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(NLS) system. The Jost solutions, the scattering coeffi-
cients, the bound-state dependency and norming con-
stants are investigated and related to the correspond-
ing quantities for two particular discrete linear systems
associated with the semi-discrete version of the NLS
system. The bound-state data set with any multiplic-
ities is described in an elegant manner in terms of a
pair of constant matrix triplets. Several methods are
presented to solve the inverse problem to recover the
potential values in the first-order discrete system. One
of these methods uses a newly derived, standard dis-
crete Marchenko system using as input the scattering
data directly coming from the first-order discrete sys-
tem. This new Marchenko method is presented in a
way that it is generalizable to other first-order systems
both in the discrete and continuous cases for which a
Marchenko system and a Marchenko theory are not yet
available. Finally, using the time-evolved scattering data
set, the inverse scattering transform is applied on the cor-

responding semi-discrete derivative NLS system, and in
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the reflectionless case certain explicit solution formulas
are presented in closed form expressed in terms of the
two matrix triplets.

KEYWORDS
direct and inverse scattering, Marchenko inversion method, semi-
discrete derivative NLS system

1 | INTRODUCTION

In this paper, we are interested in analyzing the direct and inverse scattering problems for the
first-order discrete system

Bn

1
z z— -
[an] _ 1 < Z1> An [;n+1] , ne Z, (1)
zZr, Z+<z—;>ann n+l
where z is the spectral parameter taking values on the unit circle T in the complex z-plane C, the

quantity » is the discrete independent variable taking values in the set of integers Z, the complex-
valued scalar quantities g, and r,, correspond to the respective values evaluated at n for the poten-

a . . .
”] corresponds to the value of the wavefunction at the spacial location . We

Bn

assume that g, and r,, are rapidly decaying in the sense that they vanish faster than any negative
powers of [n| as n — +oc0. We also assume that

tial pair (g, r), and [

1=gnry #0, 1+@qprp1 70, nez. 2)

The complex-valued quantities «,, and (3,, depend on the spectral parameter z, but in our notation
we usually suppress that z-dependence.

The system in (1) is used as a model for an infinite lattice where the particle with an internal
structure at the lattice point n experiences local forces from the potential values g,, and r,,. Since
we assume that g,, and r,, vanish sufficiently fast as , a scattering scenario can be established for
(D).

The direct scattering problem for (1) is described as the determination of the scattering data
set consisting of the scattering coefficients and bound-state information when the potential pair
(g, r) is known. The inverse scattering problem for (1) consists of the recovery of the potential pair
(g,r) when the scattering data set is given. Since g,, and r,, vanish sufficiently fast as n — +oo, it
follows from (1) that any solution to (1) has the asymptotic behavior

a, a,z7"[1+ o(1)]
, n— +oo,

Bn B b,z"[1+ 0(1)]

for some constants a, and b, that may depend on z but not on n. By choosing the coefficients
a, and b, or the coefficients a_ and b_ in a specific way, we obtain a particular solution to (1).
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Note that (1) has two linearly independent solutions, and its general solution can be expressed as
a linear combination of any two linearly independent solutions.
The linear discrete system (1) is related to the nonlinear integrable semi-discrete system

iqn + dn+1 _ dn _ qn + dn—1 — O,

1=Gni1rn+1 1-gnrn 1+qnrni1 1+qn-1rn (3)
s 'ntl 'n 'n 'n—1
ir, — - =0,

+
14+qntni1 1+gn-17n 1=qnrn 1-gn-1rn—1

which is known as the semi-discrete derivative NLS system or the semi-discrete Kaup—Newell
system.' From the denominators in (3), we see why we need the restriction (2). Note that an
overdot in (3) denotes the derivative with respect to the independent variable ¢, which is inter-
preted as the time variable and is suppressed in (3) by writing q,, and r,, instead of g,,(t) and r,,(¢),
respectively. In our analysis of (1), without loss of generality, we can either assume that gq,, and r,,
are independent of ¢ or they contain ¢ as a parameter.

The reductions in the system (3) in the focusing and defocusing cases are obtained by letting
r, = —q; and r, = q;,, respectively, where the asterisk is used to denote complex conjugation.
We refer the reader to Ref. 2 and the references therein for the effect of the reductions on the
corresponding spectral and scattering problems.

Let us write (1) as

1
0=—-a,+zo,q + <Z - ;) qn5n+17
4)
1 1
0=-F,+ ZrpQps + [; + (Z - ;) ann] :8n+1-

In (4), we let
a, - a, 6n'—>—§5, Ans1 = & +a, 6”“'_)_%6_%56,’
Qn'_’_%% I'n & &,
2 e =14i%+0(2), z'me X =1-i%+0(),

where ¢ — 0 and the prime denotes the x-derivative. By expanding the resulting equations in (4)
in powers of €, we obtain

0=¢ o +i¢%a - ¢q(x)B] + 0 (%),

0= —§ |8 = ¢r(oa —ig?B] +0 (7)),
from which we get the corresponding continuous system given by

o - {q(x) ||«

= , x €R. (5)
g’ Srix) i8* (|8
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We remark that the first-order system (5) is related to the derivative NLS system*°

iq + g — i(g? 1), = 0, ©
6

ir, —re—i(gr?, =0,

where q(x, t) and r(x, t) are the continuous analogs of g,, and r,, when the latter quantities depend
on both n and ¢. The nonlinear system (6) is also known® as the Kaup-Newell system, and it is
the continuous analog of the semi-discrete nonlinear system (3).

We analyze the direct and inverse scattering problems for (1) by using the connection to the two
first-order discrete systems

gn z ZUp §n+1

] 1 1 . ne Z, (7)
_77n_ _Z Un ; ] _7711+1_
Vn z ZPn Vn+1

=, . , nez, ®
_En_ _; Sn ; ] _En+1_

where u,, and v,, are the values for the potential pair (i, v) and p,, and s,, are the values for (p, s).
By choosing (u,v) and (p, s) as in (91)-(94), we relate the relevant quantities for (1), (7), and (8)
to each other. Such relevant quantities include the Jost solutions, the scattering coefficients, and
the bound-state data sets for each of (1), (7), and (8). Those relationships involving the bound
states are described in Section 4, and the relationships involving the other aspects are described
in Section 3.

We remark that in the literature it is always assumed that the bound states for (1), (7), and (8)
are simple. In our paper, we do not make such an artificial assumption because we easily and
in an elegant way handle the bound states of any multiplicities, and this is done by using a pair
of constant matrix triplets describing the bound-state values of the spectral parameter z and the
corresponding norming constants. The only effect of the bound states in the Marchenko theory
amounts to replacing the Fourier transforms of the reflection coefficients by the quantities Q) and
Qy., respectively, appearing in (164). We remark on the simplicity of the additive terms CA*~'B
and C(A)~%~1 B in (164) constructed from the matrix triplets (4, B, C) and (A4, B, C) given in (156)
and (159), respectively. In the corresponding nonlinear integrable systems, the time evolution of
the bound-state data is described in a simple and elegant way in (256) for an appropriate choice
of the matrix exponentials £ and €. The derivation of the additive terms CA*~'B and C(A)*~'B
in (164) is accomplished in Section 4 by introducing the bound-state dependency constants. This
derivation, even though lengthy, is intuitive and provides physical insight. Let us remark that
the bound states with multiplicities can also be handled mathematically by using the orthogonal
projections onto the adjoints of the kernels of the associated Jost matrices,”® but that alternate
mathematical description is less intuitive and does not provide as much physical insight.

The systems (7) and (8) are of importance also in their own, and they are known as the
Ablowitz-Ladik systems™!” or as the discrete AKNS systems. It is possible® to transform (7) and
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(8) into
§n+1 zZ U gn
i = NI ne<z, )
Nn+1 Un ; ] _77n_
77n+1 Z Dn 7711
) = 1 E ne<z. (10)
En+1 Sn ; ] _En_

Note that (7) and (9) also differ from each other by the fact that the appearances of the wave-
function values evaluated at n and n + 1 are switched. The same remark also applies to (8) and
(10).

As already pointed out by Tsuchida,’ the analysis of the direct and inverse scattering problems
for an Ablowitz-Ladik system written in the form of (9) and (10) is unnecessarily complicated.
For example, the analysis provided in Ref. 11 for (9) involves separating the scattering data into
two parts containing even and odd integer powers of z, respectively. This unnecessarily makes the
analysis cumbersome. Furthermore, if we use (9) with the roles of n and n + 1 switched compared
to (7) and use the scattering coefficients from the right instead of the scattering coefficients from
the left as input, then the analysis of the inverse scattering problem for (9) by the Marchenko
method becomes unnecessarily complicated.

The researchers who are mainly interested in nonlinear evolution equations use only the scat-
tering coefficients from the right without referring to the scattering coefficients from the left. In
this paper, we are careful in making a distinction between the right and left scattering data sets.
The right and left transmission coefficients in a first-order discrete linear system are unequal
unless the coefficient matrix in that system has determinant equal to 1. One can verify that the
coefficient matrix in (1) has its determinant equal to 1, whereas the corresponding determinants in
(7) and (8) are given by 1 — u,v,, and 1 — p,s,, respectively. Thus, the left and right transmission
coefficients for each of (7) and (8) are unequal. We refer the reader to Ref. 12 and the references
therein where the Lax pair for the discrete AKNS system is normalized. This is done by dividing
each entry in the coefficient matrix in (9) by 1/1 — u,,v,, so that the determinant of the trans-
formed coefficient matrix becomes equal to 1. Furthermore, in Ref. 12 the ¢-part of the Lax pair is
transformed into a matrix with zero trace. Although such a normalization of the Lax pair for the
discrete AKNS system has various advantages, it is not helpful to our own analysis because such
a normalization also complicates the asymptotics in z of the relevant Jost solutions for each fixed
n. The simplicity of the asymptotics of the respective Jost solutions as z — 0 or z — oo for each
fixed n is crucial in our analysis of (1) and its relation to (7) and (9).

The scattering and inverse scattering problems for (1) have partially been analyzed by Tsuchida
in Ref. 3. Our own analysis is complementary to Tsuchida’s work in the following sense. Tsuchida’s
main interest in (1) is confined to its relation to (3), and he only deals with the right scattering
coefficients. Tsuchida exploits certain gauge transformations to relate (1) to two discrete Ablowitz-
Ladik systems, and he assumes that the bound states are all simple. Tsuchida’s expressions for the
scattering coefficients not only involve the Jost solutions to the relevant linear system but also the
Jost solutions to the corresponding adjoint system, whereas in our case the scattering coefficients
are expressed in terms of the Jost solutions to the relevant linear system only. In our opinion,
the latter description of the scattering coefficients provides physical insight and intuition into the
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analysis of direct and inverse problems. Tsuchida formulates a Marchenko system given in (4.12c)
and (4.12d) of Ref. 3, somehow similar to our own alternate Marchenko system (233) and (234), but
it lacks the appropriate symmetries existing in our alternate Marchenko system. In formulating
his Marchenko system, Tsuchida uses a Fourier transformation with respect to z> and not with
respect to z. Furthermore, in Tsuchida’s formulation it is not quite clear how the scattering data
sets for (1), (7), and (8) are related to each other.

One of the important accomplishments of our paper is the introduction of a standard
Marchenko formalism for (1) using as input the scattering data from (1) only. The formulation
of our standard Marchenko system (209) is a significant generalization step to solve inverse prob-
lems for various other discrete and continuous systems for which a standard Marchenko theory
has not yet been formulated. As mentioned already, we also introduce an alternate Marchenko for-
malism for (1) using as input the scattering data sets from (7) and (8). Both the standard and alter-
nate Marchenko systems we introduce have the appropriate symmetry properties and resemble
the standard Marchenko systems arising in other continuous and discrete systems. The alternate
Marchenko method in our paper corresponds to the discrete analog of the systematic approach'®
we presented to solve the inverse scattering problem for the energy-dependent AKNS system given
in (5). Besides Ref. 13, the most relevant reference for our current work is the important paper by
Tsuchida.?

Our paper is organized as follows. In Section 2, we introduce the Jost solutions and the scatter-
ing coefficients for each of (1), (7), and (8) and we present some relevant properties of those Jost
solutions and scattering coefficients. In that section, we also prove that the linear dependence
of the appropriate pairs of Jost solutions occurs at the poles of the corresponding transmission
coefficients for each of (1), (7), and (8). In Section 3, when the corresponding potential pairs are
related to each other as in (91)-(94), we relate the Jost solutions and scattering coefficients for
(1) to those for (7) and (8). In that section, we also present certain relevant properties of the Jost
solutions to (1) and express the potentials g,, and r, in terms of the values at z = 1 of the Jost
solutions to (7) and (8). In Section 4, we describe the bound-state data sets for each of (1), (7), and
(8) in terms of two matrix triplets, which allows us to handle bound states of any multiplicities in
a systematic manner that can also be used for other systems both in the continuous and discrete
cases. In the formulation of the Marchenko method, we show how the Marchenko kernels con-
tain the matrix triplets in a simple and elegant manner. Also in that section, when the potential
pairs for (1), (7), and (8) are related as in (91)-(94), we show how the corresponding bound-state
data sets are related to each other. In Section 5, we outline the steps to solve the direct problem
for (1). In Section 6, we introduce the Marchenko system (209) using as input the scattering data
directly related to (1) and we describe how the potentials g,, and r,, are recovered from the solution
to (209). In Section 7, we present our alternate Marchenko system given in (233) and (234) using
as input the scattering data sets from (7) and (8), and we also show how q,, and r,, are recovered
from the solution to the alternate Marchenko system. In Section 8, we describe various methods
to solve the inverse problem for (1) by using as input the scattering data for (1) and outline how the
potentials g,, and r,, are recovered. Finally, in Section 9, we provide the solution to the integrable
nonlinear system (3) via the inverse scattering transform. This is done by providing the time evo-
lution of the scattering data for (1) and by determining the corresponding time-evolved potentials
g, and r,,. In that section, we also present some explicit solution formulas for (3) corresponding
to time-evolved reflectionless scattering data for (1), and such solutions are explicitly expressed in
terms of the two matrix triplets describing the time-evolved bound-state data for (1).
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2 | THE JOST SOLUTIONS AND SCATTERING COEFFICIENTS

In this section, we introduce the Jost solutions and the scattering coefficients for each of the linear
systems given in (1), (7), and (8), and we present some of their relevant properties. For clarification,
we use the superscript (g, 7) to denote the quantities relevant to (1), use (u, v) for those relevant to
(7), and use (p, s) for those relevant to (8). When these three potential pairs decay rapidly in their
respective equations as n — o0, the corresponding coefficient matrices all reduce to the same
unperturbed coefficient matrix. In other words, each of (1), (7), and (8) corresponds to the same
unperturbed system

° °

¥, = Yo, nez,

=

S S . . . z "
where the general solution is a linear combination of the two linearly independent solutions [ 0 ]

0 .
and [ n],that is, we have
z

¥, =a +b , nez, an

with a and b being two complex-valued scalars that are independent of n but may depend on z.

