark that the reader
can directly verify that each of (105)–(112) is compatible with (1), (7), (12)–(15), and (91)–(94) and
use the uniqueness of the Jost solutions to (1), (7), and (8). ■

In the next theorem, we relate the scattering coefficients for (1), (7), and (8) to each other.

Theorem 9. Assume that the potential pair (𝑞, 𝑟) is rapidly decaying and satisfy (2). Assume also
that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Then, the scattering coef-
ficients 𝑇(𝑞,𝑟), 𝑇̄(𝑞,𝑟), 𝑅(𝑞,𝑟), 𝑅̄(𝑞,𝑟), 𝐿(𝑞,𝑟), 𝐿̄(𝑞,𝑟) for (1) are related to the scattering coefficients 𝑇(𝑢,𝑣)

l
,

𝑇
(𝑢,𝑣)
r ,𝑇̄(𝑢,𝑣)

l
, 𝑇̄(𝑢,𝑣)r ,𝑅(𝑢,𝑣), 𝑅̄(𝑢,𝑣), 𝐿(𝑢,𝑣), 𝐿̄(𝑢,𝑣) for (7) and𝑇(𝑝,𝑠)

l
,𝑇(𝑝,𝑠)r , 𝑇̄(𝑝,𝑠)

l
, 𝑇̄(𝑝,𝑠)r ,𝑅(𝑝,𝑠), 𝑅̄(𝑝,𝑠), 𝐿(𝑝,𝑠),

𝐿̄(𝑝,𝑠) for (8) as

𝑇
(𝑢,𝑣)
l

= 𝐷
(𝑞,𝑟)
∞ 𝑇(𝑞,𝑟), 𝑇

(𝑝,𝑠)

l
= 𝐷

(𝑞,𝑟)
∞ 𝑇(𝑞,𝑟), (114)

𝑇
(𝑢,𝑣)
r =

1

𝐸
(𝑞,𝑟)
∞

𝑇(𝑞,𝑟), 𝑇
(𝑝,𝑠)
r =

1

𝐸
(𝑞,𝑟)
∞

𝑇(𝑞,𝑟), (115)

𝑇̄
(𝑢,𝑣)
l

= 𝐸
(𝑞,𝑟)
∞ 𝑇̄(𝑞,𝑟), 𝑇̄

(𝑝,𝑠)

l
= 𝐸

(𝑞,𝑟)
∞ 𝑇̄(𝑞,𝑟), (116)

𝑇̄
(𝑢,𝑣)
r =

1

𝐷
(𝑞,𝑟)
∞

𝑇̄(𝑞,𝑟), 𝑇̄
(𝑝,𝑠)
r =

1

𝐷
(𝑞,𝑟)
∞

𝑇̄(𝑞,𝑟), (117)

𝑅(𝑢,𝑣) =

(
1 −

1

𝑧2

)
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝑅(𝑞,𝑟), 𝑅(𝑝,𝑠) =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝑅(𝑞,𝑟), (118)
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𝑅̄(𝑢,𝑣) =
1

1 −
1

𝑧2

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝑅̄(𝑞,𝑟), 𝑅̄(𝑝,𝑠) =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝑅̄(𝑞,𝑟), (119)

𝐿(𝑢,𝑣) =
1

1 −
1

𝑧2

𝐿(𝑞,𝑟), 𝐿(𝑝,𝑠) = 𝐿(𝑞,𝑟), (120)

𝐿̄(𝑢,𝑣) =

(
1 −

1

𝑧2

)
𝐿̄(𝑞,𝑟), 𝐿̄(𝑝,𝑠) = 𝐿̄(𝑞,𝑟), (121)

where we recall that 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are the constants defined in (62) and (63), respectively.

Proof. We use the asymptotics of 𝜓(𝑞,𝑟)𝑛 , 𝜓(𝑢,𝑣)𝑛 , 𝜓(𝑝,𝑠)𝑛 given in (16) and we let 𝑛 → −∞ in (105),
which helps us to establish (114) and (115), respectively. We establish (116)–(121) in a similar
manner. ■

When (91)–(94) hold, from (53) and (114)–(117), we obtain the result stated in the following
corollary.

Corollary 3. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Then,
the transmission coefficients 𝑇(𝑞,𝑟),𝑇(𝑢,𝑣)

l
, 𝑇(𝑢,𝑣)r , 𝑇(𝑝,𝑠)

l
,𝑇(𝑝,𝑠)r have coinciding poles in 0 < |𝑧| < 1 and

the coinciding multiplicity for each of those poles. Similarly, 𝑇̄(𝑞,𝑟), 𝑇̄(𝑢,𝑣)
l

, 𝑇̄(𝑢,𝑣)r , 𝑇̄(𝑝,𝑠)
l

, 𝑇̄(𝑝,𝑠)r have
their coinciding poles in |𝑧| > 1 with the coinciding multiplicity for each of those poles.

When (91)–(94) hold, based on Corollary 3 we will use {±𝑧𝑗,𝑚𝑗}
𝑁
𝑗=1

to denote the common set

of poles in 0 < |𝑧| < 1 and their multiplicities for 𝑇(𝑞,𝑟),𝑇(𝑢,𝑣)
l

, 𝑇(𝑢,𝑣)r , 𝑇(𝑝,𝑠)
l

, 𝑇(𝑝,𝑠)r , and similarly
we will use {±𝑧̄𝑗, 𝑚̄𝑗}

𝑁̄
𝑗=1

to denote the common set of poles in |𝑧| > 1 and their multiplicities for

𝑇̄(𝑞,𝑟), 𝑇̄(𝑢,𝑣)
l

, 𝑇̄(𝑢,𝑣)r , 𝑇̄(𝑝,𝑠)
l

, 𝑇̄(𝑝,𝑠)r .
We present some relevant properties of the Jost solutions to (1) in the next theorem, which is

the analog of Theorem 1 that lists the relevant properties of the Jost solutions to (7).

Theorem 10. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, the corresponding Jost solutions to (1) satisfy the following:

(a) For each𝑛 ∈ ℤ the quantities 𝑧−𝑛 𝜓(𝑞,𝑟)𝑛 , 𝑧𝑛 𝜙(𝑞,𝑟)𝑛 , 𝑧𝑛 𝜓̄(𝑞,𝑟)𝑛 , 𝑧−𝑛 𝜙̄(𝑞,𝑟)𝑛 are even in 𝑧 in their respec-
tive domains.

(b) The quantity 𝑧−𝑛 𝜓(𝑞,𝑟)𝑛 is analytic in |𝑧| < 1 and continuous in |𝑧| ≤ 1.
(c) The quantity 𝑧𝑛 𝜙(𝑞,𝑟)𝑛 is analytic in |𝑧| < 1 and continuous in |𝑧| ≤ 1.
(d) The quantity 𝑧𝑛 𝜓̄(𝑞,𝑟)𝑛 is analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.
(e) The quantity 𝑧−𝑛 𝜙̄(𝑞,𝑟)𝑛 is analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.
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(f) The Jost solution 𝜓(𝑞,𝑟)𝑛 has the expansion

𝜓
𝑞,𝑟)
𝑛 =

∞∑
𝑙=𝑛

𝐾
(𝑞,𝑟)

𝑛𝑙
𝑧𝑙, |𝑧| ≤ 1, (122)

with the double-indexed quantities 𝐾(𝑞,𝑟)

𝑛𝑙
for which we have

𝐾
(𝑞,𝑟)
nn = 𝐷

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎣
−

𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ , (123)

𝐾
(𝑞,𝑟)

𝑛(𝑛+2)
= 𝐷

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎢⎣
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

−
𝑞𝑛+1

𝐷
(𝑞,𝑟)
𝑛+1

−
𝑞𝑛

(
𝑆
(𝑞,𝑟)
∞ −𝑆

(𝑞,𝑟)
𝑛

)
𝐷
(𝑞,𝑟)
𝑛

𝑆
(𝑞,𝑟)
𝑛

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎥⎦
,

with 𝐷(𝑞,𝑟)
𝑛 , 𝐷(𝑞,𝑟)

∞ , 𝑆(𝑞,𝑟)𝑛 , 𝑆(𝑞,𝑟)∞ being the scalar quantities defined in (62), (64), (66), respectively,
and that 𝐾(𝑞,𝑟)

𝑛𝑙
= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.

(g) The Jost solution 𝜓̄(𝑞,𝑟)𝑛 has the expansion

𝜓̄
𝑞,𝑟)
𝑛 =

∞∑
𝑙=𝑛

𝐾̄
(𝑞,𝑟)

𝑛𝑙

1

𝑧𝑙
, |𝑧| ≥ 1, (124)

with the double-indexed quantities 𝐾̄(𝑞,𝑟)

𝑛𝑙
for which we have

𝐾̄
(𝑞,𝑟)
𝑛𝑛 =

𝐸
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
𝑛−1

⎡⎢⎢⎣
1

𝑟𝑛

⎤⎥⎥⎦ , (125)

𝐾̄
(𝑞,𝑟)

𝑛(𝑛+2)
= 𝐸

(𝑞,𝑟)
∞

⎡⎢⎢⎢⎢⎣
−
𝑞𝑛𝑟𝑛+1

𝐸
(𝑞,𝑟)
𝑛

+
𝑄
(𝑞,𝑟)
∞ −𝑄

(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
𝑛−1

𝑟𝑛+1(1−𝑞𝑛𝑟𝑛)

𝐸
(𝑞,𝑟)
𝑛

+
𝑟𝑛

(
𝑄
(𝑞,𝑟)
∞ −𝑄

(𝑞,𝑟)
𝑛−1

)
𝐸
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎥⎦
,

with 𝐸(𝑞,𝑟)𝑛 , 𝐸(𝑞,𝑟)∞ , 𝑄(𝑞,𝑟)
𝑛 , 𝑄(𝑞,𝑟)

∞ being the scalar quantities defined in (63), (65), (67), respectively,
and that 𝐾̄(𝑞,𝑟)

𝑛𝑙
= 0 when 𝑛 + 𝑙 is odd or 𝑙 < 𝑛.

(h) For the Jost solution 𝜙(𝑞,𝑟)𝑛 , we have the expansion

𝑧𝑛 𝜙
(𝑞,𝑟)
𝑛 =

∞∑
𝑙=0

𝑃
(𝑞,𝑟)

𝑛𝑙
𝑧𝑙, |𝑧| ≤ 1,
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with the double-indexed quantities 𝑃(𝑞,𝑟)
𝑛𝑙

for which we have

𝑃
(𝑞,𝑟)
𝑛0 = 𝐷

(𝑞,𝑟)
𝑛−1

⎡⎢⎢⎣
1

0

⎤⎥⎥⎦ ,

𝑃
(𝑞,𝑟)
𝑛2 = 𝐷

(𝑞,𝑟)
𝑛−2

⎡⎢⎢⎣
𝑞𝑛−1𝑟𝑛−1 + (1 − 𝑞𝑛−1𝑟𝑛−1)𝑆

(𝑞,𝑟)
𝑛−2

−𝑟𝑛−1

⎤⎥⎥⎦ ,
and that 𝑃(𝑞,𝑟)

𝑛𝑙
= 0 when 𝑙 is odd or 𝑙 < 0.

(i) For the Jost solution 𝜙̄(𝑞,𝑟)𝑛 , we have the expansion

𝑧−𝑛 𝜙̄
(𝑞,𝑟)
𝑛 =

∞∑
𝑙=0

𝑃̄
(𝑞,𝑟)

𝑛𝑙

1

𝑧𝑙
, |𝑧| ≥ 1,

with the double-indexed quantities 𝑃̄(𝑞,𝑟)
𝑛𝑙

for which we have

𝑃̄
(𝑞,𝑟)
𝑛0 = 𝐸

(𝑞,𝑟)
𝑛−2

⎡⎢⎢⎣
−𝑞𝑛−1

1

⎤⎥⎥⎦ ,

𝑃̄
(𝑞,𝑟)
𝑛2 = 𝐸

(𝑞,𝑟)
𝑛−2

⎡⎢⎢⎣
𝑞𝑛−1 −

𝑞𝑛−2

1+𝑞𝑛−2𝑟𝑛−1
− 𝑞𝑛−1 𝑄

(𝑞,𝑟)
𝑛−3

𝑄
(𝑞,𝑟)
𝑛−3

⎤⎥⎥⎦ ,
and that 𝑃̄(𝑞,𝑟)

𝑛𝑙
= 0 when 𝑙 is odd or 𝑙 < 0.

(j) The scattering coefficients for (1) are even in 𝑧 in their respective domains. The domain for the
reflection coefficients is the unit circle𝕋 and the domains for the transmission coefficients consist
of the union of 𝕋 and their regions of extensions.

(k) The quantity 1∕𝑇(𝑞,𝑟) has an extension from 𝑧 ∈ 𝕋 to |𝑧| < 1 and that extension is analytic in|𝑧| < 1 and continuous in |𝑧| ≤ 1. Similarly, the quantity 1∕𝑇̄(𝑞,𝑟) has an extension from 𝑧 ∈ 𝕋

so that it is analytic in |𝑧| > 1 and continuous in |𝑧| ≥ 1.

Proof. The proof is similar to the proof of Theorem 1 and is obtained with the help of (1) and
(12)–(15). ■

In the next theorem, at 𝑧 = 1we present the values of the Jost solutions to (1), (7), and (8) when
the corresponding potential pairs (𝑞, 𝑟), (𝑢, 𝑣), (𝑝, 𝑠) are related to each other as in (91)–(94). These
results will be useful in the solution to the inverse problem for (1).

Theorem 11. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and sat-
isfy (2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94).
Then, at 𝑧 = 1 the Jost solutions 𝜓(𝑞,𝑟)𝑛 (1), 𝜓̄(𝑞,𝑟)𝑛 (1),𝜓(𝑢,𝑣)𝑛 (1), 𝜓̄(𝑢,𝑣)𝑛 (1), 𝜓(𝑝,𝑠)𝑛 (1), and 𝜓̄(𝑝,𝑠)𝑛 (1) have
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the values

[
𝜓̄
(𝑞,𝑟)
𝑛 (1) 𝜓

(𝑞,𝑟)
𝑛 (1)

]
=
⎡⎢⎢⎣

1 0∑∞

𝑗=𝑛
𝑟𝑗 1

⎤⎥⎥⎦ , (126)

[
𝜓̄
(𝑢,𝑣)
𝑛 (1) 𝜓

(𝑢,𝑣)
𝑛 (1)

]
=

⎡⎢⎢⎢⎢⎣
𝐸
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
∞

∑∞

𝑗=𝑛
𝑞𝑗

−𝑟𝑛
𝐷
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
∞

(
1 − 𝑟𝑛

∑∞

𝑗=𝑛
𝑞𝑗

)
⎤⎥⎥⎥⎥⎦
, (127)

[
𝜓̄
(𝑝,𝑠)
𝑛 (1) 𝜓

(𝑝,𝑠)
𝑛 (1)

]
=

⎡⎢⎢⎢⎢⎣
𝐸
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
∞

(
1 + 𝑞𝑛

∑∞

𝑗=𝑛+1
𝑟𝑗

)
𝑞𝑛

𝐸
(𝑞,𝑟)
𝑛−1

𝐷
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
𝑛

𝐸
(𝑞,𝑟)
∞

∑∞

𝑗=𝑛+1
𝑟𝑗

𝐷
(𝑞,𝑟)
𝑛

𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎥⎥⎦
, (128)

where 𝐷(𝑞,𝑟)
𝑛 , 𝐷(𝑞,𝑟)

∞ , 𝐸(𝑞,𝑟)𝑛 , 𝐸(𝑞,𝑟)∞ are the quantities defined in (62) and (63), respectively.

Proof. One can obtain (126) via iteration by directly solving (1) with 𝑧 = 1 and using (12) and (14).
Similarly, one can get (127) via iteration by solving (7) with 𝑧 = 1 and using (12), (14), (62), (63),
(91), and (92). One can obtain (128) in a similar manner. Alternatively, one can directly verify that
the two columns of (126) satisfy (1) with 𝑧 = 1 with the respective asymptotics in (14) and (12).
Similarly, with the help of (62), (63), (91), and (92), one can directly verify that the two columns
given in (127) have the respective asymptotics in (14) and (12) and that they also satisfy (7) with
𝑧 = 1. In a similar way, with the help of (62), (63), (93), and (94), one can directly verify that the
two columns given in (128) have the respective asymptotics in (14) and (12) and that they each
satisfy (8) with 𝑧 = 1. ■

We see that at 𝑧 = 1 the Jost solutions appearing on the left-hand sides of (126), (127), and (128)
can be expressed by using (22), (24), (30), (32), (122), and (124) as[

𝜓̄
(𝑞,𝑟)
𝑛 (1) 𝜓

(𝑞,𝑟)
𝑛 (1)

]
=
[∑∞

𝑙=𝑛
𝐾̄
(𝑞,𝑟)

nl
∑∞

𝑙=𝑛
𝐾
(𝑞,𝑟)

nl

]
, (129)

[
𝜓̄
(𝑢,𝑣)
𝑛 (1) 𝜓

(𝑢,𝑣)
𝑛 (1)

]
=
[∑∞

𝑙=𝑛
𝐾̄
(𝑢,𝑣)

nl
∑∞

𝑙=𝑛
𝐾
(𝑢,𝑣)

nl

]
, (130)

[
𝜓̄
(𝑝,𝑠)
𝑛 (1) 𝜓

(𝑝,𝑠)
𝑛 (1)

]
=
[∑∞

𝑙=𝑛
𝐾̄
(𝑝,𝑠)

nl
∑∞

𝑙=𝑛
𝐾
(𝑝,𝑠)

nl

]
. (131)

For a columnvector𝐊with two components let use [𝐊]1 and [𝐊]2 to denote the first and second
components, respectively, that is, we let[

𝐾
]
1
∶=
[
1 0

]
𝐊,

[
𝐾
]
2
∶=
[
0 1

]
𝐊. (132)

In the next theorem, we show how to recover the potentials 𝑞𝑛 and 𝑟𝑛 from (130) and (131), respec-
tively.
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Theorem 12. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Then,
𝑞𝑛 and 𝑟𝑛 are related to the Jost solutions for (𝑢, 𝑣) evaluated at 𝑧 = 1 given in (130) as

𝑞𝑛 =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

⎛⎜⎜⎜⎝
[
𝜓
(𝑢,𝑣)
𝑛 (1)

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

−

[
𝜓
(𝑢,𝑣)
𝑛+1 (1)

]
1[

𝜓̄
(𝑢,𝑣)
𝑛+1 (1)

]
1

⎞⎟⎟⎟⎠, (133)

𝑟𝑛 = −
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

[
𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

[
𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
2[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

[
𝜓
(𝑢,𝑣)
𝑛 (1)

]
2
−
[
𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
2

[
𝜓
(𝑢,𝑣)
𝑛 (1)

]
1

. (134)

Similarly, 𝑞𝑛 and 𝑟𝑛 are related to the Jost solutions for (𝑝, 𝑠) evaluated at 𝑧 = 1 given in (131) as

𝑞𝑛 =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

[
𝜓
(𝑝,𝑠)
𝑛 (1)

]
1

[
𝜓
(𝑝,𝑠)
𝑛 (1)

]
2[

𝜓̄
(𝑝,𝑠)
𝑛 (1)

]
1

[
𝜓
(𝑝,𝑠)
𝑛 (1)

]
2
−
[
𝜓̄
(𝑝,𝑠)
𝑛 (1)

]
2

[
𝜓
(𝑝,𝑠)
𝑛 (1)

]
1

, (135)

𝑟𝑛 =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

⎛⎜⎜⎜⎝
[
𝜓̄
(𝑝,𝑠)
𝑛−1 (1)

]
2[

𝜓
(𝑝,𝑠)
𝑛−1 (1)

]
2

−

[
𝜓̄
(𝑝,𝑠)
𝑛 (1)

]
2[

𝜓
(𝑝,𝑠)
𝑛 (1)

]
2

⎞⎟⎟⎟⎠. (136)

Proof. From (127), we obtain

𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

[
𝜓
(𝑢,𝑣)
𝑛 (1)

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

=

∞∑
𝑗=𝑛

𝑞𝑗, (137)

which yields (133). Then, using (137) in (127), we get (134). Similarly, from (128), we have

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

[
𝜓̄
(𝑝,𝑠)
𝑛 (1)

]
2[

𝜓
(𝑝,𝑠)
𝑛 (1)

]
2

=

∞∑
𝑗=𝑛+1

𝑟𝑗, (138)

which yields (136). Using (138) in (128), we get (135). ■

Let us remark that, as seen from (126), we cannot determine 𝑞𝑛 from either side of (129) even
though we obtain 𝑟𝑛 as

𝑟𝑛 =
[
𝜓̄
(𝑞,𝑟)
𝑛 (1)

]
2
−
[
𝜓̄
(𝑞,𝑟)
𝑛+1 (1)

]
2
.
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4 THE BOUND STATES

In this section, we analyze the bound states for each of the three linear systems (1), (7), and (8),
andwe describe their bound-state data sets in terms of the bound-state 𝑧-values, themultiplicity of
each bound state, and the bound-state norming constants.We showhow the bound-state norming
constants are related to the dependency constants and the transmission coefficients. Using a pair
of constant matrix triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄), we describe in an elegant manner each bound-
state data set for any number of bound states with any multiplicities. In the formulation of the
Marchenko method, we show how to relate the two matrix triplets to the relevant Marchenko
kernels in such a way that the procedure is generally applicable for both continuous and discrete
linear systems. When the potential pairs (𝑞, 𝑟), (𝑢, 𝑣), and (𝑝, 𝑠) are related to each other as in
(91)–(94), we describe how the corresponding bound-state data sets are related to each other and
also how the corresponding pairs of matrix triplets are related to each other.
Let us first consider the bound states for (1). By definition a bound state for (1) corresponds to

a square-summable solution in 𝑛 ∈ ℤ, that is, a solution
[
𝛼𝑛
𝛽𝑛

]
satisfying

∞∑
𝑛=−∞

(|𝛼𝑛|2 + |𝛽𝑛|2) < +∞. (139)

The bound states for (7) and (8) are defined in a similar way, that is, for each of these two systems
a bound state corresponds to a square-summable solution.
Let us introduce the dependency constants related to bound states for each of (1), (7), and (8).