There are four Jost solutions to each of (1), (7), and (8), and they are obtained by assigning
specific values to a and b asn — 400 or n » —oo0. We uniquely define the four Jost solutions ¢,
én> ¥, P, to each of (1), (7), and (8) so that they satisfy the respective asymptotics

0(1)
Y, = , n — +oco, (12)
z"[1 + o(1)]

z7"[1 + o(1)]]

$n = , n— —oo, (13)
L 0(1) -
[z o]
Y = , n— +oo, (14)
- 0(1) -
0o(1)
_n = n— —oo. (15)

21 + o] |

We remark that an overbar does not denote complex conjugation. We will use the notation ¢£;”)

(qJ') ‘(q”’) ‘(q”’)
n *rn ’rn

k]

to refer to the respective Jost solutions to (1); use z,bfl“’”), Elu’v), _5,“’”), qSE,“’U) for the
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respective Jost solutions to (7); and use ¢,(qp ’s), ﬁlp ’S), _,(f’ ’S), _,(f ) for the respective Jost solutions

to (8).
The asymptotics of the Jost solutions complementary to (12)—(15) are used to define the corre-
sponding scattering coefficients compatible with (11). We have

%z‘" [1+0(1)]
Y, = 11 , n— —co, (16)
;1 z" [1 + 0(1)]

Tlrz—" [1+01)]]

b = R , n — +oo, 17)
= z"[1+0(1)]

T

Tl 2" [1+0()]]
P, = 'L , n— —oo, (18)
7?1 z" [1 + 0(1)]

K271 + 0(D)]

b, = , n— +oo, (19)

[= -

z"[1+0(1)]

il

where T; and T are the transmission coefficients from the left, T, and T, are the transmission
coefficients from the right, R and R are the reflection coefficients from the right, and L and L
are the reflection coefficients from the left. We will also say left scattering coefficients instead
of scattering coefficients from the left, and similarly we will use right scattering coefficients and
scattering coefficients from the right interchangeably.

Note that we will use qu’r), Tl(q’r), R@n pan), Tﬁq’r), Tl(q’r) , R@") @0 tg refer to the scatter-
ing coefficients for (1); use T §u’v), Tl(”’u), RV pwv) T Eu’v), Tl(”’u), RV [WY) for the scattering
coefficients for (7); and use Tgp ’S), Tl(p ’S), RPS) 1(ps), TEP ’S), Tl(p ’S), RS [(PS) for the scattering
coefficients for (8).

Related to the linear system (7), let us introduce the quantities D** and D& as

n o0
pi = [T a-wuvp, D&Y = TT @ -ujup. (20)

Jj=—o Jj=—o

From the fact that u,, and v, are rapidly decaying and that 1 — u,,v, # 0 for n € Z, it follows that
D,(qu’v) and Df;"”) are each well defined and nonzero. Similarly, related to the linear system (8), we
let

n (s
DY = Tl a=pysp. D&Y = [T a-p;sp. )

J=—00 Jj=—00
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From the fact that p,, and s, are decaying rapidly and that 1 — p,s,, # 0 for n € Z, we see that
DELP %) and Dg’s) are each well defined and nonzero. We remark that Df;"“) and Dg,) ) correspond
to conserved quantities*>*"'7 in the sense that if the scattering data sets corresponding to the
potential pairs (u, v) and (p, s) evolve in time ¢ according to the inverse scattering transform, even

though each of the potential values u,,, v, p,,, s, depends on ¢, the quantities Dgf ) and Df,f;’S) are
independent of ¢.
In the next theorem, we list some relevant analyticity properties of the Jost solutions to (7).

Theorem 1. Assume that the potentials u,, and v, appearing in (7) are rapidly decaying and 1 —
u, L, # 0 for n € Z. Then, the corresponding Jost solutions to (7) satisfy the following:

(a) For each n € Z, the quantities z™" z,b;“’v), z" ¢£l"’v), z" _Slu’v), z " d?;“’v) are even in z in their
respective domains.

(b) The quantity z™" ¢,(1”’U) is analytic in |z| < 1 and continuous in |z| < 1.

(¢) The quantity z" ¢Elu’v) is analytic in |z| < 1 and continuousin |z| < 1.

(d) The quantity z" zﬁflu’u) is analytic in |z| > 1 and continuous in |z| > 1.

(e) The quantity z™" gE;u’D) is analytic in |z| > 1 and continuous in |z| > 1.

(f) The Jost solution ") has the expansion

()

W0 = B RUL 7)<, (22)

I=n

with the double-indexed quantities Kf:;’v) for which we have

0 i
(u,v) _ wv) _| o
K= | | K, = , @)
1 Z Uje1 Uk
k=n
and that Kf:l”v) =0whenn+lisoddorl < n.
(g) The Jost solution zf);u’”) has the expansion
< 1
DI i 24)

I=n

with the double-indexed quantities IZSI"U) for which we have

[Se]
1
F(uv) _ () _ Zuk Uk+1
Kpp” = ’ Kn(n+2) " | k=n ’ 29

0 U,

and that IZEIL;’U) =O0whenn +lisoddorl < n.
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(h) For the Jost solution %, we have the expansion
2 i = Y Pz <, (26)
1=0
with the double-indexed quantities P’(ﬁ’v) for which we have

wv) _ 1
Pao _D(u,v)
n-1 [ “Yn-1

n—2
2 Up+1 Uk

, 27)

wv)y _ 1 k=—oc0
n2 - n—3 ’
Dy 5
—Up—2 = Up—1 Ujey1 Uk
k=—00

with DS,“’U) being the quantity defined in (20) and that PS{’U) =O0whenlisoddorl <O0.

(i) For the Jost solution 95,(1"’U), we have the expansion

(o]
I = 1
2" = YRS lzl2 L,
1=0

with the double-indexed quantities P}(fl”v) for which we have

—U,_
suv) _ 1 n-1
no T (u) ’
D~ 1
n-3
—Up—2 —Up— Z Uk Uk+1
p(u,v)_ 1 k=—c0
n2 T (uo) n—2 ’
D,
" Z Ug Vg1
k=—c0

and that PS;’U) =0whenlisoddorl < 0.

(j) The scattering coefficients for (7) are even in z in their respective domains. The domain for the
reflection coefficients is the unit circle T and the domains for the transmission coefficients consist
of the union of T and their regions of extensions.

(k) The quantities 1/T1(u’v) and 1/T™" have analytic extensions in z fromz € T to |z| < 1 and

those extensions are continuous for |z| < 1. Similarly, the quantities 1/ Tl(“’”) and 1/T™" have
extensions from z € T so that they are analytic in |z| > 1 and continuous in |z| > 1.
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Proof. We can write (7) for " in the equivalent form

22 2

(w,) Z (w,v)
z7h, = z7 "y, neZz. (28)
v, 1
From (28), via iteration, for k > n, we get
2 2 2 2 2 2
z=  zeu, || z Z% Uy z= zhuy

z ) = z7k=1 zp,({’jj). (29)

Uy, 1 Upt1 1 Uk 1

By letting k — +o0 in (29), we see that for each fixed n the quantity z™" ¢§,“’”) is expressed as a
Maclaurin series containing only even powers of z. This proves (a) for z™" ;b,(f’v). The coefficients
in the Maclaurin series for z™" gb,&“’w involves product and sums of the values of u; and v; for j > n.
When the potentials u, and v,, are rapidly decaying, each partial sum in the Maclaurin series is
analytic in |z| < 1 and continuous in |z| < 1. Furthermore, the Maclaurin series converges abso-
lutely in |z| < 1, and in fact the convergence is uniform because the series is a Maclaurin series.
Thus, by a theorem of Weierstrass,'® the sum of the series, that is, z ™" zp,({"”), is analyticin |z| < 1
and continuous in |z| < 1. Hence, the proof of (b) is complete. The Maclaurin series for z™" z,bfl”’v)
is given by (22) and the coefficients K" and Kn”:iz) given in (23) are directly obtained from
the iteration described in (29). Hence, the proof of Ef) is complete. The proofs for (c), (d), (e), (g),
(h), and (i) are obtained in a similar manner. Using (a)-(e) in (16)-(19), we establish (j). Finally,
using (b) and the second component of the column-vector asymptotics in (16), we establish (k) for

1/ Tl(“’”). The remaining proofs for (k) are obtained in a similar manner. [ |

We remark that the results in Theorem 1 hold also for (8). For the convenience of citing those
results, we present the following corollary.

Corollary 1. Assume that the potentials p,, and s, appearing in (8) are rapidly decaying and 1 —
DnSp # 0 for n € Z. Then, the corresponding Jost solutions to (8) satisfy all the properties stated in
Theorem 1. In particular, we have the following:

(a) The Jost solution ;b,(f ) has the expansion

[Se]
0= YRS,z <, (30)

I=n

with the double-indexed quantities K}(ﬁ ) for which we have

Pn

0
(p,s) _ (ps)  _
Kwn' ™ = ’ Kn(n+2) = & ’ G
1 2 Dic+1 Sk
k=n

and that Kfﬁ’s) =0whenn+lisoddorl < n.
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(b) The Jost solution ﬂlp ) has the expansion

[se]
7(p.s) _ =(p.s) 1
n —IZKM - 2z (32)

=n

with the double-indexed quantities K}(fl) ) for which we have

[So]
1
(D:s) _ #(p.s)  _ Zpksk+1
K™ = 0 ’ Kn(n+2)_ k=n ’ (33)

Sn
and that K,(f;’s) =0whenn+lisoddorl < n.

In the next theorem, we summarize the relevant properties of the scattering coefficients for (7).

Theorem 2. Assume that the potentials u,, and v, appearing in (7) are rapidly decaying and that
1 —u,v, # 0forn € Z. The corresponding scattering coefficients in their respective domains satisfy

Tlgu,v) _ D(og,v) Tl(u,v)’ Tgu,v) _ D‘()l:,l)) Tl(u,v)’ (34)
T T8 = pE[1 — RO+ Ruv)], (35)
T 70 = pl)[1 — L) Lw)], (36)

L) _ _pw Rw.v)

Tl(u,v) T T Tgu,v)’ (37)
L9 _pw B (38)
Tl(u,u) ®© Tgu,u) ’
where Dg’v) is the quantity defined in (20).
Proof. From (7), we get the matrix equations
[z zu,]
g0 pe] =], e ] nez, (39)
[z 7 ]
[z zu,|
e =1, |y Ey]. nez (40)
L Z z
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Using iteration on the determinants of both sides of (39) and (40), respectively, for any pair of
integers n and m with m > n, we get

det [ S0 1p§,“’”)] =1 -u,v,) (1 —u,v,) det [45533 zpf;l‘fl)] , (41)
det [zp;w 435:*’”] = (1= uyUy) -+ (1 = Up0y,) det [zﬁﬁ;‘ff gaf;‘ff] : (42)

Letting n - —oo and m — +o0 in (41), with the help of (12), (13), (16), (17), and (20), we obtain

L) 1

- — 0
1 Tl(u’v) (u,v) Tgu’v)

| =8 (43)
0 — — 1

Tl(u.v) TEu,U)

Similarly, letting n — —o0 and m — +o0 in (42) and using (14), (15), (18), (19), and (20), we get

1 R(u,0)
- R
Fv) 0 (o) 1 —T(u o)
1 u,v ’
J) = D¢, rl (44)
Tfu'v) 1 0 T(“;U)
T

From (43) and (44), we obtain (34). On the other hand, with the help of Theorem 1, we conclude

that any two of the four Jost solutions ¢§,“’”) , ,(f’v), _,(f’u) , _;u’v) form a linearly independent set of

solutions to (7) when z is on the unit circle T. We can express ¢§,”’“) and qE;u’v) as linear combina-
tions of ™ and $* in a matrix form, with appropriate interpretation of the matrix product,

as

(u,v) ! REDN e )
" L e T (45)
= — b Z e b
7(u,0) R0 1 (u,0)
n n

7(u,0) 7(u,0)
Truv Truu

where the entries in the coefficient matrix are obtained with the help of (12), (14), (17), and (19)
for the Jost solutions to (7). In a similar way, with the help of (13), (15), (16), and (18) for the Jost
solutions to (7), we get

1 L)

7 (u,0) _— (u,0)
n Tl(u,u) Tl(u,v) n
= , zeT. (46)
(u,v) A 1 7(u,0)
n Tl(u,v) Tl(u,v) n
For the compatibility of (45) and (46), we must have
1 R@) 1 L)
(u,0) (u,0) = (u,0) —(u.0) 1 O
! T! T, T, B
Rwv) 1 1w0) 1 = o 1 , zeT. (47)

Tl(’u,u) TEM'U) Tl(u,v) Tl(u,v)
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Then, using (34) and (47), we obtain (35)-(38). |

The above theorem indicates that the set of left scattering coefficients Tl(u’u),Tl(u’U), L(“’”),E(“’”)
can be expressed in terms of the set of right scattering coefficients T, 7", RV Rv) and
vice versa.

In the next proposition, we provide the asymptotics of the transmission coefficients for (7).

Proposition 1. Assume that the potentials u, and v, appearing in (7) are rapidly decaying and
that 1 — u,v, # 0 for n € Z. Then, the transmission coefficients for (7) have their asymptotics given

by

T =1 - 22 D v +0(24),  z-0, (48)
k=—o0
6]
70 = pv) ll -z 2 Up1 Uk + 0(24)] ., 220, (49)
k=—00
T(usv)_l_i iuv +O i z - (50)
L= = k Uk+1 ) 0,
k=—o00
FWv) _ po) f4 1 i Uy Uiy + O 1 Z = 0 (51)
T — Moo Z2 . k Yk+1 Z4 ’ 4

where Dﬁf,"” is the quantity defined in (20).

Proof. From Theorem 1(k), we know that 1 /Tl(”’”) and 1/T™" are analytic in |z| < 1 and that
1/ Tl(u’v) and 1/T"" are analytic in |z| > 1. Premultiplying both sides of (22) by z"[0 1], then

letting n — —oo in the resulting equation, and using (16) with %{“*) and (23), we obtain (48).

Similarly, premultiplying both sides of (24) by z"[1 0], then letting n —» —oco in the resulting
equation, and using (18) with _ﬁu’v) and (25), we obtain (50). Finally, with the help of (34), (48),
and (50), we get (49) and (51). |

When the scattering data evolve in time in the inverse scattering transform, the transmission
coefficients, and hence also the coefficients in the z-asymptotics of the transmission coefficients,
remain unchanged in time. Thus, we observe that the infinite summations appearing in (48)-
(51) correspond to some conserved quantities associated with the integrable semi-discrete NLS
system*>!!

Uy + Upy1 — 2Up + Up_y — Uplly 11Uy — Uy Uy Uy =0,
(52)

iUy = Upy1 + 20y — Uy + UpUpUpyy + UpUyqUy =0,

where the overdot denotes the t-derivative.
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In the next theorem, we provide various other relevant properties of the transmission coeffi-
cients for (7).

Theorem 3. Assume that the potentials u,, and v,, appearing in (7) are rapidly decaying and that
1—u,v, # 0 forn € Z. Then, the transmission coefficients for (7) have the following properties:

(a) None of Tl(”’v), T, Tl(u’v), T8 can vanish when z € T.

(b) We have
1 1 1
(u,0) =5 (u,0) = (u,v) 70, (53)
™0 1¢0) D
1 1 1

=1, = #0.
T{** () () DL

(c) The quantity 1/T1(u’u) has at most a finite number of zeros in 0 < |z| < 1 and the multiplicity of
each such zero is finite. The zeros of 1/ TE"’U) and the multiplicities of those zeros are the same as
those for 1/ Tl(”’v).

(d) The quantity 1/T1(u’v) has at most a finite number of zeros in |z| > 1 and the multiplicity of each

such zero is finite. The zeros of 1/ _ﬁu’v) and the multiplicities of those zeros are the same as those

for I/Tl(u’v).

(e) The quantities Tl("’v)

and Tﬁu’v) are meromorphic in |z| < 1. The number of their poles and the

multiplicities of those poles are both finite. Similarly, the quantities Tl(”’v) and T are mero-
morphic in |z| > 1, and the number of their poles and the multiplicities of those poles are both
finite.

(f) Ifz;isapole ole(u’U) and T in0 < |z| < 1, then —z; is also a pole of those two transmission
coefficients. Similarly, if Z; is a pole ole(u’U) and TE"’U) in|z| > 1, then —z; is also a pole ole(“’U)

and T,
Proof. We can write (36) as

1 1 L) L)

DY) = Tl(u,v) Tl(u,v) - Tl(u,v) Tl(u,u)’ zeT.

(u,0) (u,v)
1 1
T, then L®*) would have to vanish at that same point on T. However, this cannot happen because

it would contradict (36) as we have DE,’:“) # 0. The remaining proofs in (a) are established in a

similar manner. Note that (b) is obtained directly from (48)-(51). The proof of (c) for T® can be

1
l(u’v) is analytic in |z| < 1 and continuous

in |z| < 1, and from (a) we know that 1/ Tl(”’”) cannot vanish on T. Hence, any zeros of 1/T"*"

1
must occur in the bounded region |z| < 1. Thus, the zeros of 1/ Tl(”’v) in |z| < 1 must be finite in

number and each such zero must have a finite multiplicity. The remaining proof of (c) is obtained

Because of the continuity of L) /T:"*"”, we can conclude that if ;""" vanished at some point on

given as follows. From Theorem 1(k), we know that 1/T



16 | AKTOSUN AND ERCAN

by using the first equality in (34). The proofs of (d) and (e) are obtained in a manner similar to the
proof of (c). Finally, we note that (f) follows from (c), (d), (e¢), and Theorem 1(j). |

We remark that the analogs of the results presented for the potential pair (u, v) in Proposition 1
and Theorems 1, 2, and 3 are also valid for the potential pair (p, s).

Next, let us consider the properties of the scattering coefficients for (1). Because the coefficient
matrix in (1) has determinant equal to 1, in this case we can express the scattering coefficients
for (1) in terms of the Wronskians each defined as a determinant of a 2x2 matrix where the two
columns are the appropriate Jost solutions to (1). We define the Wronskian of two column-vector

solutions [a”] and [Of"] to (1) as
ﬁn n
an| |an a, G, a, &,
|| = det = . (54)
Bu | | Bn Bn  Bn Bn  Bn

We recall that the scattering coefficients for (7) cannot be obtained from the Wronskians of any
two solutions to (7) because the coefficient matrix in (7) does not have the determinant equal to 1.
In that case, in order to obtain the scattering coefficients, one can use the Wronskians of a solution
to (7) and a solution to the adjoint equation corresponding to (7). However, we prefer to express
the scattering coefficients via the asymptotics of the Jost solutions as in (16)-(19) and this allows
us to investigate the scattering coefficients in a unified way for any of the three systems (1), (7),
and (8).

With the help of (1) and (54), one can directly verify that the determinant used in (54) is indepen-
dent of n. In terms of the Jost solutions gb,(f’r), ¢§lq’r), _2q’r), _flq’r) satisfying (1) and the respective
asymptotics given in (12)-(15), with the help of (16)-(19), we express the scattering coefficients
Tl(qf’{ Tl(’m, 70 7@ Rgan gan 1@n, [@n as

1 (q.r) (g.r) 1 _ 7(q.r) 7(q.r)
o W WL = -
1 @n @ 1 Z@r)  z(gn
= ’ ’ b = ’ ’ b (56)
( , ) n n _( , ) n n
Trq r Trq r
L9 1 an zan| L9 _1an @ 7)
n n ’ _ n n ’
Tl(q,r) Tl<q,r)
R 1oqn  an| R e a0 (58)
( , ) n n ’ _( X ) n n *
7@ Tr

In the next theorem, we list some relevant properties of the scattering coefficients for (1).

Theorem 4. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, we have the following:
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(a) The left and right transmission coefficients for (1) are equal to each other, that is, we have
Tl(qar) — TEL]J’)’ Tl(q,r) — TEQ-V). (59)

Tl('q,r)

We will use T4 to denote the common value of Tl(q’r) and . and we will use T4 to denote

Tl(q’r) and TEq’r). The transmission coefficient T'%") has a meromorphic

the common value of
extension from z € T to |z| < 1 and the transmission coefficient T'%") has a meromorphic exten-
sion fromz € T to |z| > 1.

(b) Forz € T, the left and right reflection coefficients for (1) satisfy

L(q?") R(q;”) L(q”‘) R(qsr)
(60)

T@n —  T@n’ Tan  T@n’

7@ 7@r) =1 — @ ;@ = 1 — @ Rla.r), (61)

Proof. The proof can be obtained as in the proof of Theorem 2. As an alternate proof, we see that
(59) follows from (55) and (56); (60) follows from (57) and (58); and that (61) is established by using
the fact that the Wronskian of gﬁﬁq’r) and 1,b§lq’r) as in (54) yields the same value as n - —oo0 and
n — +oo. Finally, the aforementioned meromorphic extensions for the transmission coefficients
follow from the fact that the Jost solutions gbflq’r) and ¢§lq’r) have analytic extensionsin z to |z| < 1

and that the Jost solutions J)Elq’r) and qsff”) have analytic extensions in z to |z| > 1, where the
analytic extensions can be established by iterating (1) and by using (12)-(15). [ |

We see from (59) that the left and right transmission coefficients for (1) are equal, whereas the
same does not hold for (7). Similar to (20), we define the related quantities Dflq’r) and D(og’r) for (1)
as

n [e5]

D = I] (1—gq;r;). DE”:= [] (1-q;r)). (62)

j:—oo j=—00

For (1), we also define the quantities EElq’r) and Efg” as

n [es]

EEIq,r) ‘= H (1+quj+1), Ec()gar) c= H (1+quj+1)- (63)

Jj=—o Jj=—o

From (2) and the fact that g,, and r,, are rapidly decaying, it follows that the quantities D,(lq’r), Df;,”),
Eﬁ,q’r), DﬁZ”) are each well defined and nonzero.
Let us introduce the scalar quantities S,ﬁq’r) and Q,(f’r) as

n
@n . "e(Qic — Qi1 — Qi Qi1 Tie1)
S = , (64)
" Z (1= g )X = Giqr Fies1)

k=—0
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@n . _ i Fie2(Qk = Qi1 — Qic Qi1 Thet1) 5)
! = U+ Q) + Qi Tiera)

Letting n — 400 in (64) and (65), we get

§@n . _ i Ne(Qic = Qi1 = Qi Qi1 Tiesr1) 66)
® o A= qer)d = Qg Fern)
< Tk+2(k — Gkt — Gk Giern Ter1)
g,r) = Z k+2\dk k+1 k 9k+1 Tk+1 (67)

= O+ @erigp )+ Qg rg2)

As stated in Theorem 4(a), the transmission coefficient T(¢") for (1) has a meromorphic exten-
sion to the region |z| < 1 and the transmission coefficient T(@") for (1) has a meromorphic exten-
sion to |z| > 1. The asymptotics of those two transmission coefficients are presented next.

Proposition 2. Assume that the potentials q,, and r, appearing in (1) are rapidly decaying and
satisfy (2). Then, the small-z asymptotics of the transmission coefficient T@") for (1) is given by

1
T(q,r) — W [1 _ Z2 Sggﬂr) + 0(24)]’ AT O’ (68)
Dy’

where D((f,’r) and S((xq)’r) are the scalar quantities defined in (62) and (66), respectively. Similarly, the
large-z asymptotics of the transmission coefficient T@") for (1) is given by

_ 1 1 1
Tl — [1 - = (@r) O<—4>], Z — oo, (69)
zZ zZ

where Eg?;’) and fo,’r) are the scalar quantities defined in (63) and (67), respectively.

Proof. The proof is lengthy but straightforward. To obtain (68), we use (1) with the Jost solution
,(f’r), premultiply both sides of (1) with z7"[0 1], iterate the resulting equation, and for m > n
we get

o 1]z79@" =[0 18,80 Bz 199 (70)

where we have defined
0 —Qn L g
0 1-qupry 'n  Qnln
We note that in the limit n — —oo the left-hand side of (70) yields 1/T@"). Letting n — —oco and

m — 400 in (70), using (12) and (16) for z,b;q’r) and also using Dﬁz”) defined in (62) and sf;g’” defined
in (66), after some straightforward algebra, we get (68). The proof of (69) is similarly obtained by
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using (1) with the Jost solution 1,551‘”)

, premultiplying both sides of (1) with z"[1 0], iterating the
resulting equation, and using (14) and (18) for g[),&q’r) and also using Efg’r) defined in (63) and QE,Z”)

defined in (67). |

We remark that the four quantities DE,Z”), Efg’”, sﬁg”), Ef;r) appearing in the z-asymptotics in
(68) and (69) are among the conserved quantities for the integrable system in (3).

In the next theorem, we provide some further relevant properties of the transmission coeffi-
cients for (1).

Theorem 5. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, for the transmission coefficients T¢") and T(@") of (1) we have the following:

(a) Neither T'%") nor T4") can vanish when z € T.
(b) We have

=D, ——— =Y. @
T@(0) T@r(c0)

(c) The quantity 1/T9") has at most a finite number of zeros in 0 < |z| < 1 and the multiplicity of
each such zero is finite.

(d) The quantity 1/T@") has at most a finite number of zeros in |z| > 1 and the multiplicity of each
such zero is finite.

(e) The transmission coefficient T'9") is meromorphic in |z| < 1, and the number of its poles and
the multiplicities of those poles are both finite. Similarly, T") is meromorphic in |z| > 1, and
the number of its poles and the multiplicities of those poles are both finite.

(f) If zj is a pole of T9") in 0 < |z| < 1, then —z; is also a pole of T\%"). Similarly, ifz; is a pole of
T@" in |z| > 1, then —Z; is also a pole of T@"),

Proof. We note that (71) follows from (68) and (69). The rest of the proof can be given in a way
similar to the proof of Theorem 3. [ |

Finally, in this section we clarify the relationship between the poles of the transmission coef-
ficients and the linear dependence of the relevant Jost solutions for each of the linear systems
(1), (7), and (8). This clarification has many important consequences. It allows us to introduce
the dependency constants at the bound states. It also allows us to deal with bound states of any
multiplicities in an elegant manner. The treatment given here for the linear systems (1), (7), and
(8) can be readily generalized to other linear systems both in the discrete and continuous cases.

In terms of the Jost solutions ¥,,, ¢,,, ¥,,, ¢, appearing in (12)-(15) for each of the linear systems
(1), (7), and (8), we define

ai‘],r) — Elq,r) glq,r) ’ aglq,r) - —Elq,r) —Slq,r) , (72)
aglu,v) = ’(1u,u) ’(/lu,v) ’ aglu,v) = -Elu,v) -;u,v) , (73)
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a;P,S) = ’(1p,s) ;p,s) ’ C_l,(,lp’s) = -Elp,s) —’Elp,s) ) (74)
where on the right-hand sides we have the Wronskian determinants.

The relationships among a(q ") (q r) , and the transmission coefficients T(¢") and T@") for (1)
are clarified in the following theorem.

Theorem 6. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy

(2). Then, we have the following:

(a) The scalar quantities a(q ") and d,(f’r) defined in (72) are independent of n, depend only on z,
and are related to the transmission coefficients T(¢") and T@") appearing in (55), (56), (59) as

@ _ _1 g - __1

nooT rn T(qr)’ (75)

(b) Consequently, the linear dependence of the Jost solutions ¢(q’r) and z,b(q ") oceurs at the poles of
T@" in0 < |z| < 1. Similarly, the linear dependence of the Jost solutions ¢(q " and zp(q ") oceurs

at the poles of T@") in |z| > 1.
(¢) In particular, if T'%") has a pole at z = +z; each with multiplicity m, then we have
dk a}(,qu’)

dzk

=0, 0<k<m;—-1, neZ (76)

Z=iZj

Similarly, if T%") has a pole at z = +z j each with multiplicity m ;, we then have

dk d;q,r)

dzk

=0, 0<k<mj-1, nez (77)

Z=%2;

Proof. Note that (75) is obtained directly from (55), (56), (59), and (72). Since each of ;bfﬁ”’, Elq’r),
1p(q ) ¢(q ") satisfies the same linear system (1), the linear dependence and the vanishing of the
Wronskian determinant are equivalent. We also note that (76) and (77) directly follow (75). |l

(u, v) (u v)

In the next theorem, we clarify the relationships among a,, , and the transmission coef-

ficients for (7).