For each of these systems, at a bound state at 𝑧 = 𝑧𝑗 the Jost solutions 𝜙𝑛 and 𝜓𝑛 are linearly
dependent because 𝜙𝑛(𝑧𝑗) decays sufficiently fast as 𝑛 → −∞ and 𝜓𝑛(𝑧𝑗) decays sufficiently fast
as 𝑛 → +∞ so that each of these solutions satisfy (139). Thus, a bound-state solution is a constant
multiple of either of 𝜙𝑛(𝑧𝑗) and 𝜓𝑛(𝑧𝑗), and we can introduce the double-indexed dependency
constant 𝛾𝑗0 as the constant satisfying

𝜙𝑛(𝑧𝑗) = 𝛾𝑗0 𝜓𝑛(𝑧𝑗), 𝑛 ∈ ℤ. (140)

As seen from any of the first equalities in (72), (73), and (74), we observe that (140) is equivalent
to the vanishing of the Wronskian determinant at 𝑧 = 𝑧𝑗 for all 𝑛 ∈ ℤ, that is,

|||𝜙𝑛(𝑧𝑗) 𝜓𝑛(𝑧𝑗)
||| = 0, 𝑛 ∈ ℤ,

which is also equivalent to the linear dependence of the Jost solutions 𝜙𝑛 and 𝜓𝑛 at 𝑧 = 𝑧𝑗 .
Similarly, at a bound state at 𝑧 = 𝑧̄𝑗 , the Jost solutions 𝜙̄𝑛 and 𝜓̄𝑛 are linearly dependent and

for any of the systems (1), (7), and (8), this can be expressed in some equivalent forms such as

𝜙̄𝑛(𝑧̄𝑗) = 𝛾̄𝑗0 𝜓̄𝑛(𝑧̄𝑗), 𝑛 ∈ ℤ,

where 𝛾̄𝑗0 is the double-indexed dependency constant, and also as

|||𝜙̄𝑛(𝑧̄𝑗) 𝜓̄𝑛(𝑧̄𝑗)
||| = 0, 𝑛 ∈ ℤ,
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indicating the linear dependence of the Jost solutions 𝜙̄𝑛 and 𝜓̄𝑛 at 𝑧 = 𝑧̄𝑗 .
If a bound state is not simple, as seen from (76), (77), (79), (80), (89), and (90), the number

of constraints is equivalent to the multiplicity of the bound state, yielding as many dependency
constants as themultiplicity of the bound state. At a bound state at 𝑧 = 𝑧𝑗 withmultiplicity𝑚𝑗 , by
proceeding as in Refs. 19 and 20, it follows that each of (76), (79), and (89) is equivalent to having
𝑚𝑗 constraints relating the Jost solutions 𝜙𝑛 and 𝜓𝑛 and their 𝑧-derivatives as

𝑑𝑘𝜙𝑛(𝑧𝑗)

𝑑𝑧𝑘
=

𝑘∑
𝑙=0

(𝑘
𝑙

)
𝛾𝑗(𝑘−𝑙)

𝑑𝑙𝜓𝑛(𝑧𝑗)

𝑑𝑧𝑙
, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1, (141)

where
(𝑘
𝑙

)
is the binomial coefficient and we refer to the double-indexed scalar quantities 𝛾𝑗𝑘 as

the dependency constants at 𝑧 = 𝑧𝑗 . Note that (141) holds for each of the systems (1), (7), and (8).
We can use the appropriate superscripts so that 𝛾(𝑞,𝑟)

𝑗𝑘
, 𝛾(𝑢,𝑣)

𝑗𝑘
, and 𝛾(𝑝,𝑠)

𝑗𝑘
denote the corresponding

dependency constants for (1), (7), and (8), respectively. In a similar way, we obtain the double-
indexed dependency constants 𝛾̄𝑗𝑘 at a bound state at 𝑧 = 𝑧̄𝑗 with multiplicity 𝑚̄𝑗 , which relate
the Jost solutions 𝜙̄𝑛 and 𝜓̄𝑛 and their 𝑧-derivatives as

𝑑𝑘𝜙̄𝑛(𝑧̄𝑗)

𝑑𝑧𝑘
=

𝑘∑
𝑙=0

(𝑘
𝑙

)
𝛾̄𝑗(𝑘−𝑙)

𝑑𝑙𝜓̄𝑛(𝑧̄𝑗)

𝑑𝑧𝑙
, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1. (142)

Let us also introduce the “residues” 𝑡𝑗𝑘 of the right transmission coefficients for each of (1), (7),
and (8) when the corresponding right transmission coefficient 𝑇r has a pole at 𝑧 = 𝑧𝑗 of order𝑚𝑗 .
Using the expansion

𝑇r =
𝑡𝑗𝑚𝑗

(𝑧 − 𝑧𝑗)
𝑚𝑗

+
𝑡𝑗(𝑚𝑗−1)

(𝑧 − 𝑧𝑗)
𝑚𝑗−1

+⋯+
𝑡𝑗1

(𝑧 − 𝑧𝑗)
+ 𝑂(1), 𝑧 → 𝑧𝑗, (143)

we uniquely obtain the residues 𝑡𝑗𝑘 for 1 ≤ 𝑘 ≤ 𝑚𝑗 and 1 ≤ 𝑗 ≤ 𝑁. We remark that 𝑡(𝑞,𝑟)
𝑗𝑘

, 𝑡(𝑢,𝑣)
𝑗𝑘

,

𝑡
(𝑝,𝑠)

𝑗𝑘
are defined as in (143) by using the right transmission coefficients 𝑇(𝑞,𝑟), 𝑇(𝑢,𝑣)r , and 𝑇(𝑝,𝑠)r

corresponding to (1), (7), and (8), respectively. In a similar way, we define the “residues” 𝑡𝑗𝑘 by
letting

𝑇̄r =
𝑡𝑗𝑚̄𝑗

(𝑧 − 𝑧̄𝑗)
𝑚̄𝑗

+
𝑡𝑗(𝑚̄𝑗−1)

(𝑧 − 𝑧̄𝑗)
𝑚̄𝑗−1

+⋯+
𝑡𝑗1

(𝑧 − 𝑧̄𝑗)
+ 𝑂(1), 𝑧 → 𝑧̄𝑗. (144)

Again using (144) with 𝑇̄(𝑞,𝑟), 𝑇̄(𝑢,𝑣)r , and 𝑇̄(𝑝,𝑠)r we obtain the residues 𝑡(𝑞,𝑟)
𝑗𝑘

, 𝑡(𝑢,𝑣)
𝑗𝑘

, and 𝑡(𝑝,𝑠)
𝑗𝑘

corre-
sponding to (1), (7), and (8), respectively.
In the next theorem, we elaborate on the bound states for (1).

Theorem 13. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, we have the following:

(a) A bound state for (1) can only occur at a 𝑧-value for which 𝑇(𝑞,𝑟) has a pole in the region 0 <|𝑧| < 1 or 𝑇̄(𝑞,𝑟) has a pole in the region |𝑧| > 1.
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(b) The number of bound states is finite, that is, the number of poles of 𝑇(𝑞,𝑟) in 0 < |𝑧| < 1 and the
number of poles of 𝑇̄(𝑞,𝑟) in |𝑧| > 1 each must be finite.

(c) A bound state is not necessarily simple, but its multiplicity must be finite.
(d) Since each of the transmission coefficients 𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) are even in 𝑧 in their respective

domains, the bound-state 𝑧-values are symmetrically located with respect to the origin of the
complex 𝑧-plane.

(e) At a bound state corresponding to a pole at 𝑧𝑗 for 𝑇(𝑞,𝑟) with multiplicity 𝑚𝑗 , we have the two
vectors

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙
(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑 𝜙
(𝑞,𝑟)
𝑛 (𝑧𝑗)

dz

𝑑2 𝜙
(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑𝑧2

⋮

𝑑
𝑚𝑗−1 𝜙

(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑𝑧
𝑚𝑗−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓
(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑 𝜓
(𝑞,𝑟)
𝑛 (𝑧𝑗)

dz

𝑑2 𝜓
(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑𝑧2

⋮

𝑑
𝑚𝑗−1 𝜓

(𝑞,𝑟)
𝑛 (𝑧𝑗)

𝑑𝑧
𝑚𝑗−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (145)

related to each other as in (141) via𝑚𝑗 dependency constants 𝛾
(𝑞,𝑟)

𝑗𝑘
. Similarly, at the bound state

at 𝑧 = 𝑧̄𝑗 corresponding to a pole of 𝑇̄(𝑞,𝑟) in |𝑧| > 1, we have the two vectors

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑 𝜙̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

dz

𝑑2 𝜙̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑𝑧2

⋮

𝑑
𝑚̄𝑗−1 𝜙̄

(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑𝑧
𝑚̄𝑗−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑 𝜓̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

dz

𝑑2 𝜓̄
(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑𝑧2

⋮

𝑑
𝑚̄𝑗−1 𝜓̄

(𝑞,𝑟)
𝑛 (𝑧̄𝑗)

𝑑𝑧
𝑚̄𝑗−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (146)

related to each other as in (142) via 𝑚̄𝑗 dependency constants 𝛾̄
(𝑞,𝑟)

𝑗𝑘
. We recall that an overbar

does not denote complex conjugation and that 𝜓(𝑞,𝑟)𝑛 (𝑧), 𝜙(𝑞,𝑟)𝑛 (𝑧),𝜓̄(𝑞,𝑟)𝑛 (𝑧), 𝜙̄(𝑞,𝑟)𝑛 (𝑧) are the four
Jost solutions to (1).

Proof. By Theorem 10, we know that 𝑧−𝑛 𝜓(𝑞,𝑟)𝑛 (𝑧) and 𝑧𝑛 𝜙(𝑞,𝑟)𝑛 (𝑧) have analytic extensions from
𝑧 ∈ 𝕋 to |𝑧| < 1. Since a bound-state solution to (1) must satisfy (139), with the help of the first
equality in (72) and (76), we prove that the bound states located in |𝑧| < 1 occur if and only if the
two vectors listed in (145) are related as stated in (e) and that relation occurs at a pole of 𝑇(𝑞,𝑟). By
Theorem 10(j), we know that 𝑇(𝑞,𝑟) contains 𝑧 as 𝑧2, and hence the bound states occur at the poles
of 𝑇(𝑞,𝑟) at 𝑧 = ±𝑧𝑗 for 1 ≤ 𝑗 ≤ 𝑁 in 0 < |𝑧| < 1, each having the multiplicity 𝑚𝑗 . The finiteness
of𝑁 and of𝑚𝑗 is already known from Theorem 5(e). In a similar way, with the help of the second
equality in (72) and (77), we show that the bound states of (1) in |𝑧| > 1 occur at 𝑧 = ±𝑧̄𝑗, where
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the two vectors listed in (146) are related to each other as stated in (e) and that 𝑇̄(𝑞,𝑟) has a pole at
𝑧 = ±𝑧̄𝑗 with multiplicity 𝑚̄𝑗 . The number of such 𝑧̄𝑗-values denoted by 𝑁̄ and each multiplicity
𝑚̄𝑗 are both finite as a consequence of Theorem 5(e). ■

In Theorem 13 and its proof, the bound-state 𝑧-values and their multiplicities are described by
the sets {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

without using the superscript (𝑞, 𝑟). For clarity, one must

use 𝑧(𝑞,𝑟)
𝑗

,𝑚(𝑞,𝑟)

𝑗
,𝑁(𝑞,𝑟), 𝑧̄(𝑞,𝑟)

𝑗
, 𝑚̄(𝑞,𝑟)

𝑗
, and 𝑁̄(𝑞,𝑟) for (1) and similar notations to describe the bound

states for (7) and (8). Then, the bound states for (7) and (8) can be described by the corresponding
version of Theorem 13.
Let us also remark that from (34) and the analog of (34) for (𝑝, 𝑠) we conclude that the bound

states for (7) and (8) can equivalently be described as in Theorem 13 by using either the left trans-
mission coefficients or the right transmission coefficients. If the three potential pairs (𝑞, 𝑟), (𝑢, 𝑣),
(𝑝, 𝑠) are related to each other as in (91)–(94), then from Theorem 9 it follows that

⎧⎪⎨⎪⎩
𝑇(𝑞,𝑟) = 𝐸

(𝑞,𝑟)
∞ 𝑇

(𝑢,𝑣)
r = 𝐸

(𝑞,𝑟)
∞ 𝑇

(𝑝,𝑠)
r =

1

𝐷
(𝑞,𝑟)
∞

𝑇
(𝑢,𝑣)
l

=
1

𝐷
(𝑞,𝑟)
∞

𝑇
(𝑝,𝑠)

l
,

𝑇̄(𝑞,𝑟) = 𝐷
(𝑞,𝑟)
∞ 𝑇̄

(𝑢,𝑣)
r = 𝐷

(𝑞,𝑟)
∞ 𝑇̄

(𝑝,𝑠)
r =

1

𝐸
(𝑞,𝑟)
∞

𝑇̄
(𝑢,𝑣)
l

=
1

𝐸
(𝑞,𝑟)
∞

𝑇̄
(𝑝,𝑠)

l
,

(147)

and hence the sets {±𝑧𝑗,𝑚𝑗}
𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

refer to the common sets of bound states and the
correspondingmultiplicities for (1), (7), and (8). In that case, from (147) it follows that the residues
corresponding to (1), (7), and (8) are related to each other as

⎧⎪⎨⎪⎩
𝑡
(𝑞,𝑟)

𝑗𝑘
= 𝐸

(𝑞,𝑟)
∞ 𝑡

(𝑢,𝑣)
𝑗𝑘

= 𝐸
(𝑞,𝑟)
∞ 𝑡

(𝑝,𝑠)

𝑗𝑘
,

𝑡
(𝑞,𝑟)

𝑗𝑘
= 𝐷

(𝑞,𝑟)
∞ 𝑡

(𝑢,𝑣)
𝑗𝑘

= 𝐷
(𝑞,𝑟)
∞ 𝑡

(𝑝,𝑠)

𝑗𝑘
.

(148)

In the next theorem, when the potential pairs (𝑞, 𝑟), (𝑢, 𝑣), (𝑝, 𝑠) are related to each other as in
(91)–(94), we present the relationships among the corresponding dependency constants.

Theorem 14. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Then,
the corresponding dependency constants 𝛾(𝑞,𝑟)

𝑗𝑘
, 𝛾(𝑢,𝑣)

𝑗𝑘
, 𝛾(𝑝,𝑠)

𝑗𝑘
are related to each other for 0 ≤ 𝑘 ≤ 𝑚𝑗 −

1 and 1 ≤ 𝑗 ≤ 𝑁 as

⎧⎪⎨⎪⎩
𝐷
(𝑞,𝑟)
∞ 𝛾

(𝑞,𝑟)

jk = 𝛾
(𝑝,𝑠)

jk ,

𝐷
(𝑞,𝑟)
∞ 𝛾

(𝑞,𝑟)

jk =
∑𝑘

𝑙=0

(
𝑘

𝑙

)
𝑑𝑙𝜎(𝑧𝑗)

𝑑𝑧𝑙
𝛾
(𝑢,𝑣)

𝑗(𝑘−𝑙)
,

(149)

where we have defined

𝜎(𝑧) ∶=
1

1 −
1

𝑧2

. (150)
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Similarly, the corresponding dependency constants 𝛾̄(𝑞,𝑟)
𝑗𝑘

, 𝛾̄(𝑢,𝑣)
𝑗𝑘

, 𝛾̄(𝑝,𝑠)
𝑗𝑘

are related to each other as

⎧⎪⎨⎪⎩
𝛾̄
(𝑝,𝑠)

jk = 𝐸
(𝑞,𝑟)
∞ 𝛾̄

(𝑞,𝑟)

jk ,

𝛾̄
(𝑢,𝑣)

jk = 𝐸
(𝑞,𝑟)
∞

∑𝑘

𝑙=0

(
𝑘

𝑙

)
𝑑𝑙𝜎(𝑧̄𝑗)

𝑑𝑧𝑙
𝛾̄
(𝑞,𝑟)

𝑗(𝑘−𝑙)
.

(151)

Proof. Using (106) and (108) in the Wronskian determinant on the right-hand side of the first
equality in (72), we get

|||𝜙(𝑞,𝑟)𝑛 𝜓
(𝑞,𝑟)
𝑛
||| = 𝐷

(𝑞,𝑟)
∞

(
det
[
Λ
(𝑞,𝑟)
𝑛

]) |||𝜙(𝑝,𝑠)𝑛 𝜓
(𝑝,𝑠)
𝑛
||| , (152)

where Λ(𝑞,𝑟)
𝑛 is the coefficient matrix appearing in (106) and (108), that is,

Λ
(𝑞,𝑟)
𝑛 ∶=

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
𝑛−1

−
𝑞𝑛

𝐷
(𝑞,𝑟)
𝑛

𝑟𝑛

𝐸
(𝑞,𝑟)
𝑛−1

1

𝐷
(𝑞,𝑟)
𝑛−1

⎤⎥⎥⎥⎦ . (153)

From (62) and (153), we see that the determinant of Λ(𝑞,𝑟)
𝑛 is given by

det
[
Λ
(𝑞,𝑟)
𝑛

]
=

1

𝐸
(𝑞,𝑟)
𝑛−1 𝐷

(𝑞,𝑟)
𝑛

, (154)

and hence det[Λ(𝑞,𝑟)
𝑛 ] ≠ 0 for any integer 𝑛. Using (152), with the help of the first equality in (74),

we obtain

𝑎
(𝑞,𝑟)
𝑛 (𝑧) = 𝐷

(𝑞,𝑟)
∞

(
det
[
Λ
(𝑞,𝑟)
𝑛

])
𝑎
(𝑝,𝑠)
𝑛 (𝑧), 𝑛 ∈ ℤ. (155)

From (155), we conclude that (76) for the potential pair (𝑞, 𝑟) occurs if and only if (89) for the
potential pair (𝑝, 𝑠) occurs. Comparing (141) for (𝑞, 𝑟) with (141) for (𝑝, 𝑠), with the help of (106)
and (108) and the fact the matrix Λ(𝑞,𝑟)

𝑛 defined in (153) is invertible, we establish the equality in
the first line of (149). In a similar way, with the help of (77), (90), and (142) written for the pairs
(𝑞, 𝑟) and (𝑝, 𝑠) and also using (110) and (112), we obtain the equality in the first line of (151). The
equality in the second line of (149) is established in a similar manner by using (76), (79), and (141)
written for the pairs (𝑞, 𝑟) and (𝑢, 𝑣) and also using (105) and (107). The equality in the second line
of (151) is established in a similar manner by using (77), (80), and (142) written for the pairs (𝑞, 𝑟)
and (𝑢, 𝑣) and also using (109) and (111). ■

As expected, for a unique solution to an inverse problem, for each bound stateweneed to specify
a corresponding bound-state norming constant. If a bound state has a multiplicity, then we must
specify a separate norming constant for each multiplicity. In the case of (1), (7), and (8), because
the bound-state locations occur symmetrically with respect to the origin of the complex 𝑧-plane,
we mention that the bound-state norming constants for those symmetric pairs coincide.
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As a summary, in specifying the bound-state data sets for each of (1), (7), and (8), in addition
to providing {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

we also need to provide the sets of bound-state norm-

ing constants {{𝑐𝑗𝑘}
𝑚𝑗−1

𝑘=0
}𝑁
𝑗=1

and {{𝑐𝑗𝑘}
𝑚̄𝑗−1

𝑘=0
}𝑁̄
𝑗=1

, where the double-indexed quantities 𝑐𝑗𝑘 and 𝑐𝑗𝑘
denote the norming constants associated with 𝑧𝑗 and 𝑧̄𝑗 , respectively. Clearly, we must use 𝑐

(𝑞,𝑟)

𝑗𝑘

and 𝑐
(𝑞,𝑟)

𝑗𝑘
for the norming constants for (1), use 𝑐(𝑢,𝑣)