Theorem 7. Assume that the potentials u, and v,, appearing in (7) are rapidly decaying and that
1—uyv, # 0forn € Z. Then, we have the following:

WY gnd d;"’v) defined in (73) depend both on n and z, and they are

related to the transmission coefficients TE”’U) and Tﬁu’u) appearing in (34) and (35) as

(a) The scalar quantities a,,

) — DL L qwe pe” 1 (78)
noT pw) pr)’ " - D(u v) T(u v)’
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where D™ and DY) are the scalar quantities defined in (20).

®) Since DX # 0 and D™ # 0 for n € Z and these quantities do not contain z, we conclude
from (73) and (78) that the linear dependence of the Jost solutions $ and ™ occurs at the
poles of TE”’U) and that the linear dependence of the Jost solutions éflu’v) and zﬁflu’v) occurs at the
poles of T§“’”).

(¢) In particular, if TE”’U) has a pole at z = +z; each with multiplicity m, then we have

g™

dzk

=0, 0<k<mj—-1, neZ (79)

Z=iZj
Similarly, if TE”’U) has a pole at z = +Z; each with multiplicity m;, then we have

kg

— =0, 0<k<m;—1, nez (80)

Z=iZ]

Proof. Let us use X, and |X,| to denote the coefficient matrix in (7) and its determinant, respec-
tively, that is,

z zZu,
X, 1= L e |X,| :=1—u,v,. (81)
z zZ
From (7) and (73), we get
(u,v) _ s s
o, =|x g Xy

or equivalently

a’(/lu,u) _ ¢(u,v) l,b(u’v) .

Xn n+1 n+1

Iterating in this manner, from (7) and (73), for m > n we obtain

(u,v) _
n =

¢(u,v) 1p(u,v) . (82)

m+1 m+1

X

Xn+1| |Xm|

Letting m — +oo in (82) and using (12) and (17) for the potential pair (u, v), with the help of (81),
we get

[So]
1
a? = <H(1 — Uy Uk)) )
k=n Tr ’

which is equivalent to

L) _ (Hzi_oo(l — U Uk)> 1 @)

n —
szl_oo(l —u ) ) TV
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Using (20) in (83), we get the first equality in (78). The second equality in (78) is obtained by
iterating (7) so that

(u,0) (u v)

-Elu,v) 1,5’(1“’”) n+1’ |Xm’ ’¢m+1 m+1

= |X,

and letting m — +oc0 and using (14) and (19) for the potential pair (u, v). We finally remark that
(b) and (c) are direct consequences of (a). [ |

The result of Theorem 7 is remarkable in the following sense. Because the coefficient matrix
in (7) does not have its determinant equal to 1, the Wronskians of the Jost solutions to (7) are
not independent of the spacial variable n. In such a case, it is customary to define the scattering
coefficients in terms of Wronskians of a Jost solution to (7) and a solution to the adjoint system
corresponding to (7), as done in Section 3.2 of Ref. 3. However, we prefer defining the scattering
coefficients in terms of the spacial asymptotics given in (16)-(19). Even though the two definitions
yield equivalent results, we feel that the latter provides physical insight and allows us to avoid the
analysis of the solutions to the adjoint system. The result of Theorem 7 shows that, even though
the scattering coefficients for (7) cannot be defined as some Wronskians of the Jost solutions to
(7) as in (55)-(58), we have the relations given by

(u,v) (u,v)
1 _ D_ (u v) (u,v) 1 _ D_ (u v) (u,0) (84)
n ’ _ n ’
Tgu,u) D‘(:: ,U) TEM’U) D((:; ,0)
1 (u,v) (u,0) 1 T(wv)  z(uv)
= ’ ’ , = ’ ’ ) 85
T p) n Fwo)  p) n (85)
1 n—1 1 n-1
(u,v) — (u, U)
R _ Dn 1 | +(uv) (u,v) R®0) _ D (u v) (u,0)
wo) ) L TR m no (86)
T pl T pl
L) 1 (w0) (;5,(1“’”) , [ 1 (ww) _,(1”’1)) , @7

Tl(u,u) - D(u,v) Tl(u,v) - D(lﬁU)
where the scattering coefficients for (7) are explicitly expressed in terms of the Wronskians of the
Jost solutions to (7) via n-dependent, z-independent, nonzero coefficients. Note that (84) and (86)
can be obtained by using a forward iteration as in (82) and that (85) and (87) can be obtained via
a backward iteration on (7). For example, the first equality in (85) is obtained by letting m — —o0
in

(u,v) (u,v)
n n

— -1
- Xn—l‘

1 -1/ | 4 (w0) (u,0)
e R T | e
Note that the scalar quantity D((,’,f’v) in (84) is independent of z and nonzero. Furthermore, each
DY for n € Z is independent of z and nonzero. Thus, (84) allows us to directly relate the poles
of T(” ®) to the zeros of the Wronskian determinant [¢*”  %(“*|, and similarly we can directly
relate the poles of 7" to the zeros of the Wronskian determinant [§*  $Y).
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The results stated in Theorem 7 hold for (8) as well. In the following corollary, we state those
results without a proof since that proof is similar to the proof of Theorem 7.

Corollary 2. Assume that the potentials p,, and s,, appearing in (8) are rapidly decaying and that
1 — p,S, # 0 forn € Z. Then, we have the following:

(a) Thescalar quantities aElp ) and a,(qp ) defined in (74) depend both on n and z, and they are related

to the transmission coefficients Tﬁp ) and TSP ) appearing in (17) and (19) for the potential pair
(p,s) as

(s _ p&Y 1 -<p,s>__Df>f’S) 1

a =
(s (ps)”
Dn—l Tr

, (88)
(p,8) (p-5)
Dn—l Tr

where Dﬁf’ %) and Df,f ) are the scalar quantities defined in (21).
(b) Since Dﬁf’” # 0 and Dflp ) # 0 for n € Z and these quantities do not contain z, we conclude
from (74) and (88) that the linear dependence of the Jost solutions ¢§lp S and zpﬁf’ ) occurs at the

TEP,S)

poles of and that the linear dependence of the Jost solutions c;Efip ) and 1,5,(1” ) oceurs at the

poles of Tﬁp )
(¢) In particular, if Tgp ) hasa pole at z = +z; each with multiplicity m, then we have

dk a;p,s)

dzk

=0, OskSmj—l, ne/Zz. (89)

Z=iZj

Similarly, if TEP % has a pole at z = +Z; each with multiplicity m;, then we have

dk aglpss)

dzk

=0, 0<k<mj-1, nez (90)

Z=iZj

3 | THE TRANSFORMATIONS

In this section, we relate the linear systems (1), (7), and (8) to each other by choosing the potential
pairs (u,v) and (p, s) in terms of the potential pair (g, r) in a particular way, namely as

)
u, = s 91
n=qn D) (o1)
(q,r)
-1
Up = (=Tp+Tpng1 — Q' rn+1) : (92)

Eflq,r) ’
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(q.r)
Pn = (Gn = Qn+1 — 9n Gn+1 Tns1) r(l_q_Jl)’ (93)
n+1

Dglq,r)

sl ——, 94
n+1 Eflq’r) ( )

Sp =

where Dflq’r) and Eflq’r) are the quantities defined in (62) and (63), respectively. This helps us to
express the Jost solutions and the scattering coefficients for (7) and (8) in terms of the correspond-
ing quantities for (1). In this section, we also present certain relevant properties of the Jost solu-
tions to (1), and we express g, and r,, in terms of the values at z = 1 of the Jost solutions to (7)
and (8). The results presented in this section play a crucial role in solving the direct and inverse
scattering problems for (1) by exploiting the techniques for the corresponding problems for (7)
and (8).

In the next proposition, when (91)-(94) are valid we present some relationships among the
quantities for the potential pairs (g, r), (u, v), and (p, s).

Proposition 3. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and
satisfy (2). Let the potential pairs (u,v) and (p, s) are related to (q,r) as in (91)—(94). We then have

1
1—u,v, = , (95)
e (1_Qnrn)(1+ann+1)
1
1—pps, = , (96)
(1 —qn+1 rn+1)(1 + an rn+1)
(u,0) 1 (u,0) 1
D"V =————, Dy =————, 97)
D}(;]J’) E)(1q,r) D((g,r) E((g,r)
(p.s) 1 (.5 1
D)V = ———, DY = ——, (98)
(q.1) (q.r) (q.1) (q.r)
Dn+1 E, DS ES

where we recall that D™ and D are as in (20), D and DI are as in (21), D" and D"
are as in (62), and E,(f’r) and Efg’” are as in (63).

Proof. We evaluate the left-hand side of (95) with the help of (62), (63), (91), (92), and after a brief
simplification we establish (95). Similarly, we obtain (96) with the help of (62), (63), (93), and (94).
Then, we establish (97) by using (95) in (20), (62), and (63). Similarly, we get (98) by using (96) in
(21), (62), and (63). [ ]

The following proposition will be useful in solving the inverse problem for (1) by using the
method described in (e) of Section 8.
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Proposition 4. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and
satisfy (2). Let the potential pairs (u,v) and (p, s) be related to (g, r) as in (91)-(94). Then, we have

(a.r) 1
D” = n—1 ’
H (1 + g Sk)
k=—00

(g.r) 1
B s

IT a-weso

k=—00
n—1
1 —uy s,
qn = Uy H —,
k= oo 1+ vy Sk
n—1
H 1+ uk Sk—1
=35 s
n-1 1 — Uy Sk

where D,(f’r) and E;q’r) are the scalar quantities defined in (62) and (63), respectively.

Proof. From (91) and (94), we obtain

(q r) DE,q’r)

1—u,s,=1-— ,
n n dn —/—— D(q r) Fny1 —/—~ E;q’r)

which, with the help of (63), simplifies to

1

1-u,s, = ———.
e 1‘i'(1r1"'11+1

Similarly, from (91) and (94), we get

E(q ) D(q,r)
n—1 —

14+u,s,_1=1+q, ——

r
(@r) " L@’
D,! E

which, with the help of (62), simplifies to

1

1+unsn_1=w.
n'n

From (103) and (104), we, respectively, get

n
1
H (A —uys) = —; ;
k=—
° IT a+are

k=—00

(99)

(100)

(101)

(102)

(103)

(104)
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n
1
H A+usg1) = ——,
k=—00
IT a-aro

k=—o00

which yield (100) and (99), respectively. Finally, by using (99) and (100) in (91) and (94), we obtain
(101) and (102), respectively. [ ]

In the next theorem, when the potential pairs are related to each other as in (91)-(94), we show
how the Jost solutions to (1) are related to the Jost solutions to (7) and also to the Jost solutions to

(8).

Theorem 8. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy

(2), and let the potential pairs (u,v) and (p, s) be related to the potential pair (q,r) as in (91)-(94).

Then, the four Jost solutions z/);q’r), Elq,r), _;q’r), _Elq’r) to (1) are related to the Jost solutions zp,({"”’,
,(1“’”), _El”’”), _5[”’”) to (7) and the Jost solutions 1/),(1p 9, ¢£,p’s), _;p’s), _Elp’s) to(8)as

1 1
1- —> - 0
< z2 ) glan
;q,r) _ D(og,r) n—1 (w,v)

. e (105)
(q.r) (q.r)
En—l Dn—l
1
(q,r) (q.r)
(@) _ pan| El D (p.s)
n =D ! N (106)

(q.r) (q.r)
En—l Dn—l

1 1
1-1) L o
(q.r)
@n_ _1 ( 22/ Bl W)
no= " Lo (107)
S R
; _
(q.r) (g.r)
(gr) _ | B2 Dy, (p.s)
n - rnl 1 n ’ (108)
(q.r) (q.r)
Enq—l an—l
1 1
(gr) (1__2) @ 0
~qr) _ E 22/ EY 7(u.0)
o= 2= L (109)
o
L
(q.r) (q.r)
- E D, -
](flq,r) - Egg’r) n—1 (P,S) (110)

Iy 1 noo
(q.r) (q.r)
En—l Dn—l
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1\ 1
1- —) el 0
7(qr) _ ( 22 ) g9 (1)
@ -

. e, (1)
(q.r) (q.r)
En—l Dn—l
L
(q.r) (g.r)
7(q.r) E” D 7(p.s)
= e , (112)

E(q,r) D(q,r)
n—1 1

where we recall that ng”’ and Eg‘j”’ are the constants defined in (62) and (63), respectively.

Proof. We only present the proof for (105) because the proofs for (106)—(112) can be obtained in a
similar manner. To establish (105), we let

glqsr) — r(q r) Zp(u U), (113)

where F;q’r) is a 2X2 matrix to be determined. Since gbflq’ ") satisfies (1) and ¢(” V) satisfies (7), from
(1), (7), and (113), we obtain I‘Elq’r) as listed in (105). As an alternate proof we remark that the reader
can directly verify that each of (105)—(112) is compatible with (1), (7), (12)-(15), and (91)-(94) and
use the uniqueness of the Jost solutions to (1), (7), and (8). [ |

In the next theorem, we relate the scattering coefficients for (1), (7), and (8) to each other.

Theorem 9. Assume that the potential pair (q,r) is rapidly decaying and satisfy (2). Assume also
that the potential pairs (u,v) and (p, s) are related to (q,r) as in (91)-(94). Then, the scattering coef-
ficients T(@"), T@") R@") R@r 1@ L@ for (1) are related to the scattering coefficients Tl(“’v),
TE”’”),TI(”’”), Tgusv), RV Ruv) [ wv) L(u,v)for (7)and Tl(p’S)’ Tﬁp’s), TI(P»S)’ TEP’S), R@S) R:S) 1(ps),
LS for (8) as

T = p@r@n, 1P = p{I" rian, (114)
T =~ _p@n 7P - - plan), 115)
! E(q ) ! E(q )
TV = g7 1@n, 7Y = @0 7an), (116)
(u0) _ @n), 7(Ds) _ @n),
T — _T@n, T —T@ 17
! D(q ) ! D(q ) 7
(q.r) (g,r)
R0 = (1- LY Px" pan  pes) = Do pan 118)
() (q.r) ’
EY BY
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(q,r) (q.r)
Rwv) — 1 Ex R@n, RPs) = B R@n), (119)
_ L plen D"
ZZ
Lo = — L p@n  pes = pan, (120)
Tz
1w - (1 _ i2> L@n, L0 = [@n, (121)
z

where we recall that Dg‘j’” and Ei‘g”) are the constants defined in (62) and (63), respectively.

Proof. We use the asymptotics of 9", ™, P given in (16) and we let n — —oo in (105),
which helps us to establish (114) and (115), respectively. We establish (116)—(121) in a similar

manner. |

When (91)-(94) hold, from (53) and (114)-(117), we obtain the result stated in the following
corollary.

Corollary 3. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (u, v) and (p, s) are related to (q,r) as in (91)-(94). Then,
the transmission coefficients T(q’r),Tl(”’U), T, Tl(p S 7P pave coinciding poles in 0 < |z| < 1and
the coinciding multiplicity for each of those poles. Similarly, T(@"), Tl(”’v), T, Tl(p S TP pave
their coinciding poles in |z| > 1 with the coinciding multiplicity for each of those poles.

When (91)-(94) hold, based on Corollary 3 we will use {+z;, m j}]j\721 to denote the common set
of poles in 0 < |z| < 1 and their multiplicities for T(@r ),Tl(u’v) s TE”’U), Tl(p ’S), TEP ’S), and similarly
we will use {+Z, m j}j.vzl to denote the common set of poles in |z| > 1 and their multiplicities for
T@n, Tl(u,v)’ TEM,U), Tl(P»S)’ TEP,S)'

We present some relevant properties of the Jost solutions to (1) in the next theorem, which is
the analog of Theorem 1 that lists the relevant properties of the Jost solutions to (7).

Theorem 10. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, the corresponding Jost solutions to (1) satisfy the following:

Na 79,7 —n 1\q,r . . .
@n zn g @0 z=n g9 qre even in z in their respec-

(a) Foreachn € Z the quantitiesz~" 9", 2" ¢
tive domains.

(b) The quantity z™" ¢f,q’r) is analytic in |z| < 1 and continuous in |z| < 1.

(c) The quantity z" ¢£,q’r) is analytic in |z| < 1 and continuous in |z| < 1.

(d) The quantity z" zp;‘”) is analytic in |z| > 1 and continuous in |z| > 1.

(e) The quantity z™" ¢‘>§?”) is analytic in |z| > 1 and continuous in |z| > 1.
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(f) The Jost solution ¢51q’r) has the expansion
(o]
=YK,z <, (122)
l=n
with the double-indexed quantities Kgg’r) for which we have
_ _4n
(q.r)
k=08 T, (123)
o

(q.r) _ (q.r)
dn dn+1 n (Soo S" )

g = pan p”  p@n D"
n(n42) ~ T ® §@n >
n
(q.r)
Dn—l

with DElq’r), DE,Z’”, S;q’r), sf,‘};” being the scalar quantities defined in (62), (64), (66), respectively,
and that ng’r) =0whenn+lisoddorl < n.

(g) The Jost solution J)Elq’r) has the expansion

(s3]
74.r) >(qr) 1
@) - Z R l lz] > 1, (124)

I=n

with the double-indexed quantities K’fg’r) for which we have

can _Ea” | (125)
e (qr) ’
En—l n

(q.r) _ ~(q.r)
_ 9ntn+1 Qoo _Qn_1

(q.r) (q.r)
z@n  _ plan En EnZy
n(n+2) ~ 7™ @n_nHany |°
( ) Fnt1(1=gnry) "n <Q°° Q. )
Eslq.r) Eizqi?

with E;q’r), Ef;g”), fiq’r), E;g”’ being the scalar quantities defined in (63), (65), (67), respectively,
and that ng’r) =0whenn+lisoddorl < n.

(h) For the Jost solution ¢§,‘1"), we have the expansion

o)

20 =Y Pz <,
=0
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with the double-indexed quantities Pfg’r) for which we have

1
(q@r) _ (@
PnO _Dn—l ’

(q.r)
Qn-1rn-1+ (1 - qn—lrn—l)s —
(@) _ 1@ n-2
Pn2 - Dn—z ’
—Tp—
and that Pfg’r) =Owhenlisoddorl <O0.
(i) For the Jost solution 45,(1q’r), we have the expansion
< 1
SR DN e STt
1=0

with the double-indexed quantities Pfg’r) for which we have

—qn-1
5ar) _ (q.r)
PnO - En—2 )
1
——n2 (q.r)
5@a.r) _ =(q.r) dn-1 1+qn_arn1 dn-1 Qn_3
P =FE ’
e (@)
Qn—3

and that P;g’r) =O0whenlisoddorl <0.

(j) The scattering coefficients for (1) are even in z in their respective domains. The domain for the
reflection coefficients is the unit circle T and the domains for the transmission coefficients consist
of the union of T and their regions of extensions.

(k) The quantity 1/T9") has an extension from z € T to |z| < 1 and that extension is analytic in
|z| < 1 and continuous in |z| < 1. Similarly, the quantity 1/T@") has an extension fromz € T
so that it is analytic in |z| > 1 and continuous in |z| > 1.

Proof. The proof is similar to the proof of Theorem 1 and is obtained with the help of (1) and
(12)-(15). |

In the next theorem, at z = 1 we present the values of the Jost solutions to (1), (7), and (8) when
the corresponding potential pairs (g, r), (u, v), (p, s) are related to each other as in (91)-(94). These
results will be useful in the solution to the inverse problem for (1).

Theorem 11. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and sat-

isfy (2). Assume further that the potential pairs (u,v) and (p, s) are related to (q,r) as in (91)—(94).
_ : (g.r) 7(q.r) (u,0) 7(u,0) (p.s) 7(D.5)

Then, at z = 1 the Jost solutions ¥, (1), ¥, (1), "(1), ¥, (1), ¥, (1), and ,; (1) have
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the values
1 0
I B (26
ijn rj 1
E T
(q.r) (q.1) j=n4j
Ey D
[lp(u U)(l) (M v)(l)] @) - , (127)
P R <1—r > q.>
" glan pln n Lij=n1j
(g, r) @]
E" . B
20 (p.5) E(q 2 <1 +dn z"j=n+1 ri) an Dg,ﬁ)
[¢ (1) 1pn (1)] = Ds[q,y) o D,(qq‘r) ) (128)
Egg.r) j=n+1 ¥ ng’r)

where D,(f’r), DE,Z”), E;q’r) , Efg’r) are the quantities defined in (62) and (63), respectively.

Proof. One can obtain (126) via iteration by directly solving (1) with z = 1 and using (12) and (14).
Similarly, one can get (127) via iteration by solving (7) with z = 1 and using (12), (14), (62), (63),
(91), and (92). One can obtain (128) in a similar manner. Alternatively, one can directly verify that
the two columns of (126) satisfy (1) with z = 1 with the respective asymptotics in (14) and (12).
Similarly, with the help of (62), (63), (91), and (92), one can directly verify that the two columns
given in (127) have the respective asymptotics in (14) and (12) and that they also satisfy (7) with
z = 1. In a similar way, with the help of (62), (63), (93), and (94), one can directly verify that the
two columns given in (128) have the respective asymptotics in (14) and (12) and that they each
satisfy (8) with z = 1. [ |

We see that at z = 1 the Jost solutions appearing on the left-hand sides of (126), (127), and (128)
can be expressed by using (22), (24), (30), (32), (122), and (124) as

B0 vew)] = [£2,89” B, k97, (129)
FZSRORRCH IS Dyl Syl vl § (130)
AR CN B ) il S it Sl B sy

For a column vector K with two components let use [K]; and [K], to denote the first and second
components, respectively, that is, we let

k], :=[1 0o]K, [K],:=[0 1]K. (132)

In the next theorem, we show how to recover the potentials q,, and r,, from (130) and (131), respec-
tively.
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Theorem 12. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (u, v) and (p, s) are related to (q,r) as in (91)-(94). Then,
g, and r,, are related to the Jost solutions for (u, v) evaluated at z = 1 given in (130) as

P [ (u, U)(l)] [ Elbirl{)(l)]l

dn = Egg,r) [ ~(u, U)(l)] [ 5:'_1{)(1)]1 (133)
il o] o), . (134)

D(q ) [¢(u U)(l)] [¢(u v)(l)] [¢(u v)(l)] ) [¢(u U)(l)] 1

Similarly, q,, and r,, are related to the Jost solutions for (p, s) evaluated at z = 1 given in (131) as

Dgg,r) [lp}(,lp,s)(l)]l [ (Ps)(l)]
£ [zl_),(qp’s)(l)]l ;p,s)(l):z_ [-n ,S)(l)]z ;p,S)(l)]l,

(135)

qn =

(ar) z,b(ps)(l) 3P9)
r, = Eo | L . (136)

& | [uri], [s0)],

Proof. From (127), we obtain

p{” [pi0) |
E(q ) [¢(u U)(l)] 1

=Y a5 (137)

which yields (133). Then, using (137) in (127), we get (134). Similarly, from (128), we have

5@ [z,b(p ”(1)]2 %

= rj, (138)
D" o] i
which yields (136). Using (138) in (128), we get (135). [ ]

Let us remark that, as seen from (126), we cannot determine g,, from either side of (129) even
though we obtain r,, as

= g0 - [#40) -
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4 | THE BOUND STATES

In this section, we analyze the bound states for each of the three linear systems (1), (7), and (8),
and we describe their bound-state data sets in terms of the bound-state z-values, the multiplicity of
each bound state, and the bound-state norming constants. We show how the bound-state norming
constants are related to the dependency constants and the transmission coefficients. Using a pair
of constant matrix triplets (4, B, C) and (A, B, C), we describe in an elegant manner each bound-
state data set for any number of bound states with any multiplicities. In the formulation of the
Marchenko method, we show how to relate the two matrix triplets to the relevant Marchenko
kernels in such a way that the procedure is generally applicable for both continuous and discrete
linear systems. When the potential pairs (q,7), (u,v), and (p, s) are related to each other as in
(91)-(94), we describe how the corresponding bound-state data sets are related to each other and
also how the corresponding pairs of matrix triplets are related to each other.

Let us first consider the bound states for (1). By definition a bound state for (1) corresponds to

L . . a ‘s
a square-summable solution in n € Z, that is, a solution [ ‘8”] satisfying
n
[Se]
D (letal? + 1841%) < +oo. (139)
n=—oo

The bound states for (7) and (8) are defined in a similar way, that is, for each of these two systems
a bound state corresponds to a square-summable solution.

Let us introduce the dependency constants related to bound states for each of (1), (7), and (8).
For each of these systems, at a bound state at z = z; the Jost solutions ¢,, and ¥, are linearly
dependent because ¢,(z;) decays sufficiently fast as n — —co and ¥,(z;) decays sufficiently fast
asn — +oo so that each of these solutions satisfy (139). Thus, a bound-state solution is a constant
multiple of either of ¢,(z;) and 1,(z;), and we can introduce the double-indexed dependency
constant y j, as the constant satisfying

$n(z)) = 7jo ¥Pu(z)), neZz. (140)

As seen from any of the first equalities in (72), (73), and (74), we observe that (140) is equivalent
to the vanishing of the Wronskian determinant at z = z; for all n € Z, that is,

¢n(zj) l)bn(zj) = 05 ne Z,
which is also equivalent to the linear dependence of the Jost solutions ¢, and ¥, at z = z;.

Similarly, at a bound state at z = Z;, the Jost solutions ¢, and 1, are linearly dependent and
for any of the systems (1), (7), and (8), this can be expressed in some equivalent forms such as

(]Sn(Zj) =7jo @Bn(zj)a necz,

where 7 is the double-indexed dependency constant, and also as

$a(z)) Pu(z)|=0, nez,
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indicating the linear dependence of the Jost solutions ¢, and ¢, at z = Z -

If a bound state is not simple, as seen from (76), (77), (79), (80), (89), and (90), the number
of constraints is equivalent to the multiplicity of the bound state, yielding as many dependency
constants as the multiplicity of the bound state. At a bound state at z = z; with multiplicity m;, by
proceeding as in Refs. 19 and 20, it follows that each of (76), (79), and (89) is equivalent to having

m; constraints relating the Jost solutions ¢, and 1,, and their z-derivatives as

d¢,(z)) & /k d'P,(z;)
= 2 () —gr osksm—y e

where (Il‘) is the binomial coefficient and we refer to the double-indexed scalar quantities y j, as

the dependency constants at z = z;. Note that (141) holds for each of the systems (1), (7), and (8).

We can use the appropriate superscripts so that yﬁ r), y% ) and y(p %) denote the corresponding

dependency constants for (1), (7), and (8), respectively. In a 51m11ar way, we obtain the double-
indexed dependency constants 7, at a bound state at z = z; with multiplicity m;, which relate
the Jost solutions ¢, and ¢,, and their z-derivatives as

d“¢.(Z) & /k d',(z)
e =Z(l)m_z> — T 0sksm-1 (142)
=0

Let us also introduce the “residues” ¢ of the right transmission coefficients for each of (1), (7),
and (8) when the corresponding right transmission coefficient T, has a pole at z = z; of order m;.
Using the expansion

Eim Eiom - t;

jm j(mj—=1) 1

T, = I 4 ! +ot —1—+0Q1), z-z,
z=z)™  (z—z)™! (z - z))

(143)

we uniquely obtain the residues ¢j, for 1 <k <mj and 1 < j < N. We remark that t(q & t(" U),

Ei ) are defined as in (143) by using the right transmission coefficients T(@"), 70 and T(p )

corresponding to (1), (7), and (8), respectively. In a similar way, we define the ° res1dues tji by
letting

] Em, Ejom;-1) i _
T, = — + — + - +0(1), z > Zj. (144)
(z-z)"  (z—zp™* (z— i)

Again using (144) with T(@"), TE"’U), and Tﬁp ) we obtain the residues fﬂ’r), EEZ’U), and f;i’s) corre-
sponding to (1), (7), and (8), respectively.
In the next theorem, we elaborate on the bound states for (1).

Theorem 13. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, we have the following:

(a) A bound state for (1) can only occur at a z-value for which T@" has a pole in the region 0 <
|z| < 1 or T has a pole in the region |z| > 1.
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(b) The number of bound states is finite, that is, the number of poles of T4 in 0 < |z| < 1 and the
number of poles of T%") in |z| > 1 each must be finite.

(c) A bound state is not necessarily simple, but its multiplicity must be finite.

(d) Since each of the transmission coefficients T9") and T9") are even in z in their respective
domains, the bound-state z-values are symmetrically located with respect to the origin of the
complex z-plane.