𝑗𝑘
and 𝑐

(𝑢,𝑣)
𝑗𝑘

for the norming constants for

(7), and use 𝑐(𝑝,𝑠)
𝑗𝑘

and 𝑐(𝑝,𝑠)
𝑗𝑘

for the norming constants for (8). In the presence of multiplicities,
it becomes extremely complicated to deal with bound states. That is why in the literature most
researchers make the artificial assumption that the bound states are simple.
The bound states withmultiplicities can easily and in an elegant way be handled13,19–24 for both

continuous and discrete systems by using an appropriate constant matrix triplet (𝐴, 𝐵, 𝐶) for a
KdV-like system or a pair of triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) for an NLS-like system. Let us mention
that the potentials appear in the block-diagonal format in the linear system in the KdV-like case
and the potentials appear in the block off-diagonal format in the linear system in theNLS-like case.
In all these cases, the relevant tool to solve inverse scattering problems is the Marchenkomethod.
In the continuous case, the Marchenko method involves a linear integral equation known as the
Marchenko equation or a system of linear integral equations to which we refer as the Marchenko
system. In the discrete case, the integrals in the Marchenko equations or in the Marchenko sys-
tems are simply replaced by the corresponding summations. In either the continuous case or the
discrete case, the matrix triplet (𝐴, 𝐵, 𝐶) in the KdV-like case or the triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄)
in the NLS-like case are chosen in such way that the part of the kernel of the Marchenko system
related to the bound states is expressed in a simple manner in terms of such matrix triplets.
In this paper, we deal with NLS-like discrete systems, and hence we use the pair of matrix

triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄). If there is a bound state at 𝑧 = 𝑧𝑗 with multiplicity𝑚𝑗 for 1 ≤ 𝑗 ≤
𝑁, then, without loss of any generality, the triplet (𝐴, 𝐵, 𝐶) can be chosen as

𝐴 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1 0 ⋯ 0

0 𝐴2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐴𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐵1

𝐵2

⋮

𝐵𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐶 ∶=

[
𝐶1 𝐶2 ⋯ 𝐶𝑁

]
, (156)

in such a way that 𝐴 is a block-diagonal matrix, 𝐵 is a block column vector, and 𝐶 is a block row
vector with

𝐴𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑧𝑗 1 0 ⋯ 0 0

0 𝑧𝑗 1 ⋯ 0 0

0 0 𝑧𝑗 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 𝑧𝑗 1

0 0 0 … 0 𝑧𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐵𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (157)
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𝐶𝑗 ∶=
[
𝑐𝑗(𝑚𝑗−1) 𝑐𝑗(𝑚𝑗−2) ⋯ 𝑐𝑗1 𝑐𝑗0

]
. (158)

As seen from (157),𝐴𝑗 is an𝑚𝑗 × 𝑚𝑗 matrix in the Jordan canonical formwith 𝑧𝑗 appearing in the
diagonal entries, and 𝐵𝑗 is an𝑚𝑗 × 1matrix with 0 in the first (𝑚𝑗 − 1) entries and 1 in the𝑚𝑗th
entry. As also seen from (158), the 1 × 𝑚𝑗 matrix 𝐶𝑗 is constructed from the norming constants
𝑐𝑗𝑘. In our paper, the matrix triplet (𝐴𝑗, 𝐵𝑗, 𝐶𝑗) is chosen to include the contribution from both
𝑧 = 𝑧𝑗 and 𝑧 = −𝑧𝑗 , and this will be seen from (175) and Theorem 17(d).
In a similar way, for the bound states at 𝑧 = ±𝑧̄𝑗 with multiplicity 𝑚̄𝑗 for 1 ≤ 𝑗 ≤ 𝑁̄, without

loss of any generality, the corresponding triplet (𝐴̄, 𝐵̄, 𝐶̄) can be chosen as

𝐴̄ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴̄1 0 ⋯ 0

0 𝐴̄2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝐴̄𝑁̄

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵̄ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐵̄1

𝐵̄2

⋮

𝐵̄𝑁̄

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐶̄ ∶=

[
𝐶̄1 𝐶̄2 ⋯ 𝐶̄𝑁̄

]
, (159)

in such a way that 𝐴̄ is a block-diagonal matrix, 𝐵̄ is a block column vector, and 𝐶̄ is a block row
vector with

𝐴̄𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑧̄𝑗 1 0 ⋯ 0 0

0 𝑧̄𝑗 1 ⋯ 0 0

0 0 𝑧̄𝑗 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 𝑧̄𝑗 1

0 0 0 ⋯ 0 𝑧̄𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐵̄𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (160)

𝐶̄𝑗 ∶=
[
𝑐𝑗(𝑚̄𝑗−1) 𝑐𝑗(𝑚̄𝑗−2) ⋯ 𝑐𝑗1 𝑐𝑗0

]
. (161)

As seen from (160), 𝐴̄𝑗 is an 𝑚̄𝑗 × 𝑚̄𝑗 matrix in the Jordan canonical form with 𝑧̄𝑗 appearing in
the diagonal entries, and 𝐵̄𝑗 is an 𝑚̄𝑗 × 1matrix with 0 in the first 𝑚̄𝑗 − 1 entries and 1 in the 𝑚̄𝑗th
entry. As also seen from (161), the 1 × 𝑚̄𝑗 matrix 𝐶̄𝑗 is constructed from the norming constants
𝑐𝑗𝑘. In our paper, the matrix triplet (𝐴̄𝑗, 𝐵̄𝑗, 𝐶̄𝑗) is chosen to include the contribution from both
𝑧 = 𝑧̄𝑗 and 𝑧 = −𝑧̄𝑗 , and this will be seen from (176) and Theorem 17(d).
The Marchenko system associated with either of (7) and (8) is given by

[
𝐾̄nm 𝐾nm

]
+
⎡⎢⎢⎣

0 Ω̄𝑛+𝑚

Ω𝑛+𝑚 0

⎤⎥⎥⎦ +
∞∑

𝑙=𝑛+1

[
𝐾̄nl 𝐾nl

] ⎡⎢⎢⎣
0 Ω̄𝑙+𝑚

Ω𝑙+𝑚 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0

0 0

⎤⎥⎥⎦ , 𝑚 > 𝑛,

(162)



40 AKTOSUN and ERCAN

where we have defined

𝐾𝑛𝑚 ∶=
1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓𝑛 𝑧
−𝑚−1, 𝐾̄𝑛𝑚 ∶=

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓̄𝑛 𝑧
𝑚−1, (163)

⎧⎪⎨⎪⎩
Ω𝑘 ∶= 𝑅̂𝑘 + 𝐶𝐴𝑘−1𝐵, Ω̄𝑘 ∶= ̂̄𝑅𝑘 + 𝐶̄(𝐴̄)

−𝑘−1
𝐵̄, 𝑘 even,

Ω𝑘 ∶= 0, Ω̄𝑘 ∶= 0, 𝑘 odd,
(164)

with
𝑅̂𝑘 ∶=

1

2𝜋𝑖 ∮ 𝑑𝑧 𝑅 𝑧𝑘−1, ̂̄𝑅𝑘 ∶=
1

2𝜋𝑖 ∮ 𝑑𝑧 𝑅̄ 𝑧−𝑘−1. (165)

We remark that 𝜓𝑛 and 𝜓̄𝑛 appearing in (163) are the Jost solutions satisfying (12) and (14), respec-
tively, and that the integral in (163) denoted by ∮ is the contour integral along the unit circle 𝕋
in the positive direction. In fact, for the potential pair (𝑢, 𝑣), the quantities 𝐾𝑛𝑚 and 𝐾̄𝑛𝑚 are the
column vectors appearing in (22) and (24), respectively. The scalar quantities𝑅 and 𝑅̄ appearing in
(165) are the right reflection coefficients, and the matrix triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) appearing
in (164) are those described in (156) and (159), respectively.
Let us also remark that 𝐾𝑛𝑚 = 0 and 𝐾̄𝑛𝑚 = 0 when 𝑛 + 𝑚 is odd, and this is already stated in

Theorem 1, Corollary 1, and Theorem 10 for the potential pairs (𝑢, 𝑣), (𝑝, 𝑠), and (𝑞, 𝑟), respectively.
Similarly, we already know that the scattering coefficients are even in 𝑧 for each of these three
potential pairs. Hence, from (165) we see that 𝑅̂𝑘 = 0 and ̂̄𝑅𝑘 = 0when 𝑘 is odd. Thus, the second
line of (164) is consistent with (162) and (165).
The derivation of (162) is obtained as follows. We can express the Jost solutions 𝜙𝑛 and 𝜙̄𝑛 sat-

isfying (13) and (15), respectively, as linear combinations of 𝜓𝑛 and 𝜓̄𝑛 as

⎧⎪⎨⎪⎩
𝜙𝑛 𝑇r = 𝜓̄𝑛 + 𝜓𝑛 𝑅,

𝜙̄𝑛 𝑇̄r = 𝜓𝑛 + 𝜓̄𝑛 𝑅̄,

(166)

where 𝑇r and 𝑇̄r are the right transmission coefficients appearing in (17) and (19), respectively. We
use the Fourier transform on (166), and for𝑚 > 𝑛 we get

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙𝑛 𝑇r 𝑧
𝑚−1 =

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓̄𝑛 𝑧
𝑚−1 +

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓𝑛 𝑅 𝑧
𝑚−1, (167)

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙̄𝑛 𝑇̄r 𝑧
−𝑚−1 =

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓𝑛 𝑧
−𝑚−1 +

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓̄𝑛 𝑅̄ 𝑧
−𝑚−1, (168)

yielding the two columns of (162).
Using the notation of (132), from (162) we get the two uncoupled scalar equations for𝑚 > 𝑛 as

⎧⎪⎨⎪⎩
[
𝐾nm

]
1
+ Ω̄𝑛+𝑚 −

∑∞

𝑙=𝑛+1

∑∞

𝑗=𝑛+1

[
𝐾nj
]
1
Ω𝑗+𝑙 Ω̄𝑙+𝑚 = 0,[

𝐾̄nm
]
2
+ Ω𝑛+𝑚 −

∑∞

𝑙=𝑛+1

∑∞

𝑗=𝑛+1

[
𝐾̄nj
]
2
Ω̄𝑗+𝑙 Ω𝑙+𝑚 = 0,

(169)
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and once the system (169) is solved, we also have

⎧⎪⎨⎪⎩
[
𝐾̄nm

]
1
= −

∑∞

𝑙=𝑛+1

[
𝐾nl
]
1
Ω𝑙+𝑚,[

𝐾nm
]
2
= −

∑∞

𝑙=𝑛+1

[
𝐾̄nl
]
2
Ω̄𝑙+𝑚.

(170)

Let us recall that 𝐾𝑛𝑚 = 0 and 𝐾̄𝑛𝑚 = 0 when 𝑛 + 𝑚 is odd, and hence the lower indices for the
summations in (169) and (170) actually start with𝑛 + 2 instead of𝑛 + 1. Nevertheless, we use𝑛 + 1

there instead of 𝑛 + 2 so that (169) and (170) appear in the standard form as a generic Marchenko
system in the discrete case. When we use (169) corresponding to (7), we recover the potentials 𝑢𝑛
and 𝑣𝑛 as

𝑢𝑛 =
[
𝐾
(𝑢,𝑣)

𝑛(𝑛+2)

]
1
, 𝑣𝑛 =

[
𝐾̄
(𝑢,𝑣)

𝑛(𝑛+2)

]
2
, (171)

which are compatible with (23) and (25), respectively. In the same manner, if we use (169) corre-
sponding to (8), we recover the potentials 𝑝𝑛 and 𝑠𝑛 as

𝑝𝑛 =
[
𝐾
(𝑝,𝑠)

𝑛(𝑛+2)

]
1
, 𝑠𝑛 =

[
𝐾̄
(𝑝,𝑠)

𝑛(𝑛+2)

]
2
, (172)

which are compatible with (31) and (33), respectively.
Next, we describe the construction of the norming constants 𝑐𝑗𝑘 and 𝑐𝑗𝑘 in terms of the residues

𝑡𝑗𝑘 and 𝑡𝑗𝑘 and the dependency constants 𝛾𝑗𝑘 and 𝛾̄𝑗𝑘.

Theorem 15. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) are rapidly decaying and 1 −
𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Let us use {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

to denote the corresponding sets for the

bound-state locations and their multiplicities. Then, the norming constants 𝑐(𝑢,𝑣)
𝑗𝑘

appearing in (158)

are related to the residues 𝑡(𝑢,𝑣)
𝑗𝑘

appearing in (143) and the dependency constants 𝛾(𝑢,𝑣)
𝑗𝑘

appearing in
(141) as

𝑐
(𝑢,𝑣)
𝑗𝑘

= −2

𝑚𝑗−1−𝑘∑
𝑙=0

𝑡
(𝑢,𝑣)

𝑗(𝑘+1+𝑙)

𝛾
(𝑢,𝑣)
𝑗𝑙

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1. (173)

Similarly, the norming constants 𝑐(𝑢,𝑣)
𝑗𝑘

appearing in (161) are related to the residues 𝑡(𝑢,𝑣)
𝑗𝑘

appearing

in (144) and the dependency constants 𝛾̄(𝑢,𝑣)
𝑗𝑘

appearing in (142) as

𝑐
(𝑢,𝑣)
𝑗𝑘

= 2

𝑚̄𝑗−1−𝑘∑
𝑙=0

𝑡
(𝑢,𝑣)

𝑗(𝑘+1+𝑙)

𝛾̄
(𝑢,𝑣)
𝑗𝑙

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁̄, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1. (174)

Proof. For notational simplicity, we outline the proof without using the superscript (𝑢, 𝑣) on the
relevant quantities. As seen from (164), the contribution to the Marchenko kernels Ω𝑘 and Ω̄𝑘

from the bound states are given by 𝐶𝐴𝑘−1𝐵 and 𝐶̄(𝐴̄)−𝑘−1𝐵̄, respectively. Thus, the contribution
to the Marchenko kernel Ω𝑘 from the bound state at 𝑧 = 𝑧𝑗 is 𝐶𝑗𝐴𝑘−1

𝑗
𝐵𝑗∕2 and the contribution
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to theMarchenko kernel Ω̄𝑘 from the bound state at 𝑧 = 𝑧̄𝑗 is 𝐶𝑗(𝐴̄𝑗)
−𝑘−1𝐵𝑗∕2. This indicates that

the contribution from the pole at 𝑧 = 𝑧𝑗 of 𝑇r to the left-hand side of (167) is evaluated as

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙𝑛 𝑇r 𝑧
𝑚−1 = −

1

2

∞∑
𝑙=𝑛

𝐾𝑛𝑙 𝐶𝑗 𝐴
𝑙+𝑚−1
𝑗

𝐵𝑗. (175)

Similarly, the contribution to the left-hand side of (168) from the pole at 𝑧 = 𝑧̄𝑗 of 𝑇̄r is evaluated
as

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙̄𝑛 𝑇̄r 𝑧
−𝑚−1 = −

1

2

∞∑
𝑙=𝑛

𝐾̄𝑛𝑙 𝐶̄𝑗 (𝐴̄𝑗)
−𝑙−𝑚−1 𝐵̄𝑗. (176)

Using (143) on the left-hand side of (175), we evaluate the aforementioned contribution as

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙𝑛 𝑇r 𝑧
𝑚−1 =

𝑚𝑗−1∑
𝑘=0

𝑡𝑗𝑘

𝑘!

𝑑𝑘(𝜙𝑛 𝑧
𝑚−1)

𝑑𝑧𝑘

||||𝑧=𝑧𝑗 . (177)

Using (141) on the right-hand side of (177), we write that right-hand side in terms of the
residues 𝑡𝑗𝑘, the dependency constants 𝛾𝑗𝑘, and 𝑑𝑘𝜓𝑛(𝑧𝑗)∕𝑑𝑧𝑘. Finally, we write the expansion
for 𝑑𝑘𝜓𝑛(𝑧𝑗)∕𝑑𝑧𝑘 in terms of the double-indexed quantities𝐾𝑛𝑙 appearing in (22). By equating the
result to the right-hand side of (175), we establish (173). We establish (174) in a similar manner by
evaluating the left-hand side of (176) with the help of (144) and then by using (142) and also by
using (24). ■

As the next corollary indicates, the result of Theorem 15 also holds for the potential pair (𝑝, 𝑠)
appearing in (8). A proof is omitted because it is similar to the proof of Theorem 15.

Corollary 4. Assume that the potentials 𝑝𝑛 and 𝑠𝑛 appearing in (8) are rapidly decaying and 1 −
𝑝𝑛𝑠𝑛 ≠ 0 for 𝑛 ∈ ℤ. Let us use {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

to denote the corresponding sets for

the bound-state locations and their multiplicities. Then, the norming constants 𝑐(𝑝,𝑠)
𝑗𝑘

and 𝑐(𝑝,𝑠)
𝑗𝑘

are

related to the corresponding residues 𝑡(𝑝,𝑠)
𝑗𝑘

and 𝑡(𝑝,𝑠)
𝑗𝑘

and the dependency constants 𝛾(𝑝,𝑠)
𝑗𝑘

and 𝛾̄(𝑝,𝑠)
𝑗𝑘

as

⎧⎪⎪⎨⎪⎪⎩
𝑐
(𝑝,𝑠)

jk = −2
∑𝑚𝑗−1−𝑘

𝑙=0
𝑡
(𝑝,𝑠)

𝑗(𝑘+1+𝑙)

𝛾
(𝑝,𝑠)

jl

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1,

𝑐
(𝑝,𝑠)

jk = 2
∑𝑚̄𝑗−1−𝑘

𝑙=0
𝑡
(𝑝,𝑠)

𝑗(𝑘+1+𝑙)

𝛾̄
(𝑝,𝑠)

jl

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁̄, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1.

(178)

We note that the norming constants are related to the residues and the dependency constants
in the same manner both in Theorem 15 and Corollary 4. Hence, without loss of any generality,
for the potential pair (𝑞, 𝑟) we can define the norming constants 𝑐(𝑞,𝑟)

𝑗𝑘
and 𝑐(𝑞,𝑟)

𝑗𝑘
, the respective

row vectors 𝐶(𝑞,𝑟)

𝑗
and 𝐶̄(𝑞,𝑟)

𝑗
appearing in (158) and (161), and the respective row vectors 𝐶(𝑞,𝑟) and

𝐶̄(𝑞,𝑟) appearing in (156) and (159) in Corollary 4. The result is stated next.
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Definition 1. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and
satisfy (2). Then, the corresponding norming constants 𝑐(𝑞,𝑟)

𝑗𝑘
and 𝑐(𝑞,𝑟)

𝑗𝑘
are related to the residues

𝑡
(𝑞,𝑟)

𝑗𝑘
and 𝑡(𝑞,𝑟)

𝑗𝑘
and the dependency constants 𝛾(𝑞,𝑟)

𝑗𝑘
and 𝛾̄(𝑞,𝑟)

𝑗𝑘
as

⎧⎪⎪⎨⎪⎪⎩
𝑐
(𝑞,𝑟)

jk ∶= −2
∑𝑚𝑗−1−𝑘

𝑙=0
𝑡
(𝑞,𝑟)

𝑗(𝑘+1+𝑙)

𝛾
(𝑞,𝑟)

jl

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1,

𝑐
(𝑞,𝑟)

jk ∶= 2
∑𝑚̄𝑗−1−𝑘

𝑙=0
𝑡
(𝑞,𝑟)

𝑗(𝑘+1+𝑙)

𝛾̄
(𝑞,𝑟)

jl

𝑙!
, 1 ≤ 𝑗 ≤ 𝑁̄, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1.

(179)

If the potential pairs (𝑞, 𝑟), (𝑢, 𝑣), and (𝑝, 𝑠) are related as in (91)–(94), then the corresponding
residues are related as in (148) and the corresponding dependency constants are related as in (149)
and (151). In the next theorem, when (91)–(94) hold, we show how the corresponding bound-state
norming constants are related to each other.

Theorem 16. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Then,
the corresponding bound-state norming constants 𝑐(𝑢,𝑣)

𝑗𝑘
and 𝑐(𝑢,𝑣)

𝑗𝑘
are related to 𝑐(𝑝,𝑠)

𝑗𝑘
and 𝑐(𝑝,𝑠)

𝑗𝑘
as

⎧⎪⎨⎪⎩
𝐶
(𝑢,𝑣)
𝑗

= 𝐶
(𝑝,𝑠)

𝑗

(
𝐼 − 𝐴−2

𝑗

)
, 1 ≤ 𝑗 ≤ 𝑁,

𝐶̄
(𝑝,𝑠)

𝑗
= 𝐶̄

(𝑢,𝑣)
𝑗

[
𝐼 − (𝐴̄𝑗)

−2
]
, 1 ≤ 𝑗 ≤ 𝑁̄,

(180)

where (𝐴𝑗, 𝐵𝑗, 𝐶𝑗) and (𝐴̄𝑗, 𝐵̄𝑗, 𝐶̄𝑗) are the matrix triplets appearing in (157), (158), (160), and (161).
Consequently, we have

⎧⎪⎨⎪⎩
𝐶(𝑢,𝑣) = 𝐶(𝑝,𝑠)

(
𝐼 − 𝐴−2

)
,

𝐶̄(𝑝,𝑠) = 𝐶̄(𝑢,𝑣)
[
𝐼 − (𝐴̄)

−2
]
,

(181)

where (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) are the matrix triplets appearing in (156) and (159), respectively. Sim-
ilarly, the norming constants 𝑐(𝑞,𝑟)

𝑗𝑘
and 𝑐(𝑞,𝑟)

𝑗𝑘
are related to the norming constants 𝑐(𝑝,𝑠)

𝑗𝑘
and 𝑐(𝑝,𝑠)

𝑗𝑘
as

⎧⎪⎨⎪⎩
𝐶
(𝑞,𝑟)

𝑗
=

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝐶
(𝑝,𝑠)

𝑗
, 1 ≤ 𝑗 ≤ 𝑁,

𝐶̄
(𝑞,𝑟)

𝑗
=

𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝐶̄
(𝑝,𝑠)

𝑗
, 1 ≤ 𝑗 ≤ 𝑁̄,

(182)

and hence we also have

⎧⎪⎨⎪⎩
𝐶(𝑝,𝑠) =

𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝐶(𝑞,𝑟),

𝐶̄(𝑝,𝑠) =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝐶̄(𝑞,𝑟),

(183)
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where 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are the constants appearing in (62) and (63), respectively. Consequently, we

get

⎧⎪⎨⎪⎩
𝐶(𝑢,𝑣) =

𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝐶(𝑞,𝑟)
(
𝐼 − 𝐴−2

)
,

𝐶̄(𝑢,𝑣) =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝐶̄(𝑞,𝑟)
[
𝐼 − (𝐴̄)

−2
]−1

.

(184)

Proof. We will provide only the proof of the first line of (180) because the second line of (180) can
be proved in a similar manner. We note that the first line of (148) yields

𝑡
(𝑝,𝑠)

𝑗𝑘
= 𝑡

(𝑢,𝑣)
𝑗𝑘

, (185)

and from (149), we have

𝛾
(𝑝,𝑠)

𝑗𝑘
=

𝑘∑
𝑙=0

(𝑘
𝑙

) 𝑑𝑙𝜎(𝑧𝑗)
𝑑𝑧𝑙

𝛾
(𝑢,𝑣)

𝑗(𝑘−𝑙)
, (186)

where we recall that 𝜎(𝑧) is the scalar quantity defined (150). For the matrix 𝐴𝑗 defined in (157),
we have

𝐴−2
𝑗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝑧2
𝑗

−
2

𝑧3
𝑗

3

𝑧4
𝑗

⋯
(−1)

𝑚𝑗 (𝑚𝑗−1)

𝑧
𝑚𝑗
𝑗

(−1)
𝑚𝑗+1𝑚𝑗

𝑧
𝑚𝑗+1

𝑗

0
1

𝑧2
𝑗

−
2

𝑧3
𝑗

⋯
(−1)

𝑚𝑗−1(𝑚𝑗−2)

𝑧
𝑚𝑗−1

𝑗

(−1)
𝑚𝑗 (𝑚𝑗−1)

𝑧
𝑚𝑗
𝑗

0 0
1

𝑧2
𝑗

⋯
(−1)

𝑚𝑗−2(𝑚𝑗−3)

𝑧
𝑚𝑗−2

𝑗

(−1)
𝑚𝑗−1(𝑚𝑗−2)

𝑧
𝑚𝑗−1

𝑗

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯
1

𝑧2
𝑗

−
2

𝑧3
𝑗

0 0 0 ⋯ 0
1

𝑧2
𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (187)

Using (150) and (185)–(187) on the right-hand side of the first line of (178), we establish the first
line of (180). By using the summation over all the bound states, that is, summing over 1 ≤ 𝑗 ≤ 𝑁,
from the first line of (180) we obtain the first line of (181). In a similar manner, the second line
of (180) yields the second line of (181). Finally, the proofs of (182) and (183) are obtained by using
(148), the first lines of (149) and (151), and (179), and by comparing the result with (178). ■

Recall that we use 𝑡𝑗𝑘, 𝛾𝑗𝑘, and 𝑐𝑗𝑘 to denote the residues, the dependency constants, and the
norming constants, respectively, corresponding to a bound state at 𝑧 = 𝑧𝑗 with multiplicity 𝑚𝑗

for each of the linear systems (1), (7), and (8). In the next theorem, we compare those quantities
with the corresponding quantities related to the bound state at 𝑧 = −𝑧𝑗 . We also show that the
contributions to the Marchenko kernels from 𝑧 = 𝑧𝑗 and from 𝑧 = −𝑧𝑗 are equal.
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Theorem 17. For each of the linear systems (1), (7), and (8), as indicated in Theorem 13, let the
bound states and their multiplicities be described by the sets {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

and {±𝑧̄𝑗, 𝑚̄𝑗}
𝑁̄
𝑗=1

. Let the
residues 𝑡𝑗𝑘 and 𝑡𝑗𝑘 be defined as in (143) and (144); the dependency constants 𝛾𝑗𝑘 and 𝛾̄𝑗𝑘 be defined
as in (141) and (142), respectively; and the norming constants 𝑐𝑗𝑘 and 𝑐𝑗𝑘 be defined as in (173) and
(174), respectively, or equivalently as in (178) or (179). We have the following:

(a) Let 𝑡𝑗𝑘|𝑧=𝑧𝑗 and 𝑡𝑗𝑘|𝑧=−𝑧𝑗 denote the residues at 𝑧 = 𝑧𝑗 and 𝑧 = −𝑧𝑗 , respectively. Similarly, let
𝑡𝑗𝑘|𝑧=𝑧̄𝑗 and 𝑡𝑗𝑘|𝑧=−𝑧̄𝑗 denote the residues at 𝑧 = 𝑧̄𝑗 and 𝑧 = −𝑧̄𝑗 , respectively. We then have

⎧⎪⎨⎪⎩
𝑡jk|𝑧=−𝑧𝑗 = (−1)

𝑘
𝑡jk|𝑧=𝑧𝑗 , 1 ≤ 𝑘 ≤ 𝑚𝑗,

𝑡jk|𝑧=−𝑧̄𝑗 = (−1)
𝑘
𝑡jk|𝑧=𝑧̄𝑗 , 1 ≤ 𝑘 ≤ 𝑚̄𝑗.

(188)

(b) Let 𝛾𝑗𝑘|𝑧=𝑧𝑗 and 𝛾𝑗𝑘|𝑧=−𝑧𝑗 denote the dependency constants at 𝑧 = 𝑧𝑗 and 𝑧 = −𝑧𝑗 , respectively.
Similarly, let 𝛾̄𝑗𝑘|𝑧=𝑧̄𝑗 and 𝛾̄𝑗𝑘|𝑧=−𝑧̄𝑗 denote the dependency constants at 𝑧 = 𝑧̄𝑗 and 𝑧 = −𝑧̄𝑗 ,
respectively. We then have

⎧⎪⎨⎪⎩
𝛾jk|𝑧=−𝑧𝑗 = (−1)

𝑘
𝛾jk|𝑧=𝑧𝑗 , 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1,

𝛾̄jk|𝑧=−𝑧̄𝑗 = (−1)
𝑘
𝛾̄jk|𝑧=𝑧̄𝑗 , 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1.

(189)

(c) Let 𝑐𝑗𝑘|𝑧=𝑧𝑗 and 𝑐𝑗𝑘|𝑧=−𝑧𝑗 denote the norming constants at 𝑧 = 𝑧𝑗 and 𝑧 = −𝑧𝑗 , respectively.
Similarly, let 𝑐𝑗𝑘|𝑧=𝑧̄𝑗 and 𝑐𝑗𝑘|𝑧=−𝑧̄𝑗 denote the norming constants at 𝑧 = 𝑧̄𝑗 and 𝑧 = −𝑧̄𝑗 , respec-
tively. We then have

⎧⎪⎨⎪⎩
𝑐jk|𝑧=−𝑧𝑗 = (−1)

𝑘
𝑐jk|𝑧=𝑧𝑗 , 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1,

𝑐jk|𝑧=−𝑧̄𝑗 = (−1)
𝑘
𝑐jk|𝑧=𝑧̄𝑗 , 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1.

(190)

(d) The contribution to the Marchenko kernel Ω𝑛+𝑚 from 𝑧 = 𝑧𝑗 is equal to the contribution from
𝑧 = −𝑧𝑗 . Similarly, the contribution to the Marchenko kernel Ω̄𝑛+𝑚 from 𝑧 = 𝑧̄𝑗 is equal to the
contribution from 𝑧 = −𝑧̄𝑗 .

Proof. The proof of (a) is obtained as follows. We know that the transmission coefficients 𝑇r for
each of these three linear systems contain 𝑧 as 𝑧2. From (143), using 𝑇r(−𝑧) = 𝑇r(𝑧), as 𝑧 → −𝑧𝑗
we obtain

𝑇r(𝑧) =
(−1)𝑚𝑗 𝑡𝑗𝑚𝑗

(𝑧 + 𝑧𝑗)
𝑚𝑗

+
(−1)𝑚𝑗−1 𝑡𝑗(𝑚𝑗−1)

(𝑧 + 𝑧𝑗)
𝑚𝑗−1

+⋯+
(−1) 𝑡𝑗1

(𝑧 + 𝑧𝑗)
+ 𝑂(1),

which yields the first line of (188). The second line of (188) is obtained from (144) by proceeding in
a similar manner. This completes the proof of (a). Let us now prove (b). From Theorem 1(a) and



46 AKTOSUN and ERCAN

its analogs in Corollary 1 and Theorem 10(a), we get

⎧⎪⎨⎪⎩
𝜓𝑛(−𝑧) = (−1)

𝑛
𝜓𝑛(𝑧), 𝜙𝑛(−𝑧) = (−1)

𝑛
𝜙𝑛(𝑧),

𝜓̄𝑛(−𝑧) = (−1)
𝑛
𝜓̄𝑛(𝑧), 𝜙̄𝑛(−𝑧) = (−1)

𝑛
𝜙̄𝑛(𝑧).

(191)

Using the first line of (191) in (141), we determine the dependency constant 𝛾𝑗𝑘|𝑧=−𝑧𝑗 and establish
the first line of (189). The second line of (189) is obtained in a similar way by using the second line
of (191) in (142). This completes the proof of (b). To prove (c), we proceed as follows. Using the
first lines of (188) and (189) in (173), we determine the norming constant 𝑐𝑗𝑘||𝑧=−𝑧𝑗 and establish
the first line of (190). The second line of (190) is proved in a similar way by using the second lines of
(188) and (189) in (174). This completes the proof of (c). Let us finally prove (d). The right-hand side
of (175) is the contribution to the Marchenko kernel Ω𝑛+𝑚 from the bound state at 𝑧 = 𝑧𝑗 . Using
(175) and (177), with the help of (157) and (158), we evaluate the contribution to the Marchenko
kernel Ω𝑛+𝑚 from the bound state at 𝑧 = −𝑧𝑗 and we obtain

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙𝑛 𝑇r 𝑧
𝑚−1 = −

1

2

∞∑
𝑙=𝑛

𝐾𝑛𝑙

(
𝐶𝑗 𝐴

𝑙+𝑚−1
𝑗

𝐵𝑗

)|||𝑧𝑗↦−𝑧𝑗
, (192)

where 𝑧𝑗 ↦ −𝑧𝑗 is used to indicate the substitution of −𝑧𝑗 for 𝑧𝑗 . From (158) and the first line of
(190), we get

𝐶𝑗||𝑧=−𝑧𝑗 = 𝐶𝑗||𝑧=𝑧𝑗 diag{(−1)𝑚𝑗 , (−1)𝑚𝑗−1, ⋅ ⋅ ⋅, (−1)1
}
, (193)

where diag is used to denote the diagonal matrix. Similarly, from (157), for any integer 𝑛 we get

𝐴𝑛
𝑗
𝐵𝑗|𝑧=−𝑧𝑗 = diag

{
(−1)

𝑛−(𝑚𝑗−1), (−1)
𝑛−(𝑚𝑗−2), ⋅ ⋅ ⋅, (−1)

𝑛
}
𝐴𝑛
𝑗
𝐵𝑗|𝑧=𝑧𝑗 . (194)

Using (193) and (194), when 𝑛 + 𝑚 and 𝑛 + 𝑙 are both even integers in (192), we confirm that
the right-hand side of (192) is equal to the right-hand side of (175). Hence the contribution to the
Marchenko kernel Ω𝑛+𝑚 from 𝑧 = 𝑧𝑗 is equal to the contribution from 𝑧 = −𝑧𝑗 . Similarly, we
prove that the contribution to Ω̄𝑛+𝑚 from 𝑧 = −𝑧̄𝑗 is equal to the contribution from 𝑧 = 𝑧̄𝑗 . ■

Let us remark on the simplicity and elegance of the use of matrix triplets in dealing with bound
states with multiplicities. The formulas in (181) are very simple compared to the formulas written
for the individual bound-state norming constants. In fact, to extract the formulas for 𝑐(𝑢,𝑣)

𝑗𝑘
from

the first line of (180), we postmultiply that first line by a column vector with 𝑚𝑗 components so
that we get

𝑐
(𝑢,𝑣)
𝑗𝑘

= 𝐶
(𝑝,𝑠)

𝑗

(
𝐼 − 𝐴−2

𝑗

)
𝑒𝑚𝑗−1−𝑘, 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1,

where we use 𝑒𝑙 for the column vector with 𝑚𝑗 components with all the entries 0 except 1 in the
𝑙th entry. In a similar way, from the second line of (180), we obtain

𝑐
(𝑝,𝑠)

𝑗𝑘
= 𝐶̄

(𝑢,𝑣)
𝑗

[
𝐼 − (𝐴̄𝑗)

−2
]
𝑒𝑚̄𝑗−1−𝑘, 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1,
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where we use 𝑒𝑙 for the column vector with 𝑚̄𝑗 components having 1 at the 𝑙th entry and 0 else-
where.
Let us also remark that the fundamental result given in (181) is compatible with (164), from

which we obtain the Marchenko kernels Ω(𝑢,𝑣)
𝑘

and Ω̄(𝑢,𝑣)
𝑘

and the Marchenko kernels Ω(𝑝,𝑠)

𝑘
and

Ω̄
(𝑝,𝑠)

𝑘
. When (91)–(94) hold, we see that (118) and (119), respectively, yield

⎧⎪⎨⎪⎩
𝑅(𝑢,𝑣) =

(
1 −

1

𝑧2

)
𝑅(𝑝,𝑠),

𝑅̄(𝑝,𝑠) =
(
1 −

1

𝑧2

)
𝑅̄(𝑢,𝑣).

(195)

Using (195) in (165), we obtain

⎧⎪⎨⎪⎩
𝑅̂
(𝑢,𝑣)
𝑘

= 𝑅̂
(𝑝,𝑠)

𝑘
− 𝑅̂

(𝑝,𝑠)

𝑘−2
,

̂̄𝑅
(𝑝,𝑠)

𝑘
= ̂̄𝑅

(𝑢,𝑣)
𝑘

− ̂̄𝑅
(𝑝,𝑠)

𝑘+2
.

(196)

From (164) and (196), we see that in the absence of bound states, we have

⎧⎪⎨⎪⎩
Ω
(𝑢,𝑣)
𝑘

= Ω
(𝑝,𝑠)

𝑘
− Ω

(𝑝,𝑠)

𝑘−2
,

Ω̄
(𝑝,𝑠)

𝑘
= Ω̄

(𝑢,𝑣)
𝑘

− Ω̄
(𝑢,𝑣)
𝑘+2

.

(197)

In fact, (197) holds even in the presence of bound state. Then, comparing (196) and (197), we get

⎧⎪⎨⎪⎩
𝐶(𝑢,𝑣)𝐴𝑘−1𝐵 = 𝐶(𝑝,𝑠)𝐴𝑘−1𝐵 − 𝐶(𝑝,𝑠)𝐴𝑘−3𝐵,

𝐶̄(𝑝,𝑠)(𝐴̄)
−𝑘−1

𝐵 = 𝐶̄(𝑢,𝑣)(𝐴̄)
−𝑘−1

𝐵̄ − 𝐶̄(𝑢,𝑣)(𝐴̄)
−𝑘−3

𝐵̄,

which yield the important result given in (181). Let us also mention that from (197), we get

⎧⎪⎨⎪⎩
Ω
(𝑝,𝑠)

𝑘
=
∑∞

𝑙=0
Ω
(𝑢,𝑣)
𝑘−2𝑙

,

Ω̄
(𝑢,𝑣)
𝑘

=
∑∞

𝑙=0
Ω̄
(𝑝,𝑠)

𝑘+2𝑙
.

(198)

In the next theorem, we show that, when the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to each
other as in (91)–(94), their corresponding Marchenko systems hold simultaneously.

Theorem 18. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and sat-
isfy (2). Assume further that the potential pair (𝑢, 𝑣) appearing in (7) and the potential pair (𝑝, 𝑠)
appearing in (8) are related to (𝑞, 𝑟) as in (91)–(94). Then, the Marchenko system related to (7) holds
if and only if the Marchenko system related to (8) holds.
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Proof. The proof is lengthy and it involves some fine estimates. Let us define

𝑊
(𝑢,𝑣)
𝑛𝑚 ∶= 𝐾

(𝑢,𝑣)
𝑛𝑚 +

∞∑
𝑙=𝑛

𝐾̄
(𝑢,𝑣)
𝑛𝑙

Ω̄
(𝑢,𝑣)
𝑙+𝑚

, (199)

𝑊̄
(𝑢,𝑣)
𝑛𝑚 ∶= 𝐾̄

(𝑢,𝑣)
𝑛𝑚 +

∞∑
𝑙=𝑛

𝐾
(𝑢,𝑣)
𝑛𝑙

Ω
(𝑢,𝑣)
𝑙+𝑚

, (200)

𝑊
(𝑝,𝑠)
𝑛𝑚 ∶= 𝐾

(𝑝,𝑠)
𝑛𝑚 +

∞∑
𝑙=𝑛

𝐾̄
(𝑝,𝑠)

𝑛𝑙
Ω̄
(𝑝,𝑠)

𝑙+𝑚
,

𝑊̄
(𝑝,𝑠)
𝑛𝑚 ∶= 𝐾̄

(𝑝,𝑠)
𝑛𝑚 +

∞∑
𝑙=𝑛

𝐾
(𝑝,𝑠)

𝑛𝑙
Ω
(𝑝,𝑠)

𝑙+𝑚
. (201)

As seen from (162) and the first two equations in (23) and (25), we need to prove the equivalence
of the Marchenko system

⎧⎪⎨⎪⎩
𝑊̄

(𝑢,𝑣)
𝑛𝑚 = 0, 𝑚 > 𝑛,

𝑊
(𝑢,𝑣)
𝑛𝑚 = 0, 𝑚 > 𝑛,

(202)

and the Marchenko system

⎧⎪⎨⎪⎩
𝑊̄

(𝑝,𝑠)
𝑛𝑚 = 0, 𝑚 > 𝑛,

𝑊
(𝑝,𝑠)
𝑛𝑚 = 0, 𝑚 > 𝑛.

(203)

We provide the proof by relating 𝑊̄(𝑢,𝑣)
𝑛𝑚 to 𝑊̄(𝑝,𝑠)

𝑛𝑚 . The relation between𝑊(𝑢,𝑣)
𝑛𝑚 and𝑊(𝑝,𝑠)

𝑛𝑚 can be
established in a similar manner and hence that proof will be omitted. Using (105) and (106), we
relate 𝜓(𝑢,𝑣)𝑛 and 𝜓(𝑝,𝑠)𝑛 to each other and apply ∮ 𝑑𝑧 𝑧−𝑚−1∕(2𝜋𝑖) on the resulting equality. Simi-
larly, using (109) and (110), we relate 𝜓̄(𝑢,𝑣)𝑛 and 𝜓̄(𝑝,𝑠)𝑛 to each other and apply ∮ 𝑑𝑧 𝑧𝑚−1∕(2𝜋𝑖) on
the resulting equality. Then, with the help of (91) and (94), we obtain

⎡⎢⎢⎣
1 0

𝑠𝑛−1 1

⎤⎥⎥⎦𝐾(𝑢,𝑣)
𝑛𝑚 −

⎡⎢⎢⎣
1 0

0 0

⎤⎥⎥⎦𝐾(𝑢,𝑣)

𝑛(𝑚+2)
=
⎡⎢⎢⎣
1 −𝑢𝑛

𝑠𝑛−1 1

⎤⎥⎥⎦𝐾(𝑝,𝑠)
𝑛𝑚 ,

⎡⎢⎢⎣
1 0

𝑠𝑛−1 1

⎤⎥⎥⎦ 𝐾̄(𝑢,𝑣)
𝑛𝑚 =

⎡⎢⎢⎣
1 −𝑢𝑛

𝑠𝑛−1 1

⎤⎥⎥⎦ 𝐾̄(𝑝,𝑠)
𝑛𝑚 −

⎡⎢⎢⎣
1 0

0 0

⎤⎥⎥⎦ 𝐾̄(𝑝,𝑠)

𝑛(𝑚−2)
,
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where we have also used (163) for (𝑢, 𝑣) and (𝑝, 𝑠). Using (199) and the first line of (197), after some
simplifications, for𝑚 > 𝑛 we write 𝑊̄(𝑢,𝑣)

𝑛𝑚 appearing in (200) as

𝑊̄
(𝑢,𝑣)
𝑛𝑚 =

⎡⎢⎢⎣
1 −𝑢𝑛

𝑠𝑛−1 1 + 𝑢𝑛𝑠𝑛−1

⎤⎥⎥⎦ 𝑊̄(𝑝,𝑠)
𝑛𝑚 −

⎡⎢⎢⎣
0 0

𝑠𝑛−1 1

⎤⎥⎥⎦ 𝑊̄(𝑝,𝑠)

𝑛(𝑚−2)
. (204)

From (204), when 𝑚 > 𝑛 + 2 we conclude that the first line of (202) holds if and only if the first
line of (203) holds. We must analyze the case 𝑚 = 𝑛 + 2 separately because of the appearance of
𝑊̄

(𝑝,𝑠)