(e) At a bound state corresponding to a pole at z; for T@") with multiplicity m j» we have the two

vectors
BRI ED
d¢t"z) dy(z)
dz dz
et || Putep | (145)
dz? dz?
" ¢tz d" "))
| dij_l i | dzm]~—1 i

related to each other as in (141) via m; dependency constants y(q ") . Similarly, at the bound state

at z = zj corresponding to a pole of T4 in |z| > 1, we have the two vectors

[ ¢(q r)(zj) [ ¢(qr)(z]) T
d@t"z)) a9z
dz dz
42 d;(q,r)(z N d2 IL(q,r)(z N
e | e |, (146)
dz? dz?
" gz " )
| a2 A | "] ]

related to each other as in (142) via m; dependency constants y(q ") We recall that an overbar

does not denote complex conjugation and that gb;q r)(z), qu,q r)(z) zp(q r)(z) gb(q r)(z) are the four
Jost solutions to (1).

Proof. By Theorem 10, we know that z™" zpflq”) (z) and z" ¢§lq’r)(z) have analytic extensions from
z € T to |z| < 1. Since a bound-state solution to (1) must satisfy (139), with the help of the first
equality in (72) and (76), we prove that the bound states located in |z| < 1 occur if and only if the
two vectors listed in (145) are related as stated in (e) and that relation occurs at a pole of T@n), By
Theorem 10(j), we know that T(@") contains z as z2, and hence the bound states occur at the poles
of T@ atz = +z jfor1<j<NinO<|z| <1, each having the multiplicity m;. The finiteness
of N and of m; is already known from Theorem 5(e). In a similar way, with the help of the second
equality in (72) and (77), we show that the bound states of (1) in |z| > 1 occur at z = +Z;, where
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the two vectors listed in (146) are related to each other as stated in (e) and that T(¢") has a pole at
z = +Z; with multiplicity 772;. The number of such Z;-values denoted by N and each multiplicity
m; are both finite as a consequence of Theorem 5(e). [ |

In Theorem 13 and its proof, the bound-state z-values and their multiplicities are described by
the sets {+z;,m j}j.\’zl and {+z;,m j}?]:l without using the superscript (g, ). For clarity, one must

use 297 m @7 N@n)| #9740 and N@ for (1) and similar notations to describe the bound

states for (7) and (8). Thejn, the bound states for (7) and (8) can be described by the corresponding
version of Theorem 13.

Let us also remark that from (34) and the analog of (34) for (p, s) we conclude that the bound
states for (7) and (8) can equivalently be described as in Theorem 13 by using either the left trans-
mission coefficients or the right transmission coefficients. If the three potential pairs (g, r), (u, v),
(p, s) are related to each other as in (91)-(94), then from Theorem 9 it follows that

T(q,r) — Eggar) Tl(.u’v) E(q ) T(p 5) T(u U) 1 T(P,S)

(q r) p@n 1 7

Peo (147)
7(q,r) — @) L) _ f@r) #(ps) _ 1 wv) _ 1 5(ps)
7@ = p " T = D" T, 2 T, = 5@ T,

and hence the sets {+z;, m j}]jV:1 and {+z;, m j}lj\_’:l refer to the common sets of bound states and the
corresponding multiplicities for (1), (7), and (8). In that case, from (147) it follows that the residues
corresponding to (1), (7), and (8) are related to each other as

£ _ E(q ) t(" v) _ E(q ) P, S)’
Jk Jk
(148)
—(q n_ D(q ) t(” v) _ D(q ) (p S)‘
] _]k

In the next theorem, when the potential pairs (g, 7), (u, v), (p, s) are related to each other as in
(91)-(94), we present the relationships among the corresponding dependency constants.

Theorem 14. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy

(2). Assume further that the potential pairs (u, v) and (p, s) are related to (q, r) as in (91)-(94). Then,
the corresponding dependency constants yﬂ r), VEZ U), ygi )

land1<j<Nas

are related to each other for0 <k < m; —

(gr) (gr) _  (p.s)
D jk jk

(q.r) (qr) dlo(z)) _ (u0)
Do =¥ 0( ) azt Vjtk-1y

(149)

where we have defined

(150)
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Similarly, the corresponding dependency constants 7;?{’”, ;75.';’”), )75%8) are related to each other as

7Ps) _ plar) 5(qr)

wo) _ plar) wk (kY do@) _gr (150
-(u,v) _ q.r a(zj) _(q,r
Vi = Ee Zl=0<7> azt L jtk=1y

Proof. Using (106) and (108) in the Wronskian determinant on the right-hand side of the first
equality in (72), we get

’(,lq’r) lp’(,qu‘) SIP,S) ;P,S) , (152)

= D" (det[A97])

where A;q’r) is the coefficient matrix appearing in (106) and (108), that is,

1 dn
@n a0
E D
I (153)
57 o
From (62) and (153), we see that the determinant of A,(f’r) is given by
1
det [20] = ——, (154)
(@) (.
E,” D,

and hence det[AElq’r)] # 0 for any integer n. Using (152), with the help of the first equality in (74),
we obtain

0! (2) = DL (det[A97])afV@),  nez. (155)

From (155), we conclude that (76) for the potential pair (g, r) occurs if and only if (89) for the
potential pair (p, s) occurs. Comparing (141) for (g, r) with (141) for (p, s), with the help of (106)
and (108) and the fact the matrix A,(f’r) defined in (153) is invertible, we establish the equality in
the first line of (149). In a similar way, with the help of (77), (90), and (142) written for the pairs
(g,r) and (p, s) and also using (110) and (112), we obtain the equality in the first line of (151). The
equality in the second line of (149) is established in a similar manner by using (76), (79), and (141)
written for the pairs (g, r) and (u, v) and also using (105) and (107). The equality in the second line
of (151) is established in a similar manner by using (77), (80), and (142) written for the pairs (g, r)
and (u, v) and also using (109) and (111). [ ]

Asexpected, for a unique solution to an inverse problem, for each bound state we need to specify
a corresponding bound-state norming constant. If a bound state has a multiplicity, then we must
specify a separate norming constant for each multiplicity. In the case of (1), (7), and (8), because
the bound-state locations occur symmetrically with respect to the origin of the complex z-plane,
we mention that the bound-state norming constants for those symmetric pairs coincide.
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As a summary, in specifying the bound-state data sets for each of (1), (7), and (8), in addition
to providing {+z;, m j}]jV:1 and {+z;, m j}N—l we also need to provide the sets of bound-state norm-

. j N RSN . - _
ing constants {{c jk}kmi 0 =1 and {{¢ jk}kmi 0 }Ij\’:l, where the double-indexed quantities ¢, and Cjy

(q.r)
jk
for the norming constants for

denote the norming constants associated with z; and z;, respectively. Clearly, we must use ¢

and Eﬁ’r) for the norming constants for (1), use ) and EE.Z’U)

Jjk
(7), and use cﬁi’s) and c'(.i’s) for the norming constants for (8). In the presence of multiplicities,
it becomes extremely complicated to deal with bound states. That is why in the literature most
researchers make the artificial assumption that the bound states are simple.

The bound states with multiplicities can easily and in an elegant way be handled'>'*~?* for both
continuous and discrete systems by using an appropriate constant matrix triplet (A4, B, C) for a
KdV-like system or a pair of triplets (4, B, C) and (A, B, C) for an NLS-like system. Let us mention
that the potentials appear in the block-diagonal format in the linear system in the KdV-like case
and the potentials appear in the block off-diagonal format in the linear system in the NLS-like case.
In all these cases, the relevant tool to solve inverse scattering problems is the Marchenko method.
In the continuous case, the Marchenko method involves a linear integral equation known as the
Marchenko equation or a system of linear integral equations to which we refer as the Marchenko
system. In the discrete case, the integrals in the Marchenko equations or in the Marchenko sys-
tems are simply replaced by the corresponding summations. In either the continuous case or the
discrete case, the matrix triplet (A, B, C) in the KdV-like case or the triplets (A, B, C) and (4, B, C)
in the NLS-like case are chosen in such way that the part of the kernel of the Marchenko system
related to the bound states is expressed in a simple manner in terms of such matrix triplets.

In this paper, we deal with NLS-like discrete systems, and hence we use the pair of matrix
triplets (A, B, C) and (A, B, C). If there is a bound state at z = z j with multiplicity m; for 1 < j <
N, then, without loss of any generality, the triplet (A, B, C) can be chosen as

A 0 - 0 B,
0 A, - 0 B,

A= . B = 5 C = [Cl C2 CN] ) (156)
0 0 AN By

in such a way that A is a block-diagonal matrix, B is a block column vector, and C is a block row
vector with

z;i 1 0 0 0
0 z; 1 0 0 0
0 0 z = 0 0 ;
A= . B :=| |, (157)
: : : . : : 0
0 0 0 z; 1 1
0 0 0 0z
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C] = Cj(mj—l) Cj(Mj—Z) Cj1 Cj()] . (158)

As seen from (157), A; is an m; X m; matrix in the Jordan canonical form with z; appearing in the
diagonal entries, and B; is an m; X 1 matrix with 0 in the first (m; — 1) entries and 1 in the m;th
entry. As also seen from (158), the 1 X m; matrix C; is constructed from the norming constants
¢jk- In our paper, the matrix triplet (A}, B, C;) is chosen to include the contribution from both
z = zjand z = —zj, and this will be seen from (175) and Theorem 17(d).

In a similar way, for the bound states at z = +Z; with multiplicity m; for 1 < j < N, without

loss of any generality, the corresponding triplet (A, B, C) can be chosen as

(4, o - o] B, |

) 0 Az 0 ) '2 ) ) ) )

A= , B:= , C:=[|¢, C, - Cgl, (159)
0 0 Ay By

in such a way that A is a block-diagonal matrix, B is a block column vector, and C is a block row
vector with

z; 10 0 0
0z 1 0 0 0]
) 0 0 z o o
A] = , B] = , (160)
0
0 0 0 z; 1 1
[0 0 o 0 z]
Cj = |Gom-v Cjon—» v Cp C_jo]‘ (1e1)

As seen from (160), A j is an m; X m; matrix in the Jordan canonical form with Z; appearing in
the diagonal entries, and B I isanm X1 matrix with 0 in the first m i—1 entries and 1 in the m j th
entry. As also seen from (161), the 1 X r; matrix C; is constructed from the norming constants
Cjk- In our paper, the matrix triplet (A j,B s C i) is chosen to include the contribution from both
z = zjand z = —Z, and this will be seen from (176) and Theorem 17(d).

The Marchenko system associated with either of (7) and (8) is given by

_ 0 Qpim had _ 0 Ql+m 00
[Knm Knm] + + Z [Knl Knl] = > m>n,
Qim 0 I=n+1 Qim 0 0 0
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where we have defined

1 _

Kom 1= 5= dzy,z7" !, R,, := dzp,zm, (163)

~

Q=R + CA*1B, Oy :=Ri +C(A) k 'B, k even,

(164)
Qk =0, Qk =0, k odd,
with
Ry := 2; dzRzF!, R, := —%dsz‘k 1 (165)

We remark that 1,, and 1, appearing in (163) are the Jost solutions satisfying (12) and (14), respec-
tively, and that the integral in (163) denoted by ¢ is the contour integral along the unit circle T
in the positive direction. In fact, for the potential pair (u, v), the quantities K,,,, and K,,,,, are the
column vectors appearing in (22) and (24), respectively. The scalar quantities R and R appearing in
(165) are the right reflection coefficients, and the matrix triplets (4, B, C) and (A, B, C) appearing
in (164) are those described in (156) and (159), respectively.

Let us also remark that K,,,, = 0 and K,,,,, = 0 when n + m is odd, and this is already stated in
Theorem 1, Corollary 1, and Theorem 10 for the potential pairs (u, v), (p, s), and (g, r), respectively.
Similarly, we already know that the scattering coefficients are even in z for each of these three
potential pairs. Hence, from (165) we see that R;, = 0 and ﬁk = 0 when k is odd. Thus, the second
line of (164) is consistent with (162) and (165).

The derivation of (162) is obtained as follows. We can express the Jost solutions ¢,, and ¢,, sat-
isfying (13) and (15), respectively, as linear combinations of 3,, and 9, as

¢n T, = J)n + wn R
(166)
¢EnTr =9, +1;Z’nR’

where T, and T, are the right transmission coefficients appearing in (17) and (19), respectively. We
use the Fourier transform on (166), and for m > n we get

2 — dz¢, T, z" ! = —%dngn m=1 4 21 %dngnRzm_l, (167)

1 S T —m-1 . 1 b Rzml1
Tl }I{dz ¢, T,z =507 jl{dzz,bnz + T dzy,Rz , (168)

yielding the two columns of (162).
Using the notation of (132), from (162) we get the two uncoupled scalar equations for m > n as

[Kim], + Quem = X Z;in+1 [Knj] |, @41 Quym =0,

(169)
K], + Qs = T i1 Do (K, @yt Qi = 0,
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and once the system (169) is solved, we also have

[K”m]l == Zznﬂ [Knl]l Qiims

o _ (170)
[Knm]z == Zl=n+1 [Kl’ll]z Ql+m-

Let us recall that K,,,,, = 0 and K,,,,, = 0 when n + m is odd, and hence the lower indices for the
summations in (169) and (170) actually start with n + 2 instead of n + 1. Nevertheless, weuse n + 1
there instead of n + 2 so that (169) and (170) appear in the standard form as a generic Marchenko
system in the discrete case. When we use (169) corresponding to (7), we recover the potentials u,,
and v, as

_ (u,v) _ | gmp)

Un = Kn(n+2)] 1 Un = Kn(n+2)]2 ’ a7)
which are compatible with (23) and (25), respectively. In the same manner, if we use (169) corre-
sponding to (8), we recover the potentials p,, and s,, as

j— (pss) — '(P’S)
bn = [Kn(n+2) 1 Sn = Kn(n+2)]2 ’ (172)

which are compatible with (31) and (33), respectively.
Next, we describe the construction of the norming constants ¢ and ¢ in terms of the residues
tji and ;. and the dependency constants y ;. and 7 .