𝑛(𝑚−2)
in (204). Toward that goal we apply ∮ 𝑑𝑧 𝑧𝑛−1∕(2𝜋𝑖) on both sides of the first line of (166)

with the potential pair (𝑝, 𝑠). We then get

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜙
(𝑝,𝑠)
𝑛 𝑇

(𝑝,𝑠)
r 𝑧𝑛−1 =

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓̄
(𝑝,𝑠)
𝑛 𝑧𝑛−1 +

1

2𝜋𝑖 ∮ 𝑑𝑧 𝜓
(𝑝,𝑠)
𝑛 𝑅(𝑝,𝑠) 𝑧𝑛−1. (205)

In this case, besides the bound-state poles of 𝑇(𝑝,𝑠)r in 0 < |𝑧| < 1, also the point at 𝑧 = 0 con-
tributes to the integral on the left-hand side of (205). With the help of (163), (165), (175), from (205)
we get

[
𝑧𝑛𝜙

(𝑝,𝑠)
𝑛

]||||𝑧=0𝑇(𝑝,𝑠)r (0) −

∞∑
𝑙=𝑛

𝐾
(𝑝,𝑠)

𝑛𝑙
𝐶(𝑝,𝑠)𝐴𝑙+𝑛−1𝐵 = 𝐾̄

(𝑝,𝑠)
𝑛𝑛 +

∞∑
𝑙=𝑛

𝐾
(𝑝,𝑠)

𝑛𝑙
𝑅̂
(𝑝,𝑠)

𝑙+𝑛
. (206)

Using the analogs of (26), (27), and (49) for the potential pair (𝑝, 𝑠), we have

[
𝑧𝑛𝜙

(𝑝,𝑠)
𝑛

]||||𝑧=0𝑇(𝑝,𝑠)r (0) =
𝐷
(𝑝,𝑠)
∞

𝐷
(𝑝,𝑠)
𝑛−1

⎡⎢⎢⎣
1

−𝑠𝑛−1

⎤⎥⎥⎦ . (207)

With the help of (207) and the first equality in (164), we write (206) as

𝐾̄
(𝑝,𝑠)
𝑛𝑛 +

∞∑
𝑙=𝑛

𝐾
(𝑝,𝑠)

𝑛𝑙
Ω
(𝑝,𝑠)

𝑙+𝑛
=
𝐷
(𝑝,𝑠)
∞

𝐷
(𝑝,𝑠)
𝑛−1

⎡⎢⎢⎣
1

−𝑠𝑛−1

⎤⎥⎥⎦ ,
which, with the help of (201), is seen to be equivalent to

𝑊̄
(𝑝,𝑠)
𝑛𝑛 =

𝐷
(𝑝,𝑠)
∞

𝐷
(𝑝,𝑠)
𝑛−1

⎡⎢⎢⎣
1

−𝑠𝑛−1

⎤⎥⎥⎦ . (208)

Because of (208), we see that the second term on the right-hand side of (204) vanishes when𝑚 =

𝑛 + 2. Consequently, we conclude that the first lines of (202) and (203) hold simultaneously also
when𝑚 = 𝑛 + 2. ■
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5 THE SOLUTION TO THE DIRECT PROBLEM

In this section, when the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2), we provide the solution to the direct scattering problem for (1), that is, the determination of
the scattering coefficients and the bound-state information for (1) when the potential pair (𝑞, 𝑟) is
given. The steps in the solution to the direct problem are outlined as follows:

(a) Using (𝑞𝑛, 𝑟𝑛) in (1), we solve (1) with the asymptotic conditions (12)–(15) and uniquely con-
struct the four Jost solutions 𝜓(𝑞,𝑟)𝑛 , 𝜙(𝑞,𝑟)𝑛 , 𝜓̄(𝑞,𝑟)𝑛 , and 𝜙̄(𝑞,𝑟)𝑛 .

(b) We recover the scattering coefficients 𝑇(𝑞,𝑟), 𝑇̄(𝑞,𝑟), 𝑅(𝑞,𝑟), 𝑅̄(𝑞,𝑟), 𝐿(𝑞,𝑟), and 𝐿̄(𝑞,𝑟) by using the
asymptotics in (16)–(19) of the already constructed four Jost solutions.

(c) Next, we determine the poles and their multiplicities for the transmission coefficient 𝑇(𝑞,𝑟)
in 0 < |𝑧| < 1 and the poles and their multiplicities for the transmission coefficient 𝑇̄(𝑞,𝑟) in|𝑧| > 1. Note that such poles occur in pairs. We use the notation that the poles of 𝑇(𝑞,𝑟) in
0 < |𝑧| < 1 occur at 𝑧 = ±𝑧𝑗 and the multiplicity of the pole at each of 𝑧 = 𝑧𝑗 and 𝑧 = −𝑧𝑗 is
𝑚𝑗 for 1 ≤ 𝑗 ≤ 𝑁. Thus, the set {±𝑧𝑗,𝑚𝑗}

𝑁
𝑗=1

is uniquely determined from the poles of 𝑇(𝑞,𝑟) in
0 < |𝑧| < 1. In a similar way, we use 𝑇̄(𝑞,𝑟) to determine its poles in |𝑧| > 1 and themultiplicity
of each pole. We use the notation that the poles in |𝑧| > 1 occur when 𝑧 = ±𝑧̄𝑗 for 1 ≤ 𝑗 ≤ 𝑁̄

and the multiplicity of the pole at each of 𝑧 = 𝑧̄𝑗 and 𝑧 = −𝑧̄𝑗 is 𝑚̄𝑗 . Thus, we also obtain the
set {±𝑧̄𝑗, 𝑚̄𝑗}

𝑁̄
𝑗=1

.

(d) With the help of (143) with 𝑇(𝑞,𝑟), we determine the residues 𝑡(𝑞,𝑟)
𝑗𝑘

for 1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑘 ≤
𝑚𝑗 . Similarly, with the help of (144) with 𝑇̄(𝑞,𝑟), we obtain the residues 𝑡

(𝑞,𝑟)

𝑗𝑘
for 1 ≤ 𝑗 ≤ 𝑁̄ and

1 ≤ 𝑘 ≤ 𝑚̄𝑗 .
(e) Using (141) for the potential pair (𝑞, 𝑟), we determine the dependency constants 𝛾(𝑞,𝑟)

𝑗𝑘
for 1 ≤

𝑗 ≤ 𝑁 and 0 ≤ 𝑘 ≤ 𝑚𝑗 − 1. Similarly, using (142) with the potential pair (𝑞, 𝑟), we obtain the
dependency constants 𝛾̄(𝑞,𝑟)

𝑗𝑘
for 1 ≤ 𝑗 ≤ 𝑁̄ and 0 ≤ 𝑘 ≤ 𝑚̄𝑗 − 1.

(f) Using the constructed residues 𝑡(𝑞,𝑟)
𝑗𝑘

and 𝑡(𝑞,𝑟)
𝑗𝑘

and the dependency constants 𝛾(𝑞,𝑟)
𝑗𝑘

and 𝛾̄(𝑞,𝑟)
𝑗𝑘

,

from (179) we obtain the bound-state norming constants 𝑐(𝑞,𝑟)
𝑗𝑘

and 𝑐(𝑞,𝑟)
𝑗𝑘

. Note that we also get
the triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)) via (156)–(161).

6 THEMARCHENKO SYSTEM

In this section, we introduce the linear system (209), which is the Marchenko system correspond-
ing to (1). The input to (209) consists of Ω(𝑞,𝑟)

𝑘
and Ω̄(𝑞,𝑟)

𝑘
given in (210) constructed directly from

the reflection coefficients and the bound-state information for (1). We also describe the recovery
of the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) from the solution to the Marchenko system (209), and
this is done in (221) and (222).
A comparison between (209) and the standard Marchenko system (162) for an AKNS system

such as (7) and (8) shows that (162) and (209) have exactly the same form. Furthermore, as seen
from (210), the input sets Ω(𝑞,𝑟)

𝑘
and Ω̄

(𝑞,𝑟)

𝑘
to (209) are directly constructed from the reflection

coefficients and the bound-state information from (1) alone. Those input data sets are not con-
structed from the scattering data for any related systems such as the AKNS system (7) and (8).
Hence, (209) can be used to solve the inverse problem for (1) without having to relate (1) to any
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other system such as (7) or (8) via any transformation. The only minor difference between the
Marchenko theory for (1) using the Marchenko system (209) and the Marchenko theory for (7)
using the Marchenko system (162) is how the potentials are expressed from the solutions to the
corresponding Marchenko systems. In the Marchenko theory for (1), the potentials 𝑞𝑛 and 𝑟𝑛 are
constructed as in (221) and (222), respectively, from the solution to the Marchenko system (209).
On the other hand, in the Marchenko theory for (7), the potentials 𝑢𝑛 and 𝑣𝑛 are constructed as
in (171) from the solution to the Marchenko system (162).
The formulation of the Marchenko system for (1) is a significant step in the analysis of inverse

problems. That Marchenko system directly uses the scattering data from (1) alone, and hence
the Marchenko theory for (1) is based on the use of (209) alone. This has also a direct relevance
to the inverse scattering transform method to solve integrable evolution equations. The relevant
initial scattering data and its time evolution can directly be used as input in the corresponding
Marchenko system. We expect that our method of formulating (209) can also be applied on some
other linear systems, both in the continuous and discrete cases, for which a directly relevant
Marchenko theory has not yet been developed.
In the next theorem, we present the derivation of the Marchenko system for (1).

Theorem 19. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, theMarchenko system given in (162) holds with the relevant quantities listed in (163)–(165)
all related to (1), that is, we have

[
𝑀̄

(𝑞,𝑟)
nm 𝑀

(𝑞,𝑟)
nm

]
+
⎡⎢⎢⎣

0 Ω̄
(𝑞,𝑟)
𝑛+𝑚

Ω
(𝑞,𝑟)
𝑛+𝑚 0

⎤⎥⎥⎦
+

∞∑
𝑙=𝑛+1

[
𝑀̄

(𝑞,𝑟)

nl 𝑀
(𝑞,𝑟)

nl

] ⎡⎢⎢⎣
0 Ω̄

(𝑞,𝑟)

𝑙+𝑚

Ω
(𝑞,𝑟)

𝑙+𝑚
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0

0 0

⎤⎥⎥⎦ , 𝑚 > 𝑛. (209)

Here, the scalar quantities Ω(𝑞,𝑟)

𝑘
and Ω̄(𝑞,𝑟)

𝑘
are related to the scattering data set for (1) as in (164),

that is,

⎧⎪⎪⎨⎪⎪⎩

Ω
(𝑞,𝑟)

𝑘
∶= 𝑅̂

(𝑞,𝑟)

𝑘
+ 𝐶(𝑞,𝑟)𝐴𝑘−1𝐵, 𝑘 even,

Ω̄
(𝑞,𝑟)

𝑘
∶= ̂̄𝑅

(𝑞,𝑟)

𝑘 + 𝐶̄(𝑞,𝑟)(𝐴̄)
−𝑘−1

𝐵̄, 𝑘 even,

Ω
(𝑞,𝑟)

𝑘
∶= 0, Ω̄

(𝑞,𝑟)

𝑘
∶= 0, 𝑘 odd,

(210)

with 𝑅̂(𝑞,𝑟)
𝑘

and ̂̄𝑅
(𝑞,𝑟)

𝑘
being related to the reflection coefficients 𝑅(𝑞,𝑟) and 𝑅̄(𝑞,𝑟) as in (165) and the

matrix triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)) are as in (156) and (159), respectively.

Proof. A direct proof can be given by using the procedure described in (166)–(168). We present
an alternate proof, and this is done by exploiting the connection between (1) and (8) when the
potential pairs (𝑞, 𝑟) and (𝑝, 𝑠) are related as in (93) and (94). Starting with the Marchenko system
(162) with the relevant quantities all related to the potential pair (𝑝, 𝑠) of (8), we transform that
Marchenko system and the relevant quantities so that they are all related to the potential pair
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(𝑞, 𝑟) of (1). From (106) and (110), we see that

𝜓
(𝑝,𝑠)
𝑛 =

1

𝐷
(𝑞,𝑟)
∞

(
Λ
(𝑞,𝑟)
𝑛

)−1
𝜓
(𝑞,𝑟)
𝑛 , 𝜓̄

(𝑝,𝑠)
𝑛 =

1

𝐸
(𝑞,𝑟)
∞

(
Λ
(𝑞,𝑟)
𝑛

)−1
𝜓̄
(𝑞,𝑟)
𝑛 , (211)

where Λ(𝑞,𝑟)
𝑛 is the matrix defined in (153) and the quantities 𝐷(𝑞,𝑟)

∞ and 𝐸(𝑞,𝑟)∞ are the scalar con-
stants appearing in (62) and (63), respectively. From (154), we know that thematrixΛ(𝑞,𝑟)

𝑛 is invert-
ible for all 𝑛 ∈ ℤ. Thus, with the help of (163) and (211), we conclude that

𝐾
(𝑝,𝑠)
𝑛𝑚 =

1

𝐷
(𝑞,𝑟)
∞

(
Λ
(𝑞,𝑟)
𝑛

)−1
𝐾
(𝑞,𝑟)
𝑛𝑚 , 𝐾̄

(𝑝,𝑠)
𝑛𝑚 =

1

𝐸
(𝑞,𝑟)
∞

(
Λ
(𝑞,𝑟)
𝑛

)−1
𝐾̄
(𝑞,𝑟)
𝑛𝑚 . (212)

From the second equalities in (118) and (119), with the help of (165), we obtain

𝑅̂(𝑝,𝑠) =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝑅̂(𝑞,𝑟), ̂̄𝑅(𝑝,𝑠) =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

̂̄𝑅(𝑞,𝑟). (213)

From the second equality in (115), it follows that the poles of 𝑇(𝑝,𝑠)r and 𝑇(𝑞,𝑟) coincide, and from
the second equality in (117) we see that the poles of 𝑇̄(𝑝,𝑠)r and 𝑇̄(𝑞,𝑟) coincide. Hence, the matrices
𝐴, 𝐴̄, 𝐵, 𝐵̄ appearing in (164) are common to the potential pairs (𝑝, 𝑠) and (𝑞, 𝑟). Using (183) and
(213) in (164), we conclude that

Ω
(𝑝,𝑠)

𝑘
=
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

Ω
(𝑞,𝑟)

𝑘
, Ω̄

(𝑝,𝑠)

𝑘
=

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

Ω̄
(𝑞,𝑟)

𝑘
. (214)

With the help of the first equalities in (31) and (33), we observe that the Marchenko system (162)
related to the potential pair (𝑝, 𝑠) is equivalent to the system given in (203). Using (212) and (214),
we transform (203) into

⎧⎪⎨⎪⎩
𝐾̄
(𝑞,𝑟)
nm +

∑∞

𝑙=𝑛
𝐾
(𝑞,𝑟)

nl Ω
(𝑞,𝑟)

𝑙+𝑚
= 0, 𝑚 > 𝑛,

𝐾
(𝑞,𝑟)
nm +

∑∞

𝑙=𝑛
𝐾̄
(𝑞,𝑟)

nl Ω̄
(𝑞,𝑟)

𝑙+𝑚
= 0, 𝑚 > 𝑛.

(215)

The system in (215) can be written in the matrix form as

[
𝐾̄
(𝑞,𝑟)
nm 𝐾

(𝑞,𝑟)
nm

]
+
[
𝐾̄
(𝑞,𝑟)
nn 𝐾

(𝑞,𝑟)
nn

] ⎡⎢⎢⎣
0 Ω̄

(𝑞,𝑟)
𝑛+𝑚

Ω
(𝑞,𝑟)
𝑛+𝑚 0

⎤⎥⎥⎦
+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑞,𝑟)

nl 𝐾
(𝑞,𝑟)

nl

] ⎡⎢⎢⎣
0 Ω̄

(𝑞,𝑟)

𝑙+𝑚

Ω
(𝑞,𝑟)

𝑙+𝑚
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0

0 0

⎤⎥⎥⎦ , 𝑚 > 𝑛. (216)

The matrix [𝐾̄(𝑝,𝑠)
𝑛𝑛 𝐾

(𝑝,𝑠)
𝑛𝑛 ], as seen from the first equalities in (31) and (33), is equal to the 2 × 2

identity matrix, and hence the second term on the left-hand side of (162) does not contain the
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matrix [𝐾̄(𝑝,𝑠)
𝑛𝑛 𝐾

(𝑝,𝑠)
𝑛𝑛 ]. However, the matrix [𝐾̄(𝑞,𝑟)

𝑛𝑛 𝐾
(𝑞,𝑟)
𝑛𝑛 ] appearing in (216) is not equal to the

identity matrix. From (123) and (125), it follows that

[
𝐾̄
(𝑞,𝑟)
𝑛𝑛 𝐾

(𝑞,𝑟)
𝑛𝑛

]
= Λ

(𝑞,𝑟)
𝑛

⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦ , (217)

where we recall that Λ(𝑞,𝑟)
𝑛 is the invertible matrix appearing in (153). Hence, the matrix on the

left-hand side of (217) is invertible and we have

[
𝐾̄
(𝑞,𝑟)
nn 𝐾

(𝑞,𝑟)
nn

]−1
=

⎡⎢⎢⎢⎣
1

𝐸
(𝑞,𝑟)
∞

0

0
1

𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎥⎦
(
Λ
(𝑞,𝑟)
𝑛

)−1
. (218)

Premultiplying both sides of (216) by [𝐾̄(𝑞,𝑟)
𝑛𝑛 𝐾

(𝑞,𝑟)
𝑛𝑛 ]−1, we obtain (209), where we have defined

[
𝑀̄

(𝑞,𝑟)
𝑛𝑚 𝑀

(𝑞,𝑟)
𝑛𝑚

]
∶=
[
𝐾̄
(𝑞,𝑟)
𝑛𝑛 𝐾

(𝑞,𝑟)
𝑛𝑛

]−1 [
𝐾̄
(𝑞,𝑟)
𝑛𝑚 𝐾

(𝑞,𝑟)
𝑛𝑚

]
, (219)

and hence the proof is complete. ■

Note that (219) implies that 𝑀(𝑞,𝑟)
𝑛𝑚 = 0 and 𝑀̄

(𝑞,𝑟)
𝑛𝑚 = 0 when 𝑛 + 𝑚 is odd because we have

𝐾
(𝑞,𝑟)
𝑛𝑚 = 0 and 𝐾̄(𝑞,𝑟)

𝑛𝑚 = 0 when 𝑛 + 𝑚 is odd as stated in Theorem 10.
We can uncouple the Marchenko system (209) as in (169) and (170). Hence, without a proof we

state the result in the next corollary.

Corollary 5. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, the Marchenko system (209) is equivalent to the uncoupled system, for𝑚 > 𝑛, given by

⎧⎪⎨⎪⎩
[
𝑀

(𝑞,𝑟)
nm

]
1
+ Ω̄

(𝑞,𝑟)
𝑛+𝑚 −

∑∞

𝑙=𝑛+1

∑∞

𝑗=𝑛+1

[
𝑀

(𝑞,𝑟)

nj

]
1
Ω
(𝑞,𝑟)

𝑗+𝑙
Ω̄
(𝑞,𝑟)

𝑙+𝑚
= 0,[

𝑀̄
(𝑞,𝑟)
nm

]
2
+ Ω

(𝑞,𝑟)
𝑛+𝑚 −

∑∞

𝑙=𝑛+1

∑∞

𝑗=𝑛+1

[
𝑀̄

(𝑞,𝑟)

nj

]
2
Ω̄
(𝑞,𝑟)

𝑗+𝑙
Ω
(𝑞,𝑟)

𝑙+𝑚
= 0,

(220)

and with [𝑀̄(𝑞,𝑟)
𝑛𝑚 ]1 and [𝑀

(𝑞,𝑟)
𝑛𝑚 ]2 obtained from the solution to (220) as

⎧⎪⎨⎪⎩
[
𝑀̄

(𝑞,𝑟)
nm

]
1
= −

∑∞

𝑙=𝑛+1

[
𝑀

(𝑞,𝑟)

nl

]
1
Ω
(𝑞,𝑟)

𝑙+𝑚
,[

𝑀
(𝑞,𝑟)
nm

]
2
= −

∑∞

𝑙=𝑛+1

[
𝑀̄

(𝑞,𝑟)

nl

]
2
Ω̄
(𝑞,𝑟)

𝑙+𝑚
,

where we recall that [⋅]1 and [⋅]2 denote the first and second components of the relevant column
vectors, as indicated in (132).

In the next theorem, we describe the recovery of 𝑞𝑛 and 𝑟𝑛 from the solution to the Marchenko
system (209).
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Theorem20. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Then, 𝑞𝑛 and 𝑟𝑛 are recovered from the solution to the Marchenko system given in (209) via

𝑞𝑛 =

∞∑
𝑙=𝑛

[
𝑀

(𝑞,𝑟)

𝑛𝑙

]
1

∞∑
𝑘=𝑛

[
𝑀

(𝑞,𝑟)

𝑛𝑘

]
2

∞∑
𝑙=𝑛

[
𝑀̄

(𝑞,𝑟)

𝑛𝑙

]
1

∞∑
𝑘=𝑛

[
𝑀

(𝑞,𝑟)

𝑛𝑘

]
2
−

∞∑
𝑙=𝑛

[
𝑀

(𝑞,𝑟)

𝑛𝑙

]
1

∞∑
𝑘=𝑛

[
𝑀̄

(𝑞,𝑟)

𝑛𝑘

]
2

, (221)

𝑟𝑛 =

∞∑
𝑙=𝑛−1

[
𝑀̄

(𝑞,𝑟)

(𝑛−1)𝑙

]
2

∞∑
𝑙=𝑛−1

[
𝑀

(𝑞,𝑟)

(𝑛−1)𝑙

]
2

−

∞∑
𝑙=𝑛

[
𝑀̄

(𝑞,𝑟)

𝑛𝑙

]
2

∞∑
𝑙=𝑛

[
𝑀

(𝑞,𝑟)

𝑛𝑙

]
2

, (222)

where [⋅]1 and [⋅]2 denote the first and second components of the relevant columnvectors, as indicated
in (132).

Proof. Using (106), (110), and (163), we get

[
𝐾̄
(𝑞,𝑟)

𝑛𝑙
𝐾
(𝑞,𝑟)

𝑛𝑙

]
= Λ

(𝑞,𝑟)
𝑛

[
𝐾̄
(𝑝,𝑠)

𝑛𝑙
𝐾
(𝑝,𝑠)

𝑛𝑙

] ⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦ , (223)

where Λ(𝑞,𝑟)
𝑛 is the invertible matrix in (153); 𝐷(𝑞,𝑟)

∞ and 𝐸(𝑞,𝑟)∞ are the scalar constants appearing in
(62) and (63), respectively; 𝐾(𝑞,𝑟)

𝑛𝑙
and 𝐾̄(𝑞,𝑟)

𝑛𝑙
are the column vectors in (122) and (124), respectively;

𝐾
(𝑝,𝑠)

𝑛𝑙
and 𝐾̄(𝑝,𝑠)

𝑛𝑙
are the column vectors in (30) and (32), respectively. With the help of (218), from

(223) for 𝑙 ≥ 𝑛 we get

[
𝐾̄
(𝑞,𝑟)
nn 𝐾

(𝑞,𝑟)
nn

]−1 [
𝐾̄
(𝑞,𝑟)

nl 𝐾
(𝑞,𝑟)

nl

]
=
⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦
−1 [

𝐾̄
(𝑝,𝑠)

nl 𝐾
(𝑝,𝑠)

nl

] ⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦ . (224)

We note that the left-hand side of (224) is equal to the left-hand side of (219). Using the summation
with 𝑙 ≥ 𝑛, from (224) we obtain

∞∑
𝑙=𝑛

[
𝑀̄

(𝑞,𝑟)

nl 𝑀
(𝑞,𝑟)

nl

]
=
⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦
−1

∞∑
𝑙=𝑛

[
𝐾̄
(𝑝,𝑠)

nl 𝐾
(𝑝,𝑠)

nl

] ⎡⎢⎢⎣
𝐸
(𝑞,𝑟)
∞ 0

0 𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎦ . (225)

We remark that the summation on the right-hand side in (225) is related to [𝜓̄(𝑝,𝑠)𝑛 𝜓
(𝑝,𝑠)
𝑛 ] evalu-

ated at 𝑧 = 1, as seen from (30) and (32).With the help of (128) and (131), we express the right-hand
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side of (225) in terms of the matrix on the right-hand side of (128), and we get

∞∑
𝑙=𝑛

[
𝑀̄

(𝑞,𝑟)

nl 𝑀
(𝑞,𝑟)

nl

]
=

⎡⎢⎢⎢⎢⎣
𝐸
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
∞

(
1 + 𝑞𝑛

∑∞

𝑗=𝑛+1
𝑟𝑗

)
𝑞𝑛

𝐸
(𝑞,𝑟)
𝑛−1

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
𝑛

𝐷
(𝑞,𝑟)
∞

∑∞

𝑗=𝑛+1
𝑟𝑗

𝐷
(𝑞,𝑟)
𝑛

𝐷
(𝑞,𝑟)
∞

⎤⎥⎥⎥⎥⎦
. (226)

Using the notation of (132), from the (2,1) and (2,2) entries in (226), we obtain (222). Then, from
the (1,1) and (1,2) entries in (226) and using (222), we get (221). ■

7 THE ALTERNATEMARCHENKO SYSTEM

In this section, we derive the pair of scalar Marchenko equations given in (233) and (234), which
resembles the uncoupled Marchenko system given in (169). We refer to the uncoupled system
composed of (233) and (234) as the alternate Marchenko system. Such a system is the discrete
analog of theMarchenko system given in (6.22) and (6.23) of Ref. 13 in the continuous case. In this
section, we also show that the potentials 𝑞𝑛 and 𝑟𝑛 are recovered as in (231) and (232) from the
solution to the alternate Marchenko system.
We remark that the uncoupled alternate Marchenko equation (233) is closely related to the

system (7) with the potential pair (𝑢, 𝑣), and hence we use the superscript (𝑢, 𝑣) in the quan-
tities appearing in (233). Similarly, the uncoupled alternate Marchenko equation (234) involves
the quantities closely related to (8) with the potential pair (𝑝, 𝑠), and hence we use the super-
script (𝑝, 𝑠) in the quantities appearing in (234). Our alternate Marchenko equations (233) and
(234) and our recovery formulas (231) and (232) are closely related to (4.12c), (4.12d), (4.21a), and
(4.21b), respectively, of Ref. 3. We remark that Tsuchida in Ref. 3 assumes that the bound states
are all simple, and we also mention that, contrary to our own (233) and (234), Tsuchida’s (4.12c)
and (4.12d) in Ref. 3 lack the appropriate symmetry for a standard Marchenko system apparent in
(169) in the discrete case.
Let us make a comparison between the alternate Marchenko system used in this section and

the Marchenko system introduced in Section 6. The Marchenko system (209) uses input from (1)
only, whereas the alternate Marchenko system given in (233) and (234) uses inputs from (7) and
(8), respectively. The Marchenko system (209) has the same standard form used in other inverse
problems arising in applications, but the recovery of the potentials 𝑞𝑛 and 𝑟𝑛 from the solution to
(209) is not “standard,” that is, the recovery is not of the form given in (171) or (172). On the other
hand, certain terms in the alternate Marchenko system involve some discrete spacial derivatives
and hence the alternate Marchenko system slightly differs from the standard Marchenko system
(162). However, the recovery of the potentials 𝑞𝑛 and 𝑟𝑛 is similar to recovery described in (171) and
(172), which are used as the standard recovery formulas for other standard Marchenko systems.
Inspired by (133) and (136), we define the scalar quantities𝒦(𝑢,𝑣)

𝑛𝑚 and 𝒦̄(𝑝,𝑠)
𝑛𝑚 , respectively, as

𝒦
(𝑢,𝑣)
𝑛𝑚 ∶=

∞∑
𝑙=𝑚

[
𝐾
(𝑢,𝑣)
𝑛𝑙

]
1

∞∑
𝑙=𝑛

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1

, 𝑚 ≥ 𝑛, (227)
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𝒦̄
(𝑝,𝑠)
𝑛𝑚 ∶=

∞∑
𝑙=𝑚

[
𝐾̄
(𝑝,𝑠)

𝑛𝑙

]
2

∞∑
𝑙=𝑛

[
𝐾
(𝑝,𝑠)

𝑛𝑙

]
2

, 𝑚 ≥ 𝑛, (228)

where we use the notation of (132) and recall that𝐾(𝑢,𝑣)
𝑛𝑙

and 𝐾̄(𝑢,𝑣)
𝑛𝑙

satisfy (f) and (g) of Theorem 1,
and similarly,𝐾(𝑝,𝑠)

𝑛𝑙
and 𝐾̄(𝑝,𝑠)

𝑛𝑙
satisfy (a) and (b) of Corollary 1. We remark that the𝑚-dependence

of𝒦(𝑢,𝑣)
𝑛𝑚 and 𝒦̄(𝑝,𝑠)

𝑛𝑚 occurs only in the numerators in (227) and (228). When𝑚 = 𝑛, with the help
of (130), (131), (227), and (228), we obtain

𝒦
(𝑢,𝑣)
𝑛𝑛 =

∞∑
𝑙=𝑛

[
𝐾
(𝑢,𝑣)
𝑛𝑙

]
1

∞∑
𝑙=𝑛

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1

=

[
𝜓
(𝑢,𝑣)
𝑛 (1)

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

, (229)

𝒦̄
(𝑝,𝑠)
𝑛𝑛 =

∞∑
𝑙=𝑛

[
𝐾̄
(𝑝,𝑠)

𝑛𝑙

]
2

∞∑
𝑙=𝑛

[
𝐾
(𝑝,𝑠)

𝑛𝑙

]
2

=

[
𝜓̄
(𝑝,𝑠)
𝑛 (1)

]
2[

𝜓
(𝑝,𝑠)
𝑛 (1)

]
2

. (230)

Comparing (133), (136), (229), and (230), we observe that the potentials 𝑞𝑛 and 𝑟𝑛 are recovered
from𝒦

(𝑢,𝑣)
𝑛𝑚 and 𝒦̄(𝑝,𝑠)

𝑛𝑚 , respectively, as

𝑞𝑛 =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

(
𝒦

(𝑢,𝑣)
𝑛𝑛 −𝒦

(𝑢,𝑣)

(𝑛+1)(𝑛+1)

)
, (231)

𝑟𝑛 =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

(
𝒦̄

(𝑝,𝑠)

(𝑛−1)(𝑛−1)
− 𝒦̄

(𝑝,𝑠)
𝑛𝑛

)
, (232)

where we recall that 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are the constants appearing in (62) and (63), respectively.

In the next theorem, we show that the scalar quantities 𝒦(𝑢,𝑣)
𝑛𝑚 and 𝒦̄(𝑝,𝑠)

𝑛𝑚 given in (227) and
(228) satisfy the respective alternate Marchenko equations, for𝑚 > 𝑛, given by

𝒦
(𝑢,𝑣)
𝑛𝑚 + 𝐺̄

(𝑢,𝑣)
𝑛+𝑚 +

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

(
𝒦

(𝑢,𝑣)

𝑛(𝑗+1)
−𝒦

(𝑢,𝑣)
𝑛𝑗

)
𝐺
(𝑢,𝑣)
𝑗+𝑙

(
𝐺̄
(𝑢,𝑣)
𝑙+𝑚

− 𝐺̄
(𝑢,𝑣)
𝑙+𝑚−1

)
= 0, (233)

𝒦̄
(𝑝,𝑠)
𝑛𝑚 + 𝐺

(𝑝,𝑠)
𝑛+𝑚 +

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

(
𝒦̄

(𝑝,𝑠)

𝑛(𝑗+1)
− 𝒦̄

(𝑝,𝑠)

𝑛𝑗

)
𝐺̄
(𝑝,𝑠)

𝑗+𝑙

(
𝐺
(𝑝,𝑠)

𝑙+𝑚
− 𝐺

(𝑝,𝑠)

𝑙+𝑚−1

)
= 0, (234)



AKTOSUN and ERCAN 57

where we have defined

𝐺
(𝑢,𝑣)
𝑛 ∶=

∞∑
𝑗=𝑛

Ω
(𝑢,𝑣)
𝑗

, 𝐺̄
(𝑢,𝑣)
𝑛 ∶=

∞∑
𝑗=𝑛

Ω̄
(𝑢,𝑣)
𝑗

, (235)

𝐺
(𝑝,𝑠)
𝑛 ∶=

∞∑
𝑗=𝑛

Ω
(𝑝,𝑠)

𝑗
, 𝐺̄

(𝑝,𝑠)
𝑛 ∶=

∞∑
𝑗=𝑛

Ω̄
(𝑝,𝑠)

𝑗
, (236)

with the scalar functionsΩ(𝑢,𝑣)
𝑗

, Ω̄(𝑢,𝑣)
𝑗

,Ω(𝑝,𝑠)

𝑗
, Ω̄(𝑝,𝑠)

𝑗
defined as in (164) for the potential pairs (𝑢, 𝑣)

and (𝑝, 𝑠), respectively.

Theorem 21. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to (𝑞, 𝑟) as in (91)–(94). Let
𝒦

(𝑢,𝑣)
𝑛𝑚 and 𝒦̄(𝑝,𝑠)

𝑛𝑚 be the scalar quantities defined as in (227) and (228), respectively, and let 𝐺(𝑢,𝑣)
𝑛 ,

𝐺̄
(𝑢,𝑣)
𝑛 , 𝐺(𝑝,𝑠)

𝑛 , 𝐺̄(𝑝,𝑠)
𝑛 be the quantities defined in (235) and (236). Then,𝒦(𝑢,𝑣)

𝑛𝑚 and 𝒦̄(𝑝,𝑠)
𝑛𝑚 satisfy the

alternate Marchenko system given in (233) and (234), respectively.

Proof. In the notation of (132), the (1,2) entry in the matrix Marchenko system (162) for the poten-
tial pair (𝑢, 𝑣) is given by

[
𝐾
(𝑢,𝑣)
𝑛𝑘

]
1
+ Ω̄

(𝑢,𝑣)
𝑛+𝑘

+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1
Ω̄
(𝑢,𝑣)
𝑙+𝑘

= 0, 𝑘 > 𝑛. (237)

Adding and subtracting Ω̄(𝑢,𝑣)
𝑛+𝑘

to Ω̄(𝑢,𝑣)
𝑙+𝑘

in (237), we obtain

[
𝐾
(𝑢,𝑣)
𝑛𝑘

]
1
+Ω̄

(𝑢,𝑣)
𝑛+𝑘

+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1
Ω̄
(𝑢,𝑣)
𝑛+𝑘

+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1

(
Ω̄
(𝑢,𝑣)
𝑙+𝑘

− Ω̄
(𝑢,𝑣)
𝑛+𝑘

)
= 0. (238)

Using [𝐾̄(𝑢,𝑣)
𝑛𝑛 ]1 = 1, as seen from the first equality in (25), we combine the second and third terms

on the left-hand side of (238) to obtain

[
𝐾
(𝑢,𝑣)
𝑛𝑘

]
1
+ Ω̄

(𝑢,𝑣)
𝑛+𝑘

∞∑
𝑙=𝑛

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1
+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1

(
Ω̄
(𝑢,𝑣)
𝑙+𝑘

− Ω̄
(𝑢,𝑣)
𝑛+𝑘

)
= 0. (239)

From (130), we see that the summation in the second term on the left-hand side of (239) is equal
to [𝜓̄(𝑢,𝑣)𝑛 (1)]1, and hence by dividing (239) by that term we get[

𝐾
(𝑢,𝑣)
𝑛𝑘

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

+ Ω̄
(𝑢,𝑣)
𝑛+𝑘

+

∞∑
𝑙=𝑛+1

[
𝐾̄
(𝑢,𝑣)
𝑛𝑙

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

(
Ω̄
(𝑢,𝑣)
𝑙+𝑘

− Ω̄
(𝑢,𝑣)
𝑛+𝑘

)
= 0. (240)
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Using the (1,1) entry in the Marchenko system (162) for the potential pair (𝑢, 𝑣), we write (240) as[
𝐾
(𝑢,𝑣)
𝑛𝑘

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

+ Ω̄
(𝑢,𝑣)
𝑛+𝑘

−

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

[
𝐾
(𝑢,𝑣)
𝑛𝑗

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

Ω
(𝑢,𝑣)
𝑗+𝑙

(
Ω̄
(𝑢,𝑣)
𝑙+𝑘

− Ω̄
(𝑢,𝑣)
𝑛+𝑘

)
= 0. (241)

Taking the summation for 𝑘 ≥ 𝑚 in (241) and using (235), we get

∞∑
𝑘=𝑚

[
𝐾
(𝑢,𝑣)
𝑛𝑘

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

+ 𝐺̄
(𝑢,𝑣)
𝑛+𝑚 −

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

[
𝐾
(𝑢,𝑣)
𝑛𝑗

]
1[

𝜓̄
(𝑢,𝑣)
𝑛 (1)

]
1

Ω
(𝑢,𝑣)
𝑗+𝑙

(
𝐺̄
(𝑢,𝑣)
𝑙+𝑚

− 𝐺̄
(𝑢,𝑣)
𝑛+𝑚

)
= 0. (242)

Further, using (130), (227), and (235) in (242), for𝑚 > 𝑛, we obtain

𝒦
(𝑢,𝑣)
𝑛𝑚 + 𝐺̄

(𝑢,𝑣)
𝑛+𝑚 −

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

(
𝒦

(𝑢,𝑣)
𝑛𝑗

−𝒦
(𝑢,𝑣)

𝑛(𝑗+1)

)(
𝐺
(𝑢,𝑣)
𝑙+𝑗

− 𝐺
(𝑢,𝑣)
𝑙+𝑗+1

)(
𝐺̄
(𝑢,𝑣)
𝑙+𝑚

− 𝐺̄
(𝑢,𝑣)
𝑛+𝑚

)
= 0. (243)

It is lengthy but straightforward to show that

∞∑
𝑙=𝑛+1

(
𝐺
(𝑢,𝑣)
𝑙+𝑗

− 𝐺
(𝑢,𝑣)
𝑙+𝑗+1

)(
𝐺̄
(𝑢,𝑣)
𝑙+𝑚

− 𝐺̄
(𝑢,𝑣)
𝑛+𝑚

)
=

∞∑
𝑙=𝑛+1

𝐺
(𝑢,𝑣)
𝑗+𝑙

(
𝐺̄
(𝑢,𝑣)
𝑙+𝑚

− 𝐺̄
(𝑢,𝑣)
𝑙+𝑚−1

)
. (244)

Finally, using (244) in (243), we obtain (233). The derivation of (234) is similarly obtained with the
help of the (2,1) and (2,2) entries of (162) for the potential pair (𝑝, 𝑠). ■

8 THE SOLUTION TO THE INVERSE PROBLEM

In this section, we describe various methods to recover the potentials 𝑞𝑛 and 𝑟𝑛 when the scat-
tering data set for (1) is available. We recall that the scattering data set consists of the scattering
coefficients and the bound-state information. As a consequence of Theorem 4, we see that the
four scattering coefficients 𝑇(𝑞,𝑟), 𝑇̄(𝑞,𝑟), 𝑅(𝑞,𝑟), 𝑅̄(𝑞,𝑟) contain all the information about the scat-
tering coefficients for (1). Similarly, as a consequence of Theorem 13, (156)–(161), and (179), we
observe that the matrix triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)) contain all the information related
to the bound states of (1). We let

𝐃(𝑞,𝑟) ∶= {𝑇(𝑞,𝑟), 𝑇̄(𝑞,𝑟), 𝑅(𝑞,𝑟), 𝑅̄(𝑞,𝑟), (𝐴, 𝐵, 𝐶(𝑞,𝑟)), (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟))}, (245)

and refer to𝐃(𝑞,𝑟) as the scattering data set for (1). Let usmention that the relevant constants𝐷(𝑞,𝑟)
∞

and 𝐸(𝑞,𝑟)∞ are obtained from 𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) via (71), and hence𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are known if𝐃(𝑞,𝑟)

is known.
Using the theory developed in Sections 2–7, we are able to solve the inverse problem for (1) in

various ways, and we outline below some of those methods.
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(a) The standard Marchenko method. In this method, using the scattering data set 𝐃(𝑞,𝑟)

described in (245), we construct the scalar quantities Ω(𝑞,𝑟)

𝑘
and Ω̄

(𝑞,𝑟)

𝑘
defined in (210) and

use them as input to the Marchenko system (209). It can be proved in the standard way that
(209) is uniquely solvable via iteration. From the solution [𝑀̄(𝑞,𝑟)

𝑛𝑚 𝑀
(𝑞,𝑟)
𝑛𝑚 ] to (209), we recover

𝑞𝑛 and 𝑟𝑛 via (221) and (222), respectively.
(b) The alternate Marchenkomethod. In this method, using the scattering data set𝐃(𝑞,𝑟), we

first obtain the constants 𝐷(𝑞,𝑟)
∞ and 𝐸

(𝑞,𝑟)
∞ via (71) and also obtain Ω

(𝑞,𝑟)

𝑘
and Ω̄

(𝑞,𝑟)

𝑘
defined

in (210). Then, we construct the scalar quantities Ω(𝑝,𝑠)

𝑘
and Ω̄(𝑝,𝑠)

𝑘
via (214). Moreover, using

(197), (198), and (214), we construct Ω(𝑢,𝑣)
𝑘

and Ω̄(𝑢,𝑣)
𝑘

as

Ω
(𝑢,𝑣)
𝑘

=
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

(
Ω
(𝑞,𝑟)

𝑘
− Ω

(𝑞,𝑟)

𝑘−2

)
, Ω̄

(𝑢,𝑣)
𝑘

=
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

∞∑
𝑙=0

Ω̄
(𝑞,𝑟)

𝑘+2𝑙
. (246)

Next, we use (235) to obtain 𝐺
(𝑢,𝑣)
𝑘

and 𝐺̄
(𝑢,𝑣)
𝑘

and use (236) to get 𝐺(𝑝,𝑠)

𝑘
and 𝐺̄

(𝑝,𝑠)

𝑘
. Using

𝐺
(𝑢,𝑣)
𝑘

and 𝐺̄(𝑢,𝑣)
𝑘

as input to the uncoupled alternate Marchenko equation (233), we obtain
𝒦

(𝑢,𝑣)
𝑛𝑚 . Similarly, using 𝐺(𝑝,𝑠)

𝑘
and 𝐺̄(𝑝,𝑠)

𝑘
as input to the uncoupled alternate Marchenko equa-

tion (234), we obtain 𝒦̄(𝑝,𝑠)
𝑛𝑚 . Finally, we recover the potentials 𝑞𝑛 and 𝑟𝑛 via (231) and (232),

respectively.
(c) Inversion with the help of theMarchenko system for (7). In this method, from the scat-

tering data set𝐃(𝑞,𝑟) we first obtain the constants𝐷(𝑞,𝑟)
∞ and𝐸(𝑞,𝑟)∞ via (71) and also obtainΩ(𝑞,𝑟)

𝑘

and Ω̄(𝑞,𝑟)

𝑘
defined in (210). Then, we getΩ(𝑢,𝑣)

𝑘
and Ω̄(𝑢,𝑣)

𝑘
via (246). UsingΩ(𝑢,𝑣)

𝑘
and Ω̄(𝑢,𝑣)

𝑘
as

input to theMarchenko system (162), we obtain𝐾(𝑢,𝑣)
𝑛𝑚 and 𝐾̄(𝑢,𝑣)

𝑛𝑚 . Next, using (130) we recover
the 2 × 2matrix [𝜓̄(𝑢,𝑣)𝑛 (1) 𝜓

(𝑢,𝑣)
𝑛 (1)] from 𝐾

(𝑢,𝑣)
𝑛𝑚 and 𝐾̄(𝑢,𝑣)

𝑛𝑚 . Finally, we use (133) and (134) to
recover the potentials 𝑞𝑛 and 𝑟𝑛, respectively.