Theorem 15. Assume that the potentials u, and v, appearing in (7) are rapidly decaying and 1 —
u,L, # 0forn € Z. Letususe{+z;,m and{+z;,m -}N_ to denote the corresponding sets for the
(u,0)

J? J}j 1
bound-state locations and their multiplicities. Then, the norming constants Cii appearing in (158)

are related to the residues tiz v) appearing in (143) and the dependency constants )/E.Z’U) appearing in

(141) as

mj—1-k y(" ,0)

(uv) (uv) gt .
=_2 Z eeied T 1<j<N, 0<k<mj—1. (173)

A1, (u,0)

Similarly, the norming constants Cix appearing in (161) are related to the residues fjk’v appearing

in (144) and the dependency constants }7%’0) appearing in (142) as

7(u ,0)

_(uv) —(uv) Jjl . = _
=2 z Sy 1<j<N, 0<k<m;—1. (174)

Proof. For notational simplicity, we outline the proof without using the superscript (u, v) on the
relevant quantities. As seen from (164), the contribution to the Marchenko kernels Q; and Q
from the bound states are given by CA¥~'B and C(A)*~!B, respectively. Thus, the contribution
to the Marchenko kernel Q. from the bound state at z = z; is C jAz.‘_lB /2 and the contribution
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to the Marchenko kernel Q;, from the bound state atz = Z jis C | (A j)‘k‘lB_ /2. This indicates that
the contribution from the pole at z = z; of T, to the left-hand side of (167) is evaluated as

1

57 P Az Trz" ! = =3 ZKnlC Al (175)

Similarly, the contribution to the left-hand side of (168) from the pole at z = Z; of T, is evaluated

as
—me1
27i 7{ 2¢uTez

Using (143) on the left-hand side of (175), we evaluate the aforementioned contribution as

NI»—A

Z w0 Cj(A)~-m=1B;, (176)

"t df (g, 2
k! dzk

1

T m— 1
5 dz¢, T,z

(177)

k=0 z=z;

Using (141) on the right-hand side of (177), we write that right-hand side in terms of the
residues ¢, the dependency constants y i, and d“y,(z D/ dz*. Finally, we write the expansion
for dq,,(z D/ dz* in terms of the double-indexed quantities K,,; appearing in (22). By equating the
result to the right-hand side of (175), we establish (173). We establish (174) in a similar manner by
evaluating the left-hand side of (176) with the help of (144) and then by using (142) and also by
using (24). |

As the next corollary indicates, the result of Theorem 15 also holds for the potential pair (p, s)
appearing in (8). A proof is omitted because it is similar to the proof of Theorem 15.

Corollary 4. Assume that the potentials p, and s,, appearing in (8) are rapidly decaying and 1 —
PnSn # 0 for n € Z. Let us use {+z;, mj}ﬁ.\’_ and {£z;, rr‘zj}N_ to denote the corresponding sets for

the bound-state locations and their multiplicities. Then, the norming constants c(p Y and ¢ '(p 9 are
related to the corresponding residues t(p % and t(p ) and the dependency constants y(p ) and y(p )
as

( ) mi—1—k ( ) y(PvS)

p S J DS g .
22 _](k+1+l) R 1<j<N, 0<k<m;—1,
(178)
‘(pb) D A /il <j<N, 0<k<m
- Z ](k+1+l)T’ 1<j<N, 0<k<m;—-1

We note that the norming constants are related to the residues and the dependency constants

in the same manner both in Theorem 15 and Corollary 4. Hence, without loss of any generality,

(q,r) ~(q,r)

for the potential pair (g, r) we can define the norming constants Cir and Cir

C(.q r) qu r)

, the respective

row vectors and appearing in (158) and (161), and the respectlve row vectors C(4") and

clan appearing in (156) and (159) in Corollary 4. The result is stated next.
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Definition 1. Assume that the potentials g,, and r,, appearing in (1) are rapidly decaying and

satisfy (2). Then, the corresponding norming constants ciq " and ¢ ‘(q ") are related to the residues
tﬁ ") and t(q ") and the dependency constants y(q ") and y(q ")
( ) . m;—1—k ( ) ri
qr j qr il :
¢y ==2% Eierien) I1<j<N, 0<k<m;-1,

(179)
(q.r)

-(q n . 22'"1 1=k @) T
- J(k+l+l) n’

If the potential pairs (g, ), (u, v), and (p, s) are related as in (91)—(94), then the corresponding
residues are related as in (148) and the corresponding dependency constants are related as in (149)
and (151). In the next theorem, when (91)-(94) hold, we show how the corresponding bound-state
norming constants are related to each other.

Theorem 16. Assume that the potentials q,, and r, appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (u, v) and (p, s) are related to (q,r) as in (91)-(94). Then,

the corresponding bound-state norming constants c(" ) and c(“ ) are related to c§p Y and c(p ) as
v = c“”)<1 A ) 1<j<N,
(180)
C‘«EP,S) — Cﬁ-u’v) [I _ (AJ)—Z] , 1 S] < N,
where (A;, Bj,C;) and (AJ, s C: ) are the matrix triplets appearing in (157), (158), (160), and (161).

Consequently, we have
cwv) = cs) ([ — A—Z) ,

- _ - (181)
cps) = ) [1 —(4) ] ,

where (A, B,C) and (4, B, C) are the matrix triplets appearing in (156) and (159), respectively. Sim-

ilarly, the norming constants c(q " and c(q ") are related to the norming constants c(p % and cii )
as
@n
C(q ) _ E(qr) C(p ) 1<j<N,
Dy
<@r) _ D" ~ps) . (152
C; = a0 ¢ 1<j<N,
and hence we also have
(q.r)
C(P:S) = Dé)g ) C(q9r)
q.r ’
Feo (183)

o) = oo") clan
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where DE,Z”) and Ef;{”) are the constants appearing in (62) and (63), respectively. Consequently, we
get
plan
Ccwv) = Bx _ ~(qr) (I _A—Z),

E(q,r)

gan S B (184)
= 255 ¢ [I —(A) ] .

Proof. We will provide only the proof of the first line of (180) because the second line of (180) can
be proved in a similar manner. We note that the first line of (148) yields

(p.s) _ ,(wv)
L =L (185)
and from (149), we have
k l
d'o(z;)
(Ps) _ k) P
Vie = g (l dzl Vite=1y (186)

where we recall that o(z) is the scalar quantity defined (150). For the matrix A; defined in (157),
we have

[ 1 2 3 (1" (m;-1) 1" m;
= T3 A rj T
Z]z. Zj Z}t Zj J Zj J
o L _z 0" m=2) DMy
z2 z3 mj—1 RS
J j Z; J
o o 1 D" m=3) (DT my-2)
2 Z_2 Mj—Z mj—l
AJ = J Zj Zj . (187)
1 2
0 0 0 > -5
J J
0 0 0 - 0 .
z
L J n

Using (150) and (185)-(187) on the right-hand side of the first line of (178), we establish the first
line of (180). By using the summation over all the bound states, that is, summing over 1 < j < N,
from the first line of (180) we obtain the first line of (181). In a similar manner, the second line
of (180) yields the second line of (181). Finally, the proofs of (182) and (183) are obtained by using
(148), the first lines of (149) and (151), and (179), and by comparing the result with (178). [ |

Recall that we use ¢, ¥ i, and ¢ to denote the residues, the dependency constants, and the
norming constants, respectively, corresponding to a bound state at z = z; with multiplicity m;
for each of the linear systems (1), (7), and (8). In the next theorem, we compare those quantities
with the corresponding quantities related to the bound state at z = —z;. We also show that the
contributions to the Marchenko kernels from z = z; and from z = —z; are equal.
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Theorem 17. For each of the linear systems (1), (7), and (8), as indicated in Theorem 13, let the
bound states and their multiplicities be described by the sets {+z;, m j};\f:l and {+z;, m; }Ij\_]:l‘ Let the
residues t i and t ;. be defined as in (143) and (144); the dependency constants y j and ¥ j be defined
as in (141) and (142), respectively; and the norming constants cj, and ¢ be defined as in (173) and
(174), respectively, or equivalently as in (178) or (179). We have the following:

(@) I_;et t jklzzzj a_nd Lik |Z:_Zj denote the residues at z = z; and z = —z;, respectively. Similarly, let
£k |z=zj andt jklzz_zj denote the residues at z = Zj and z = —Z;, respectively. We then have
k
tjklz:—zj =(-1) tjklz:zja 1<k< mi,
p (188)
lilz=—z; = (1) Glz=z,, 1<k <.

(b) Letyj |Z=Zj andy jil z2=—z; denote the dependency constants at z = zj and z = —z;, respectively.
Similarly, let 7 | 2=2 and ¥ ji| z=-z denote the dependency constants at z = Z; and z = —Z;,
respectively. We then have

k
‘)/jk|Z=—Zj = (_1) yjklz:zj’ 0 < k < mj — 1,
. (189)
Tiklz=—z; = (=1)" Vjkcl 2=z 0<k<mj—1
(c) Let ci|y—,. and cii|,——_,. denote the norming constants at z = z; and z = —z;, respectively.
Jklz=z; jklz=—z; g Jj j P
Similarly, letc‘jklzzz—j and c'jklzz,z—j denote the norming constantsatz = Z; and z = —Zj, respec-
tively. We then have
k
cjk|Z=—Zj = (_1) cjklz:zjy 0< k < mJ — 1,
. (190)
Ejklz:—z'j =(-1) Ejk|z=2j7 0<k< m; — 1.

(d) The contribution to the Marchenko kernel Q. ,, from z = z; is equal to the contribution from
z = —z;. Similarly, the contribution to the Marchenko kernel Q,,. ,, from z = Z; is equal to the
contribution from z = —Z;.

Proof. The proof of (a) is obtained as follows. We know that the transmission coefficients T, for

each of these three linear systems contain z as z2. From (143), using T,(-=z) = T;(z), as z —» —z |

we obtain

(=)™ Lim, (-1t Liim;-1) =Dty

T(2) = (z+z)™ * (Z+Zj)mj—1 (z +2zj)

+ 0(1),

which yields the first line of (188). The second line of (188) is obtained from (144) by proceeding in
a similar manner. This completes the proof of (a). Let us now prove (b). From Theorem 1(a) and
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its analogs in Corollary 1 and Theorem 10(a), we get

Yu(=2) = (=1)" Pp(2),  $u(=2) = (=1)" $,(2),

B B B B (191)
Pu(=2) = (1) P,(2), Pn(=2) = (-1)" .(2).

Using the first line of (191) in (141), we determine the dependency constant y jy| 2=—z; and establish
the first line of (189). The second line of (189) is obtained in a similar way by using the second line
of (191) in (142). This completes the proof of (b). To prove (c), we proceed as follows. Using the
first lines of (188) and (189) in (173), we determine the norming constant ¢ Jk| — and establish

the first line of (190). The second line of (190) is proved in a similar way by using the second lines of
(188) and (189) in (174). This completes the proof of (c). Let us finally prove (d). The right-hand side
of (175) is the contribution to the Marchenko kernel Q,,,,, from the bound state at z = z;. Using
(175) and (177), with the help of (157) and (158), we evaluate the contribution to the Marchenko

kernel Q,,, , from the bound state at z = —z; and we obtain

1

192
5 ; (192)

Zj>—z;

dz¢, T, z" 1 = —= ZKnl< A5.+m—1Bj)

where z; — —z; is used to indicate the substitution of —z; for z;. From (158) and the first line of
(190), we get

Cjl = Cjl,_,, diag { (=1, (- D™ (=D (193)

Z——Z

where diag is used to denote the diagonal matrix. Similarly, from (157), for any integer n we get
1 2
ALBjlm ) = ding { (-1 )" <) ATl (194)

Using (193) and (194), when n + m and n + [ are both even integers in (192), we confirm that
the right-hand side of (192) is equal to the right-hand side of (175). Hence the contribution to the
Marchenko kernel Q,,,, from z = z; is equal to the contribution from z = —z;. Similarly, we
prove that the contribution to Q,,,, from z = —Z; is equal to the contribution from z=z;. 1

Let us remark on the simplicity and elegance of the use of matrix triplets in dealing with bound
states with multiplicities. The formulas in (181) are very simple compared to the formulas written
for the individual bound-state norming constants. In fact, to extract the formulas for c%’”) from
the first line of (180), we postmultiply that first line by a column vector with m; components so
that we get

;1],2 ,0) C(P S)<I A )emj—l—k’ 0< k < mj -1,

where we use e for the column vector with m; components with all the entries 0 except 1 in the
Ith entry. In a similar way, from the second line of (180), we obtain

—(P s) ~(u,v) 214 i
Jk Cj [I - (Aj) ]em},_l_k, 0<k< " — 1,
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where we use ¢; for the column vector with 72; components having 1 at the Ith entry and 0 else-
where.

Let us also remark that the fundamental result given in (181) is compatible with (164), from
which we obtain the Marchenko kernels Q;{u’v) and Q;{u’v) and the Marchenko kernels chp ) and

Qf{p %) When (91)—(94) hold, we see that (118) and (119), respectively, yield

me=<1__)R@®

z2

(195)
R(PS) = (1 _ L) Rv).
z2
Using (195) in (165), we obtain
swv) _ pps) _ p(p.s)
R =R R,
(p.s) 5(p.s) (196)
5(ps) _ pwv) p.s
Rk - Rk Rk+2
From (164) and (196), we see that in the absence of bound states, we have
Q(u v) _ Q(p 5) Qip sz),
(197)

(p,s) (u,v) (u,v)
Q Q Qk+2

In fact, (197) holds even in the presence of bound state. Then, comparing (196) and (197), we get

C(u,U)Ak—lB — C(p,S)Ak—lB _ C(p’s)Ak_3B,

kl— k3—

(A 1B = cw)(A) — CV(A)~

which yield the important result given in (181). Let us also mention that from (197), we get

) ()
Q Zl OQk 21° (198)

(wv) _ (p:s)
Q Zz =0 Qk+2l

In the next theorem, we show that, when the potential pairs (i, v) and (p, s) are related to each
other as in (91)—(94), their corresponding Marchenko systems hold simultaneously.