(d) Inversion with the help of the Marchenko system for (8). In this method, using (71) we
first obtain the constants 𝐷(𝑞,𝑟)

∞ and 𝐸(𝑞,𝑟)∞ and also obtain Ω
(𝑞,𝑟)

𝑘
and Ω̄(𝑞,𝑟)

𝑘
defined in (210)

from the scattering data set 𝐃(𝑞,𝑟). Then, we get Ω(𝑝,𝑠)

𝑘
and Ω̄(𝑝,𝑠)

𝑘
via (214). Next, using Ω(𝑝,𝑠)

𝑘

and Ω̄(𝑝,𝑠)

𝑘
as input to the Marchenko system (162), we obtain [𝐾̄(𝑝,𝑠)

𝑛𝑚 𝐾
(𝑝,𝑠)
𝑛𝑚 ]. Then, via (131),

we get [𝜓̄(𝑝,𝑠)𝑛 (1) 𝜓
(𝑝,𝑠)
𝑛 (1)]. Finally, we use (135) and (136) to recover the potentials 𝑞𝑛 and 𝑟𝑛,

respectively.
(e) Inversion by first recovering the potentials 𝑢𝑛 and 𝑠𝑛. In thismethod, from the scattering

data set 𝐃(𝑞,𝑟) we first obtain the constants 𝐷(𝑞,𝑟)
∞ and 𝐸

(𝑞,𝑟)
∞ via (71) and also obtain Ω

(𝑞,𝑟)

𝑘

and Ω̄(𝑞,𝑟)

𝑘
defined in (210). Then, we construct Ω(𝑢,𝑣)

𝑘
and Ω̄(𝑢,𝑣)

𝑘
via (246) and also construct

Ω
(𝑝,𝑠)

𝑘
and Ω̄(𝑝,𝑠)

𝑘
via (214). Next, usingΩ(𝑢,𝑣)

𝑘
and Ω̄(𝑢,𝑣)

𝑘
as input in the uncoupled Marchenko

equation given in the first line of (169) related to (𝑢, 𝑣), we obtain [𝐾
(𝑢,𝑣)
𝑛𝑚 ]1, from which we

recover 𝑢𝑛 as in the first equality in (171). Similarly, using Ω
(𝑝,𝑠)

𝑘
and Ω̄

(𝑝,𝑠)

𝑘
as input in the

uncoupled Marchenko equation given in the second line of (169) related to (𝑝, 𝑠), we obtain
[𝐾̄

(𝑝,𝑠)
𝑛𝑚 ]2, fromwhich we recover 𝑠𝑛 as in the second equality in (172). Finally, we use (101) and

(102) with input (𝑢𝑛, 𝑠𝑛) and recover the potentials 𝑞𝑛 and 𝑟𝑛.
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9 THE TIME EVOLUTION OF THE SCATTERING DATA

In this section, we consider an application of our results in integrable semi-discrete systems, and
we provide the solution to the nonlinear system (3) via the method of the inverse scattering trans-
form. This is done by describing the time evolution of the scattering data for (1) and determining
the corresponding time-evolved potentials 𝑞𝑛 and 𝑟𝑛. Hence, each of the methods to solve the
inverse problem for (1) presented in Section 8 can be used to solve (3) if we replace the scattering
data set 𝐃(𝑞,𝑟) appearing in (245) with its time-evolved version. In this section, we also present
certain solution formulas for (3) expressed explicitly in terms of the matrix triplets (𝐴, 𝐵, 𝐶) and
(𝐴̄, 𝐵̄, 𝐶̄) for the linear system (1). Such solution formulas correspond to reflectionless scattering
data for (1), in which case the corresponding Marchenko integral system for (1) has separable
kernels and hence is solved in closed form by using standard linear algebraic methods.
It is already known3,4 that (3) can be derived by imposing the compatibility condition

̇𝑛 + 𝑛 𝑛+1 − 𝑛 𝑛 = 0, (247)

where (𝑛, 𝑛) is the AKNS pair with 𝑛 being the 2×2 coefficient matrix appearing in (1) and 𝑛
is the 2 × 2 matrix given by

𝑛 =
⎡⎢⎢⎣
−𝑖(𝑧2−1)[1+(𝑧2+1) 𝑞𝑛−1 𝑟𝑛]

𝑧2(1+𝑞𝑛−1 𝑟𝑛)

𝑖(𝑧2−1)𝑞𝑛−1

1+𝑞𝑛−1 𝑟𝑛
−

𝑖(𝑧2−1)𝑞𝑛

𝑧2(1−𝑞𝑛 𝑟𝑛)
−𝑖𝑟𝑛−1

1−𝑞𝑛−1 𝑟𝑛−1
+

𝑖 𝑧2 𝑟𝑛

1+𝑞𝑛−1 𝑟𝑛

𝑖(𝑧2−1)

1+𝑞𝑛−1 𝑟𝑛

⎤⎥⎥⎦ ,
which plays the key role in the time evolution of the potential pair (𝑞𝑛, 𝑟𝑛). We recall that an
overdot denotes the derivative with respect to 𝑡. Let us remark that the AKNS pair for a given
nonlinear system is not unique. One can use the transformation

⎧⎪⎨⎪⎩
Ψ𝑛 ↦ Ψ̃𝑛 ∶= 𝑛Ψ𝑛,

𝑛 ↦ ̃𝑛 ∶= 𝑛 𝑛 −1𝑛+1,
𝑛 ↦ ̃𝑛 ∶= ̇𝑛 −1𝑛 + 𝑛𝑛 −1𝑛 ,

for any appropriate invertible matrix 𝑛, and the corresponding compatibility condition
̇̃𝑋𝑛 + ̃𝑛 ̃𝑛+1 − ̃𝑛 ̃𝑛 = 0,

yields the same integrable nonlinear system that (247) yields. Since the choice of𝑛 is not unique,
instead of analyzing the linear system

Ψ𝑛 = 𝑛 Ψ𝑛+1,

one can alternatively analyze the system

Ψ̃𝑛 = ̃𝑛 Ψ̃𝑛+1.

The linear system (7) is associatedwith the integrable nonlinear systemgiven in (52). TheAKNS
pair (𝑛, 𝑛) for (52) consists of the matrix 𝑛 appearing as the coefficient matrix in (7) and the
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matrix 𝑛 given by

𝑛 =
[
𝑖(𝑧2 − 1) − 𝑖 𝑢𝑛−1 𝑣𝑛 𝑖 𝑧2 𝑢𝑛−1 − 𝑖 𝑢𝑛

−
𝑖

𝑧2
𝑣𝑛−1 + 𝑖 𝑣𝑛 𝑖

(
1 −

1

𝑧2

)
+ 𝑖𝑢𝑛 𝑣𝑛−1

]
.

Similarly, the linear system (8) is associated with the integrable system (52) with (𝑢𝑛, 𝑣𝑛) replaced
by (𝑝𝑛, 𝑠𝑛) there.
In the following theorem, we summarize the time evolution of the scattering data for (7). A

proof is omitted because the time evolution of the scattering coefficients is described in Ref. 3 and
the time evolution of the norming constants for simple bound states described in Ref. 3 is readily
generalized to the case of nonsimple bound states and hence to the time evolution of the matrix
triplets.

Theorem 22. Assume that the potentials 𝑢𝑛 and 𝑣𝑛 appearing in (7) and (52) are rapidly decaying
and 1 − 𝑢𝑛𝑣𝑛 ≠ 0 for 𝑛 ∈ ℤ. Then, the corresponding reflection coefficients evolve in time as{

𝑅(𝑢,𝑣) ↦ 𝑅(𝑢,𝑣) 𝑒−it(𝑧−𝑧
−1)

2

, 𝑅̄(𝑢,𝑣) ↦ 𝑅̄(𝑢,𝑣) 𝑒it(𝑧−𝑧
−1)

2

,

𝐿(𝑢,𝑣) ↦ 𝐿(𝑢,𝑣) 𝑒it(𝑧−𝑧
−1)

2

, 𝐿̄(𝑢,𝑣) ↦ 𝐿̄(𝑢,𝑣) 𝑒−it(𝑧−𝑧
−1)

2

,

and the transmission coefficients 𝑇(𝑢,𝑣)
l

, 𝑇(𝑢,𝑣)r , 𝑇̄(𝑢,𝑣)
l

, 𝑇̄(𝑢,𝑣)r do not change in time. Furthermore, in
the corresponding matrix triplets (𝐴, 𝐵, 𝐶(𝑢,𝑣)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑢,𝑣)) describing the bound-state data for
(7), the row vectors 𝐶(𝑢,𝑣) and 𝐶̄(𝑢,𝑣) evolve in time as

𝐶(𝑢,𝑣) ↦ 𝐶(𝑢,𝑣) 𝑒−𝑖𝑡(𝐴−𝐴
−1)2 , 𝐶̄(𝑢,𝑣) ↦ 𝐶̄(𝑢,𝑣) 𝑒𝑖𝑡[𝐴̄−(𝐴̄)

−1]2 , (248)

and the matrices 𝐴, 𝐴̄, 𝐵, 𝐵̄ do not change in time. Moreover, the constant 𝐷(𝑢,𝑣)
∞ appearing in (20)

does not change in time, either.

We remark that Theorem 22 holds in the same way for the system (8) with the potential pair
(𝑝, 𝑠). Next, we present the time evolution of the scattering data for (1).

Theorem 23. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) and (3) are rapidly decaying
and satisfy (2). Then, the corresponding reflection coefficients evolve in time as{

𝑅(𝑞,𝑟) ↦ 𝑅(𝑞,𝑟) 𝑒−it(𝑧−𝑧
−1)

2

, 𝑅̄(𝑞,𝑟) ↦ 𝑅̄(𝑞,𝑟) 𝑒it(𝑧−𝑧
−1)

2

,

𝐿(𝑞,𝑟) ↦ 𝐿(𝑞,𝑟) 𝑒it(𝑧−𝑧
−1)

2

, 𝐿̄(𝑞,𝑟) ↦ 𝐿̄(𝑞,𝑟) 𝑒−it(𝑧−𝑧
−1)

2

,
(249)

and the corresponding transmission coefficients𝑇(𝑞,𝑟) and 𝑇̄(𝑞,𝑟) do not change in time. Furthermore,
in the matrix triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)) describing the bound-state data for (1), the row
vectors 𝐶(𝑞,𝑟) and 𝐶̄(𝑞,𝑟) evolve in time according to

𝐶(𝑞,𝑟) ↦ 𝐶(𝑞,𝑟) 𝑒−𝑖𝑡(𝐴−𝐴
−1)2 , 𝐶̄(𝑞,𝑟) ↦ 𝐶̄(𝑞,𝑟) 𝑒𝑖𝑡[𝐴̄−(𝐴̄)

−1]2 . (250)

Moreover, neither of the constants 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ appearing in (62) and (63), respectively, changes

in time.
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Proof. Let us first prove that 𝐷(𝑞,𝑟)
∞ does not change in time, that is, we have 𝐷̇(𝑞,𝑟)

∞ = 0, where we
recall that we use an overdot to denote the time derivative. From the second equality in (62) and
the fact that 𝐷(𝑞,𝑟)

∞ ≠ 0, we see that 𝐷̇(𝑞,𝑟)
∞ = 0 if and only if 𝐷̇(𝑞,𝑟)

∞ ∕𝐷
(𝑞,𝑟)
∞ = 0, which is equivalent

to having

∞∑
𝑛=−∞

𝑞̇𝑛 𝑟𝑛 + 𝑞𝑛 𝑟̇𝑛
1 − 𝑞𝑛 𝑟𝑛

= 0. (251)

In order to prove that (251) holds, we multiply the first line of (3) with 𝑟𝑛 and the second line of
(3) with 𝑞𝑛 and then we add the resulting equations. Using the summation over 𝑛, after some
straightforward simplifications, we get

∞∑
𝑛=−∞

𝑞̇𝑛 𝑟𝑛 + 𝑞𝑛 𝑟̇𝑛
1 − 𝑞𝑛 𝑟𝑛

=

∞∑
𝑛=−∞

(Δ𝑛+1 − Δ𝑛), (252)

where we have let

Δ𝑛 ∶= 𝑖

[
1

1 + 𝑞𝑛−1 𝑟𝑛
− 1 +

𝑞𝑛 𝑟𝑛−1
(1 − 𝑞𝑛−1 𝑟𝑛−1)(1 − 𝑞𝑛 𝑟𝑛)

]
. (253)

Since the potentials 𝑞𝑛 and 𝑟𝑛 are rapidly decaying as 𝑛 → ±∞ and satisfy (2), from (253) we see
thatΔ𝑛 iswell defined and rapidly decaying as𝑛 → ±∞. Hence, the telescoping series on the right-
hand side of (252) converges to 0, which completes the proof that 𝐷̇(𝑞,𝑟)

∞ = 0. The proof of 𝐸̇(𝑞,𝑟)∞ = 0

is obtained in a similarmanner by establishing that 𝐸̇(𝑞,𝑟)∞ ∕𝐸
(𝑞,𝑟)
∞ = 0, which is equivalent to having

∞∑
𝑛=−∞

𝑞̇𝑛 𝑟𝑛+1 + 𝑞𝑛 𝑟̇𝑛+1
1 + 𝑞𝑛 𝑟𝑛+1

= 0. (254)

In order to prove (254), we replace 𝑛 by 𝑛 + 1 in the second line of (3) and multiply the resulting
equation by 𝑞𝑛, and then we add to that equation the first line of (3) multiplied by 𝑟𝑛+1. Then, a
summation over 𝑛, after some straightforward simplifications, yields

∞∑
𝑛=−∞

𝑞̇𝑛 𝑟𝑛+1 + 𝑞𝑛 𝑟̇𝑛+1
1 + 𝑞𝑛 𝑟𝑛+1

=

∞∑
𝑛=−∞

(Θ𝑛+1 − Θ𝑛), (255)

where we have let

Θ𝑛 ∶= 𝑖

[
1

1 − 𝑞𝑛 𝑟𝑛
− 1 −

𝑞𝑛−1 𝑟𝑛+1
(1 + 𝑞𝑛−1 𝑟𝑛)(1 + 𝑞𝑛 𝑟𝑛+1)

]
.

From the properties of 𝑞𝑛 and 𝑟𝑛, it follows that Θ𝑛 is well defined and rapidly decaying as
𝑛 → ±∞. Thus, the telescoping series in (255) is convergent to 0, which establishes the proof that
𝐸̇
(𝑞,𝑟)
∞ = 0. When the potential pairs (𝑞, 𝑟), (𝑢, 𝑣), (𝑝, 𝑠) are related to each other as in (91)–(94), we

have thematrices𝐴, 𝐴̄, 𝐵, 𝐵̄ appearing in (164) common and the scattering coefficients for (1), (7),
(8) are all related as described in Theorem 9. Thus, with the help of Theorem 9, Theorem 22, and
the fact that 𝐷̇(𝑞,𝑟)

∞ = 0 and 𝐸̇(𝑞,𝑟)∞ = 0, we conclude that the transmission coefficients 𝑇(𝑞,𝑟) and
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𝑇̄(𝑞,𝑟) do not change in time and the reflection coefficients evolve as in (249). Furthermore, from
(184), (248), and the fact that 𝐷̇(𝑞,𝑟)

∞ = 0 and 𝐸̇(𝑞,𝑟)∞ = 0, we obtain (250). ■

Next, we consider explicit solutions to the integrable systems (3) and (52) by using the method
of Refs. 22 and 23. Such explicit solutions correspond to the time-evolved scattering data sets with
zero reflection coefficients. From Theorems 22 and 23, we see that the matrix triplets correspond-
ing to (3) and (52) have similar time evolutions described as

(𝐴, 𝐵, 𝐶) ↦ (𝐴, 𝐵, 𝐶 ), (𝐴̄, 𝐵̄, 𝐶̄) ↦ (𝐴̄, 𝐵̄, 𝐶̄ ̄), (256)

where we have defined

 ∶= 𝑒−𝑖𝑡(𝐴−𝐴
−1)2 , ̄ ∶= 𝑒𝑖𝑡[𝐴̄−(𝐴̄)

−1]2 . (257)

Let us remark that (162) and (164) for the potential pair (𝑢, 𝑣) and that (209) and (210) for the
potential pair (𝑞, 𝑟) are similar, and hence the solution to (209) is obtained in a similar way the
solution to (162) is obtained.
Our goal now is to present the corresponding explicit solutions to (162) and (209) when their

Marchenko kernels are given by

Ω𝑛+𝑚 = 𝐶𝐴𝑛+𝑚−1𝐵, Ω̄𝑛+𝑚 = 𝐶̄̄(𝐴̄)−𝑛−𝑚−1𝐵̄. (258)

Note that we impose no additional restrictions on the values of𝑁, 𝑁̄, 𝑧𝑗 , 𝑧̄𝑗 ,𝑚𝑗 , 𝑚̄𝑗 in the matrix
triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) appearing in (156) and (159), respectively. Hence, this method yields
an enormous number of explicit solutions to each of (162) and (209). From (258), we see that the
Marchenko kernels Ω𝑛+𝑚 and Ω̄𝑛+𝑚 are separable in 𝑛 and 𝑚, that is, we can write them as the
matrix products given by

Ω𝑛+𝑚 = (𝐶 𝐴𝑛)
( 𝐴𝑚−1 𝐵

)
, Ω̄𝑛+𝑚 =

(
𝐶̄ (𝐴̄)−𝑛

)(̄(𝐴̄)−𝑚−1 𝐵̄
)
, (259)

where we have used the fact that the matrices 𝐴 and  commute and that the matrices 𝐴̄ and
̄ commute.
Before we present our explicit solutions to (162) and (209), we introduce some auxiliary quan-

tities. In terms of the positive integers 𝑚𝑗 , 𝑁, 𝑚̄𝑗 , 𝑁̄ appearing in (156)–(161), we introduce the
positive integers𝒩 and 𝒩̄ as

𝒩 ∶=

𝑁∑
𝑗=1

𝑚𝑗, 𝒩̄ ∶=

𝑁̄∑
𝑗=1

𝑚̄𝑗. (260)

From the results in Section 4, it follows that 2(𝒩 + 𝒩̄) corresponds to the total number of bound
states including the multiplicities for (1) and (7). In terms of the matrix triplets (𝐴, 𝐵, 𝐶) and
(𝐴̄, 𝐵̄, 𝐶̄), let us introduce the𝒩 × 𝒩̄ matrix Υ and the 𝒩̄ × 𝒩 matrix Ῡ as

Υ ∶=

∞∑
𝑘=0

𝐴𝑘 𝐵 𝐶̄ (𝐴̄)−𝑘, Ῡ ∶=

∞∑
𝑘=0

(𝐴̄)−𝑘 𝐵̄ 𝐶 𝐴𝑘. (261)
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In terms of the two matrix triplets let us also introduce the ̄ × ̄ matrix 𝑈𝑛 and the  ×
matrix 𝑈̄𝑛 as

𝑈𝑛 ∶= 𝐼 − ̄ (𝐴̄)−𝑛−2 Ῡ  𝐴2𝑛+1 Υ (𝐴̄)−𝑛−1, (262)

𝑈̄𝑛 ∶= 𝐼 − 𝐴𝑛Υ̄(𝐴̄)−2𝑛−3 Ῡ 𝐴𝑛+1, (263)

where we recall that the𝒩 ×𝒩 matrix  and the 𝒩̄ × 𝒩̄ matrix ̄ are defined in (257).
In the next proposition, we elaborate on the matrices Υ and Ῡ.

Proposition 5. Let (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄) be thematrix triplets appearing in (156)–(161) with |𝑧𝑗| <
1 for 1 ≤ 𝑗 ≤ 𝑁 and |𝑧̄𝑗| > 1 for 1 ≤ 𝑗 ≤ 𝑁̄. Then, the matrices Υ and Ῡ defined in (261) are the
unique solutions to the respective linear systems

Υ − 𝐴Υ(𝐴̄)−1 = 𝐵 𝐶̄, Ῡ − (𝐴̄)−1 Ῡ𝐴 = 𝐵̄ 𝐶. (264)

Proof. By premultiplying the first equality in (261) by 𝐴 and postmultiplying it by (𝐴̄)−1 and sub-
tracting the resulting matrix equality from the original equality, we obtain the first linear system
in (264). The second equality in (264) is similarly obtained from the second equality in (261). The
existence and uniqueness of the solutions to the two matrix systems in (264) can be analyzed as
in Theorem 18.2 of Ref. 25. Given the matrix triplets (𝐴, 𝐵, 𝐶) and (𝐴̄, 𝐵̄, 𝐶̄), we have the unique
solutions Υ and Ῡ to (264) if and only if the product of an eigenvalue of 𝐴 and an eigenvalue of
(𝐴̄)−1 is never equal to 1. The satisfaction of the latter condition directly follows from the fact that|𝑧𝑗| < 1 for 1 ≤ 𝑗 ≤ 𝑁 and |𝑧̄𝑗| > 1 for 1 ≤ 𝑗 ≤ 𝑁̄. Thus, the solutions Υ and Ῡ to (264) are unique
and given by (261). ■

Next, we present the explicit solution formula for the Marchenko system (162) corresponding
to the Marchenko kernels given in (259) for the potential pair (𝑢, 𝑣).

Theorem 24. Using the time-evolved reflectionless Marchenko kernels Ω(𝑢,𝑣)
𝑛+𝑚 and Ω̄(𝑢,𝑣)

𝑛+𝑚 that have
the form as in (259) for the potential pair (𝑢, 𝑣), the corresponding Marchenko system (162), in the
notation of (132), has the solution given by[

𝐾
(𝑢,𝑣)
𝑛𝑚

]
1
= −𝐶̄(𝑢,𝑣) (𝐴̄)−𝑛 (𝑈

(𝑢,𝑣)
𝑛 )−1 ̄ (𝐴̄)−𝑚−1 𝐵̄, (265)

[
𝐾
(𝑢,𝑣)
𝑛𝑚

]
2
= 𝐶(𝑢,𝑣) 𝐴𝑛 (𝑈̄

(𝑢,𝑣)
𝑛 )−1  𝐴𝑛 Υ(𝑢,𝑣) ̄ (𝐴̄)−𝑚−𝑛−2 𝐵̄, (266)[

𝐾̄
(𝑢,𝑣)
𝑛𝑚

]
1
= 𝐶̄(𝑢,𝑣) (𝐴̄)−𝑛 (𝑈

(𝑢,𝑣)
𝑛 )−1 ̄ (𝐴̄)−𝑛−2 Ῡ(𝑢,𝑣)  (𝐴)𝑛+𝑚 𝐵, (267)[

𝐾̄
(𝑢,𝑣)
𝑛𝑚

]
2
= −𝐶(𝑢,𝑣) 𝐴𝑛 (𝑈̄

(𝑢,𝑣)
𝑛 )−1  𝐴𝑚−1 𝐵, (268)

whereΥ(𝑢,𝑣) and Ῡ(𝑢,𝑣) are thematrices appearing in (261) for the potential pair (𝑢, 𝑣) and thematri-
ces𝑈(𝑢,𝑣)

𝑛 and 𝑈̄(𝑢,𝑣)
𝑛 are defined as in (262) and (263), respectively, for the potential pair (𝑢, 𝑣).
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Proof. For simplicity, we suppress the superscript (𝑢, 𝑣) in the proof. We already know that the
Marchenko system (162) is equivalent to the combination of the uncoupled system (169) and the
system (170). To obtain (265), we proceed as follows. Using (259) as input to the first line of (169),
we get

[
𝐾𝑛𝑚

]
1
+ 𝐶̄ (𝐴̄)−𝑛 ̄ (𝐴̄)−𝑚−1 𝐵̄ −

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

[
𝐾𝑛𝑗

]
1
𝐶  𝐴𝑗+𝑙−1 𝐵 𝐶̄ (𝐴̄)−𝑙 ̄ (𝐴̄)−𝑚−1 𝐵̄ = 0,

(269)

where we have used the fact that  and 𝐴 commute and ̄ and 𝐴̄ commute. From (269), we see
that [𝐾𝑛𝑚]1 has the form [

𝐾𝑛𝑚

]
1
= 𝐻𝑛 ̄(𝐴̄)−𝑚−1𝐵̄, (270)

where𝐻𝑛 satisfies

𝐻𝑛

(
𝐼 −

∞∑
𝑙=𝑛+1

∞∑
𝑗=𝑛+1

̄ (𝐴̄)−𝑗−1 𝐵̄ 𝐶 𝐴𝑗+𝑙−1 𝐵 𝐶̄ (𝐴̄)−𝑙

)
= −𝐶̄ (𝐴̄)−𝑛. (271)

Using (261) on the left-hand side of (271), we write (271) as

𝐻𝑛 𝑈𝑛 = −𝐶̄ (𝐴̄)−𝑛, (272)

where 𝑈𝑛 is the matrix defined in (262). From (272), we get

𝐻𝑛 = −𝐶̄ (𝐴̄)−𝑛 (𝑈𝑛)
−1, (273)

and using (273) in (270) we obtain (265). The solution formula for
[
𝐾̄𝑛𝑚

]
2
appearing in (268) is

obtained in a similar manner by using the second line of (169). Then, using (259) and (268) in the
second line of (170), we obtain the formula for [𝐾𝑛𝑚]2 given in (266). Similarly, by using (259) and
(265) in the first line of (170), we obtain the formula for [𝐾̄𝑛𝑚]1 given in (267). ■

We remark that the result of Theorem 24 remains valid for theMarchenko system (209) because
of the resemblance between (162) and (209) and the fact that (256) and (257) have the same appear-
ance for the potential pairs (𝑢, 𝑣) and (𝑞, 𝑟). So, without a proof, we state that result in the next
corollary.

Corollary 6. Using the time-evolved reflectionless Marchenko kernels Ω(𝑞,𝑟)
𝑛+𝑚 and Ω̄(𝑞,𝑟)

𝑛+𝑚 that have
the form as in (259) for the potential pair (𝑞, 𝑟), the corresponding Marchenko system (209), in the
notation of (132), has the solution given by[

𝑀
(𝑞,𝑟)
𝑛𝑚

]
1
= −𝐶̄(𝑞,𝑟) (𝐴̄)−𝑛 (𝑈

(𝑞,𝑟)
𝑛 )−1 ̄ (𝐴̄)−𝑚−1 𝐵̄, (274)[

𝑀
(𝑞,𝑟)
𝑛𝑚

]
2
= 𝐶(𝑞,𝑟) 𝐴𝑛 (𝑈̄

(𝑞,𝑟)
𝑛 )−1  𝐴𝑛 Υ(𝑞,𝑟) ̄ (𝐴̄)−𝑛−𝑚−2 𝐵̄, (275)
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[
𝑀̄

(𝑞,𝑟)
𝑛𝑚

]
1
= 𝐶̄(𝑞,𝑟) (𝐴̄)−𝑛 (𝑈

(𝑞,𝑟)
𝑛 )−1 ̄ (𝐴̄)−𝑛−2 Ῡ(𝑞,𝑟)  (𝐴)𝑛+𝑚 𝐵, (276)[

𝑀̄
(𝑞,𝑟)
𝑛𝑚

]
2
= −𝐶(𝑞,𝑟) 𝐴𝑛 (𝑈̄

(𝑞,𝑟)
𝑛 )−1  𝐴𝑚−1 𝐵, (277)

where Υ(𝑞,𝑟) and Ῡ(𝑞,𝑟) are the matrices appearing in (261) for the potential pair (𝑞, 𝑟) and the matri-
ces𝑈(𝑞,𝑟)

𝑛 and 𝑈̄(𝑞,𝑟)
𝑛 are defined as (262) and (263), respectively, for the potential pair (𝑞, 𝑟).

In the next proposition, when (91)–(94) hold, we show how some relevant quantities for the
potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to the corresponding quantities for the potential pair
(𝑞, 𝑟). These results will enable us to obtain explicit solutions to the nonlinear system (3) by using
the input data directly related to the potential pair (𝑞, 𝑟).

Proposition 6. Assume that the potentials 𝑞𝑛 and 𝑟𝑛 appearing in (1) are rapidly decaying and
satisfy (2). Assume further that the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to the potential pair
(𝑞, 𝑟) as in (91)–(94). Then, we have the following:

(a) The matrices Υ and Ῡ appearing in (261) corresponding to the potential pairs (𝑢, 𝑣) and (𝑝, 𝑠)
are related to those for the potential pair (𝑞, 𝑟) as

⎧⎪⎪⎨⎪⎪⎩
Y(𝑢,𝑣) =

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

Y(𝑞,𝑟)
[
𝐼 − (𝐴̄)

−2
]−1

,

Ȳ(𝑢,𝑣) =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

Ȳ(𝑞,𝑟)
(
𝐼 − 𝐴−2

)
,

(278)

Υ(𝑝,𝑠) =
𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

Υ(𝑞,𝑟), Ῡ(𝑝,𝑠) =
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

Ῡ(𝑞,𝑟), (279)

where 𝐷(𝑞,𝑟)
∞ and 𝐸(𝑞,𝑟)∞ are the constants appearing in (62) and (63), respectively.

(b) The matrices𝑈𝑛 and 𝑈̄𝑛 appearing in (262) and (263), respectively, corresponding to the poten-
tial pairs (𝑢, 𝑣) and (𝑝, 𝑠) are related to the quantities relevant to the potential pair (𝑞, 𝑟) as

𝑈
(𝑢,𝑣)
𝑛 = 𝐼 + ̄ (𝐴̄)−𝑛−2 Ῡ(𝑞,𝑟)  𝐴2𝑛−1

(
𝐼 − 𝐴2

)
Υ(𝑞,𝑟) (𝐴̄)−𝑛−1

[
𝐼 − (𝐴̄)−2

]−1
, (280)

𝑈̄
(𝑢,𝑣)
𝑛 = 𝐼 +  𝐴𝑛 Υ(𝑞,𝑟) ̄ (𝐴̄)−2𝑛−3[𝐼 − (𝐴̄)−2

]−1
Ῡ(𝑞,𝑟) 𝐴𝑛−1

(
𝐼 − 𝐴2

)
, (281)

𝑈
(𝑝,𝑠)
𝑛 = 𝑈

(𝑞,𝑟)
𝑛 , 𝑈̄

(𝑝,𝑠)
𝑛 = 𝑈̄

(𝑞,𝑟)
𝑛 , (282)

where Υ(𝑞,𝑟) and Ῡ(𝑞,𝑟) are the matrices appearing in (261) for the potential pair (𝑞, 𝑟).

Proof. Using (184) in (261), we get (278). Similarly, using (183) in (261), we have (279). Next, using
(278) in (262), we obtain (280). Then, using (278) in (263), we get (281). Finally, using (279) in (262)
and (263), we obtain (282). ■
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In the next theorem, we present the explicit solution formulas for the alternate Marchenko
equations (233) and (234) corresponding to the time-evolved reflectionless scattering data
expressed in terms of thematrix triplets (𝐴, 𝐵, 𝐶(𝑢,𝑣)), (𝐴̄, 𝐵̄, 𝐶̄(𝑢,𝑣)), (𝐴, 𝐵, 𝐶(𝑝,𝑠)), and (𝐴̄, 𝐵̄, 𝐶̄(𝑝,𝑠)).

Theorem 25. Using as input the time-evolved reflectionless Marchenko kernels Ω(𝑢,𝑣)
𝑛+𝑚 and Ω̄(𝑢,𝑣)

𝑛+𝑚

that have the form as in (259) for the potential pair (𝑢, 𝑣), the corresponding alternate Marchenko
equation (233) has the explicit solution given by

𝒦
(𝑢,𝑣)
𝑛𝑚 = −𝐶̄(𝑢,𝑣) (𝐴̄)−𝑛−1

[
𝐼 − (𝐴̄)−1

]−1
(𝑉

(𝑢,𝑣)
𝑛 )−1 ̄ (𝐴̄)−𝑚 𝐵̄, (283)

where the 𝒩̄ × 𝒩̄ matrix 𝑉(𝑢,𝑣)
𝑛 is defined as

𝑉
(𝑢,𝑣)
𝑛 ∶= 𝐼 + ̄ (𝐴̄)−𝑛−1[𝐼 − (𝐴̄)−1

]
Ῡ(𝑢,𝑣)  𝐴2𝑛+1 (𝐼 − 𝐴)−1Υ(𝑢,𝑣) (𝐴̄)−𝑛−1,

with 𝒩̄ being the positive integer defined in (260) and with Υ(𝑢,𝑣) and Ῡ(𝑢,𝑣) being the matrices
appearing in (261) for the potential pair (𝑢, 𝑣). Similarly, using as input the time-evolved reflection-
less Marchenko kernels Ω(𝑝,𝑠)

𝑛+𝑚 and Ω̄(𝑝,𝑠)
𝑛+𝑚 that have the form as in (259) for the potential pair (𝑝, 𝑠),

the corresponding alternate Marchenko equation (234) has the explicit solution given by

𝒦̄
(𝑝,𝑠)
𝑛𝑚 = −𝐶(𝑝,𝑠) 𝐴𝑛−1(𝐼 − 𝐴)−1 (𝑉̄

(𝑝,𝑠)
𝑛 )−1  𝐴𝑚 𝐵, (284)

where 𝑉̄(𝑝,𝑠)
𝑛 is the𝒩 ×𝒩 matrix defined as

𝑉̄
(𝑝,𝑠)
𝑛 ∶= 𝐼 +  𝐴𝑛+1 (𝐼 − 𝐴)Υ(𝑝,𝑠) ̄ (𝐴̄)−2𝑛−3[𝐼 − (𝐴̄)−1

]−1
Ῡ(𝑝,𝑠) 𝐴𝑛−1,

with𝒩 being the positive integer defined in (260) andwithΥ(𝑝,𝑠) and Ῡ(𝑝,𝑠) being thematrices appear-
ing in (261) for the potential pair (𝑝, 𝑠).

Proof. Using (258) with the potential pair (𝑢, 𝑣), from (235) we obtain

𝐺
(𝑢,𝑣)
𝑛 =

∞∑
𝑘=𝑛

𝐶(𝑢,𝑣)𝐴𝑘−1𝐵,

which is equivalent to

𝐺
(𝑢,𝑣)
𝑛 = 𝐶(𝑢,𝑣) 𝐴𝑛−1 (𝐼 − 𝐴)−1 𝐵. (285)

Let us remark that (𝐼 − 𝐴)−1 is well defined because |𝑧𝑗| < 1 for 1 ≤ 𝑗 ≤ 𝑁, as seen from (157) and
Theorem 13. In the same way, from (236) and (258) we get

𝐺̄
(𝑢,𝑣)
𝑛 =

∞∑
𝑘=𝑛

𝐶̄(𝑢,𝑣) ̄ (𝐴̄)−𝑘−1 𝐵̄,
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or equivalently

𝐺̄
(𝑢,𝑣)
𝑛 = 𝐶̄(𝑢,𝑣)̄(𝐴̄)−𝑛−1[𝐼 − (𝐴̄)−1

]−1
𝐵̄. (286)

Using (285) and (286) in (233) and by proceeding in a similar way as in the proof of Theorem 24, we
obtain (283). The explicit solution given in (284) is obtained similarly by using in (234) the analogs
of (285) and (286) for the potential pair (𝑝, 𝑠). ■

Let us remark that, using (265) and (268) in (171), respectively, we obtain an explicit solution
formula for the nonlinear system (52), where 𝑢𝑛 and 𝑣𝑛 are expressed explicitly in terms of the
matrix triplets (𝐴, 𝐵, 𝐶(𝑢,𝑣)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑢,𝑣)) as

⎧⎪⎨⎪⎩
𝑢𝑛 = −𝐶̄(𝑢,𝑣)(𝐴̄)

−𝑛
(
𝑈
(𝑢,𝑣)
𝑛

)−1 ̄ (𝐴̄)−𝑛−3𝐵̄,
𝑣𝑛 = −𝐶(𝑢,𝑣) 𝐴𝑛

(
𝑈̄
(𝑢,𝑣)
𝑛

)−1  𝐴𝑛+1 𝐵,

(287)

where  and ̄ are the matrices defined in (257), and𝑈(𝑢,𝑣)
𝑛 and 𝑈̄(𝑢,𝑣)

𝑛 are the matrices appearing
in (262) and (263), respectively, for the potential pair (𝑢, 𝑣).
Let us finally discuss explicit solutions to the nonlinear system (3). We can express any time-

evolved reflectionless scattering data for the potential pair (𝑞, 𝑟) in terms of theMarchenko kernels
Ω
(𝑞,𝑟)
𝑛+𝑚 and Ω̄(𝑞,𝑟)

𝑛+𝑚 appearing in (258). Hence, as seen from (257) and (258), we can explicitly deter-
mine the corresponding solution to (3), where 𝑞𝑛 and 𝑟𝑛 are explicitly expressed in terms of the
matrix triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)). In fact, using these two matrix triplets as input in
any of the inversionmethods outlined in Section 8, we are able to obtain explicit solution formulas
for (3).
For example, using these two matrix triplets on the right-hand sides of (274)–(277), we first

obtain the four scalar quantities [𝑀(𝑞,𝑟)
𝑛𝑚 ]1, [𝑀

(𝑞,𝑟)
𝑛𝑚 ]2, [𝑀̄

(𝑞,𝑟)
𝑛𝑚 ]1, [𝑀̄

(𝑞,𝑟)
𝑛𝑚 ]2, and use them in (221)

and (222) to obtain the solution (𝑞𝑛, 𝑟𝑛) to (3) explicitly displayed in terms of the matrix triplets
(𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)).
We can obtain another explicit solution formula for (3) by expressing the right-hand sides of

(231) and (232) in terms of the matrix triplets (𝐴, 𝐵, 𝐶(𝑞,𝑟)) and (𝐴̄, 𝐵̄, 𝐶̄(𝑞,𝑟)). That formula is given
by

𝑞𝑛 = 𝜏𝑛 − 𝜏𝑛+1, 𝑟𝑛 = 𝜏̄𝑛−1 − 𝜏̄𝑛,

where we have defined

𝜏𝑛 ∶=
𝐷
(𝑞,𝑟)
∞

𝐸
(𝑞,𝑟)
∞

𝒦
(𝑢,𝑣)
𝑛𝑛 , 𝜏̄𝑛 ∶=

𝐸
(𝑞,𝑟)
∞

𝐷
(𝑞,𝑟)
∞

𝒦̄
(𝑝,𝑠)
𝑛𝑛 , (288)

and the right-hand sides in (288) are expressed in terms of the quantities relevant to the potential
pair (𝑞, 𝑟) with the help of (183), (184), (278), (279), (283), and (284). We get

⎧⎪⎨⎪⎩
𝜏𝑛 = −𝐶̄(𝑞,𝑟)

[
𝐼 − (𝐴̄)

−2
]−1[

𝐼 − (𝐴̄)
−1
]−1

(𝐴̄)
−𝑛−1

(
𝑉
(𝑞,𝑟)
𝑛

)−1̄ (𝐴̄)−𝑛 𝐵̄,
𝜏̄𝑛 = −𝐶(𝑞,𝑟) 𝐴𝑛−1(𝐼 − 𝐴)

−1
(
𝑉̄
(𝑞,𝑟)
𝑛

)−1 𝐴𝑛 𝐵,
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where we have defined

⎧⎪⎪⎨⎪⎪⎩
𝑉
(𝑞,𝑟)
𝑛 ∶= 𝐼 + ̄ (𝐴̄)−𝑛−1 [𝐼 − (𝐴̄)

−1
]
Ȳ(𝑞,𝑟) (𝐼 − 𝐴−2)  𝐴2𝑛+1

×(𝐼 − 𝐴)
−1
Y(𝑞,𝑟)

[
𝐼 − (𝐴̄−2)

]−1
(𝐴̄)

−𝑛−1
,

𝑉̄
(𝑞,𝑟)
𝑛 ∶= 𝐼 +  𝐴𝑛+1 (𝐼 − 𝐴)Y(𝑞,𝑟) ̄ (𝐴̄)−2𝑛−3[𝐼 − (𝐴̄)

−1
]−1

Ȳ(𝑞,𝑟) 𝐴𝑛−1,

with Υ(𝑞,𝑟) and Ῡ(𝑞,𝑟) denoting the matrices in (261) for (𝑞, 𝑟).
We can also obtain an explicit solution formula for (3) by using 𝑞𝑛 and 𝑟𝑛 given in (133) and

(134), respectively, after expressing their right-hand sides in terms of the quantities relevant to the
potential pair (𝑞, 𝑟), and this can be achieved with the help of (130), (184), (265)–(268), (280), and
(281). In a similar way, it is possible to obtain an explicit solution formula by using 𝑞𝑛 and 𝑟𝑛 given
in (135) and (136), respectively, after expressing their right-hand sides in terms of the quantities
relevant to the potential pair (𝑞, 𝑟). Still another solution formula for (3) is obtained via (101) and
(102), and this is done as follows. We first express the right-hand side of the first line of (287)
in terms of the matrix triplet for the potential pair (𝑞, 𝑟), and hence recover 𝑢𝑛 in terms of the
quantities relevant to (𝑞, 𝑟). In a similar way, we use the analog of the second line of (287) for the
potential pair (𝑝, 𝑠) and obtain 𝑠𝑛 in terms of the quantities relevant to (𝑞, 𝑟). Finally, we use the
resulting expressions for 𝑢𝑛 and 𝑠𝑛 on the right-hand sides of (101) and (102) and obtain a solution
formula for 𝑞𝑛 and 𝑟𝑛 as a solution to (3).
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