Theorem 18. Assume that the potentials q, and r, appearing in (1) are rapidly decaying and sat-
isfy (2). Assume further that the potential pair (u,v) appearing in (7) and the potential pair (p, s)
appearing in (8) are related to (g, r) as in (91)-(94). Then, the Marchenko system related to (7) holds
if and only if the Marchenko system related to (8) holds.
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Proof. The proof is lengthy and it involves some fine estimates. Let us define

[s9)

W =K+ Y RED oY), (199)
I=n

Wil o= R + 3 K40 ), (200)
I=n

(69
Wb = kP + Y kP afP
I=n

+m’

Wb = gD 4+ Y kY o), (201)
I=n

As seen from (162) and the first two equations in (23) and (25), we need to prove the equivalence
of the Marchenko system

W =0,  m>n,
(202)
W) =, m>n,
and the Marchenko system
W,ﬁ‘j;f) =0, m>n,
(203)
w2 =0,  m>n

We provide the proof by relating WS;,;U) to W;‘l;f). The relation between Wff,‘,’qv) and WSf;,’ls) can be
established in a similar manner and hence that proof will be omitted. Using (105) and (106), we
relate ¢§,“’”)and z,bEIP ) to each other and apply ¢ dzz="~1 /(27i) on the resulting equality. Simi-

larly, using (109) and (110), we relate $“"’and zﬁﬁlp ) to each other and apply ¢ dzz"~1/(27i) on
the resulting equality. Then, with the help of (91) and (94), we obtain

ool o [P 0w L
u,v u,v _ ,
Kym ™ — Koms2) = Kom >
Sp—1 1 0 0 Sn—1 1
[ 1 0] 1 —u 1 0
g gl 5(D.5)
nm = nm n(m—2)’
Sp—1 1 Sp—1 1 0 0
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where we have also used (163) for (u, v) and (p, s). Using (199) and the first line of (197), after some
simplifications, for m > n we write W( appearing in (200) as

1 —u, 0 0
Wi = Wb wey (204)
Sp—1 1+ UpSp—1 Sp—1 1

From (204), when m > n + 2 we conclude that the first line of (202) holds if and only if the first
line of (203) holds. We must analyze the case m = n + 2 separately because of the appearance of
Wff() S in (204). Toward that goal we apply ¢ dz z"~! /(27i) on both sides of the first line of (166)
with the potential pair (p, s). We then get

1 (P8) 1(PS) n—1 _ ®s) n-1, L (p-9) -
T Zh= Zh— R(p,s) n 1_ 2
> }{dzc;b 2m dz, to= dzy, z (205)

In this case, besides the bound-state poles of TEP ) in 0 < |z| < 1, also the point at z = 0 con-
tributes to the integral on the left-hand side of (205). With the help of (163), (165), (175), from (205)
we get

|:Zn¢’(/lp’s):| T(P S)(O) Z K(P ,S) C(p S)Al-H’l lB K(P S) + Z Kflll)»S) Iél(i::) (206)

z=0 I=n

Using the analogs of (26), (27), and (49) for the potential pair (p, s), we have

(p.s) 1
D
T%(0) = = ) . (207)
D psS —Sn—1

[ans;p,S)]

z=0

With the help of (207) and the first equality in (164), we write (206) as

(p.s) 1
P9 | ®5) o) _ Do
Knn ZK Ql+n - (ps) ’
Dn ’ —Sp-1

which, with the help of (201), is seen to be equivalent to

(p.s) 1
- D
W = == (208)
Dn—,l —Sp-1

Because of (208), we see that the second term on the right-hand side of (204) vanishes when m =
n + 2. Consequently, we conclude that the first lines of (202) and (203) hold simultaneously also
whenm =n + 2. |
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5 | THE SOLUTION TO THE DIRECT PROBLEM

In this section, when the potentials g,, and r, appearing in (1) are rapidly decaying and satisfy
(2), we provide the solution to the direct scattering problem for (1), that is, the determination of
the scattering coefficients and the bound-state information for (1) when the potential pair (g, r) is
given. The steps in the solution to the direct problem are outlined as follows:

(a) Using (g,,, ;) in (1), we solve (1) with the asymptotic conditions (12)-(15) and uniquely con-
struct the four Jost solutions zp(q ) <;l>(q ") zp(q ") and qb(q ",

(b) We recover the scattering coefficients T(q ", T(q N, R@N R@r 1@n and L@ by using the
asymptotics in (16)—(19) of the already constructed four Jost solutions.

(c) Next, we determine the poles and their multiplicities for the transmission coefficient T(¢")
in 0 < |z| < 1 and the poles and their multiplicities for the transmission coefficient 7(¢") in
|z| > 1. Note that such poles occur in pairs. We use the notation that the poles of T\@") in
0 < |z| < 1occurat z = +z; and the multiplicity of the pole at each of z = z; and z = —z; is

mjfor1 < j < N.Thus, theset{+z;, m; }Ij\]:1 is uniquely determined from the poles of T(¢") in

0 < |z| < 1.In asimilar way, we use T(@") to determine its poles in |z| > 1 and the multiplicity
of each pole. We use the notation that the poles in |z| > 1 occur when z = +Z; for 1 < j <N
and the multiplicity of the pole at each of z = z; and z = —Z; is ;. Thus, we also obtain the

set{+z;, mJ}J 1

(d) With the help of (143) with T@"), we determine the residues tﬁ’r) forl<j<Nandl1<k<

m;. Similarly, with the help of (144) with T@@") we obtain the residues t';i’r) for1 < j < Nand
1<k <m;.

(e) Using (141) for the potential pair (g, ), we determine the dependency constants y(q " for 1 <
J <N and0 <k <m; — 1. Similarly, using (142) with the potential pair (g, r), we obtaln the

dependency constants y ‘(q " for 1 <j<Nand0<k<mj—1

(f) Using the constructed re51dues t(q ") and t(q ") and the dependency constants y(q ") and )75?{ r),

(g.r)

i and c(q ") Note that we also get

from (179) we obtain the bound-state norming constants c
the triplets (A, B, @)y and (A, B, C(@") via (156)-(161).

6 | THE MARCHENKO SYSTEM

In this section, we introduce the linear system (209), which is the Marchenko system correspond-
ing to (1). The input to (209) consists of Q;{q’r) and Qiq’r) given in (210) constructed directly from
the reflection coefficients and the bound-state information for (1). We also describe the recovery
of the potentials g,, and r,, appearing in (1) from the solution to the Marchenko system (209), and
this is done in (221) and (222).

A comparison between (209) and the standard Marchenko system (162) for an AKNS system
such as (7) and (8) shows that (162) and (209) have exactly the same form. Furthermore, as seen
from (210), the input sets Q(kq’r) and Qf{q’r) to (209) are directly constructed from the reflection
coefficients and the bound-state information from (1) alone. Those input data sets are not con-
structed from the scattering data for any related systems such as the AKNS system (7) and (8).
Hence, (209) can be used to solve the inverse problem for (1) without having to relate (1) to any
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other system such as (7) or (8) via any transformation. The only minor difference between the
Marchenko theory for (1) using the Marchenko system (209) and the Marchenko theory for (7)
using the Marchenko system (162) is how the potentials are expressed from the solutions to the
corresponding Marchenko systems. In the Marchenko theory for (1), the potentials g,, and r,, are
constructed as in (221) and (222), respectively, from the solution to the Marchenko system (209).
On the other hand, in the Marchenko theory for (7), the potentials u,, and v,, are constructed as
in (171) from the solution to the Marchenko system (162).

The formulation of the Marchenko system for (1) is a significant step in the analysis of inverse
problems. That Marchenko system directly uses the scattering data from (1) alone, and hence
the Marchenko theory for (1) is based on the use of (209) alone. This has also a direct relevance
to the inverse scattering transform method to solve integrable evolution equations. The relevant
initial scattering data and its time evolution can directly be used as input in the corresponding
Marchenko system. We expect that our method of formulating (209) can also be applied on some
other linear systems, both in the continuous and discrete cases, for which a directly relevant
Marchenko theory has not yet been developed.

In the next theorem, we present the derivation of the Marchenko system for (1).

Theorem 19. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, the Marchenko system given in (162) holds with the relevant quantities listed in (163)-(165)
all related to (1), that is, we have

(g.r)
0o Q
[M(qn M| 4 o m
qr
‘Qn+m 0
(g.r)
Q 0 0
1
+ Z [M<qr) ;qlr)] R - ., m>n (209)
@ o | {o o
m

Here, the scalar quantities Q;{q’r) and Q;{q’r) are related to the scattering data set for (1) as in (164),
that is,

Qf{q,r) - ) 4 clan pk-1p, k even,

2
k
@D ke
Q" = R ' @AY B, K even, (210)

Q% =0, Q% :=0, kodd,

with I?I(Cq’r) and ﬁl({q’r) being related to the reflection coefficients R@") and R9") as in (165) and the
matrix triplets (A, B, Cc@) and (A, B, C(9") are as in (156) and (159), respectively.

Proof. A direct proof can be given by using the procedure described in (166)-(168). We present
an alternate proof, and this is done by exploiting the connection between (1) and (8) when the
potential pairs (g, r) and (p, s) are related as in (93) and (94). Starting with the Marchenko system
(162) with the relevant quantities all related to the potential pair (p, s) of (8), we transform that
Marchenko system and the relevant quantities so that they are all related to the potential pair
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(g,r) of (1). From (106) and (110), we see that

-1 -1
(ps) _ 1 < (q,r)> (@r) s _ 1 ( (q,r)) 7(q.r)
n - D(()g’r) An n ’ n - Ec()g’r) An n ’ (211)

where AElq’r) is the matrix defined in (153) and the quantities ng”) and Ei‘g”’ are the scalar con-
stants appearing in (62) and (63), respectively. From (154), we know that the matrix Afﬁ’” is invert-
ible for all n € Z. Thus, with the help of (163) and (211), we conclude that

1 -1 _ 1 -1
kP9 = (Aﬁlq'”) K90 g®9 - _<A§f”)> RYan. Q12)
plan E@n

From the second equalities in (118) and (119), with the help of (165), we obtain

(q.r) E@n

R = == _Ra@n RS = 22 R@r), (213)
E(q,r) D(q,r)
[s9) [s9)

TEP’S)

From the second equality in (115), it follows that the poles of and T(@") coincide, and from

the second equality in (117) we see that the poles of TEP %) and T@" coincide. Hence, the matrices
A, A, B, B appearing in (164) are common to the potential pairs (p, s) and (g, r). Using (183) and

(213) in (164), we conclude that

pla”

(g1
Qgcp’s) _ Q(qsr)’ QE{P’S) — Eoo M) (qsr)

= D(og’r) )

= 214
man (214)

With the help of the first equalities in (31) and (33), we observe that the Marchenko system (162)
related to the potential pair (p, s) is equivalent to the system given in (203). Using (212) and (214),
we transform (203) into

RED + p K)(g’r) Q7" =, m>n,

l+m
(215)
KD 43 K‘fﬁ’r) Qf‘iz =0, m>n.
The system in (215) can be written in the matrix form as
>(q.r) (q.r) >(a.r) (q.r) Q'(E:rz’
‘Qn+m 0
o o a1 o o
m
+ ) [ng'” ng")] = ,  m>n. (216)
12nt1 Q) g 00

I+m

The matrix [K;‘,’{S) K,i‘;’s)], as seen from the first equalities in (31) and (33), is equal to the 2 x 2
identity matrix, and hence the second term on the left-hand side of (162) does not contain the
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matrix [R?* K| However, the matrix [R'%”  K'%”] appearing in (216) is not equal to the
identity matrix. From (123) and (125), it follows that

(g.r) 0
(69

k47 kD] = A wl @17)
0 DI

where we recall that A;q’r) is the invertible matrix appearing in (153). Hence, the matrix on the
left-hand side of (217) is invertible and we have

1

~ -1 Egg.r) -1
ke x90] = () (218)
0w

Premultiplying both sides of (216) by [K,(ﬂ{r) K,(ﬂl’r)]‘l, we obtain (209), where we have defined

-1
[M,ﬁ‘ij) M| = [Kf,‘i;’) Kfﬁf)] [Kﬁﬁ,{) Kf[i;f)] , (219)
and hence the proof is complete. [ |

Note that (219) implies that M;‘f;p =0 and M,ﬁ‘i;f) = 0 when n + m is odd because we have

Kﬁg,’f) =0and IZ%;{) = 0 when n + m is odd as stated in Theorem 10.
We can uncouple the Marchenko system (209) as in (169) and (170). Hence, without a proof we
state the result in the next corollary.

Corollary 5. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, the Marchenko system (209) is equivalent to the uncoupled system, for m > n, given by

n+m j+l "Tl4m ’

(q.r) ~(a.r) o o (q.r) (g.r) alq.r) _
[Mrgnr ]1 A SIS D [Mnj ]1 Q" G = g o
220

—(q.r) (q.r) 0o 0o (@] /@ 5@ _
[Mnm ]2 + Qn+m - Zl=n+1 Zj=n+1 [Mnj ]2 Qj+l 'Ql+m =0,

and with [M,S(i;f)]l and [Mﬁg,’f)]z obtained from the solution to (220) as
@ | — 0 (q.1) (q.r)
[Mnm ]1 - Zl=n+1 [Mnl 1 Ql+m’
@n| — 0 (g alar
[Mnm ]2 - El=n+1 [Mnl ) Ql+n'z’

where we recall that -], and [-], denote the first and second components of the relevant column
vectors, as indicated in (132).

In the next theorem, we describe the recovery of g,, and r,, from the solution to the Marchenko
system (209).
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Theorem 20. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Then, q,, and r,, are recovered from the solution to the Marchenko system given in (209) via

[s9)
(g.r) (q,r)
[Mnl ]1 Z [Mnk ]2

M

1= k=
an = ) oo - c:l: o ’ (221)
(a:1) @n| _ (g.1) (g, r)
Z [Mnl ]1 Z [Mnk ]2 Z [Mnl ]1 z [M
I=n k=n I=n k=n
[s9) [s9)
(q.r) -r(q.r)
I—Z [M(n l)l] IZ [Mnl 2
Py = - , (222)
(q.r) (q.r)
Z [M(n 1)1] Z [Mnl 2
I=n-1 I=n

where[-]; and [-], denote the first and second components of the relevant column vectors, as indicated
in (132).

Proof. Using (106), (110), and (163), we get

glan 0
[s9)
K-(ri,r) K(‘f’r)] = Al2D [K(zlm) K(zlJ,S) ’ (223)
n n n n (q’r)
o pY

where Afﬁ”’ is the invertible matrix in (153); D(og’r) and Efg”) are the scalar constants appearing in
(62) and (63), respectively; K @) and B9 are the column vectors in (122) and (124), respectively;
1Y Y K nl P y

K’(fl’ %) and Ki‘; ) are the column vectors in (30) and (32), respectively. With the help of (218), from
(223) for I > n we get

-1

@) @] [p@n o@n B0 ©9) (0 B0

>\q.T q,r Q.1 q,r p.S p S

k97 k0] [R97 K | [RE K | @
o DY o DY

We note that the left-hand side of (224) is equal to the left-hand side of (219). Using the summation
with [ > n, from (224) we obtain

(@) (@)
0 e 0 Ea 0
> [M(‘f’” M(?n — Z [K(p ) K(ps)] . (225)
ot " " o p4n o D"

We remark that the summation on the right-hand side in (225) is related to [, jps) ¢§," ’S)] evalu-
ated at z = 1, as seen from (30) and (32). With the help of (128) and (131), we express the right-hand
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side of (225) in terms of the matrix on the right-hand side of (128), and we get

(q r) E(q,r)
n—1
b _(ar) @ E(qr) ( +4an Zj n+1 ]) dn gan
Z [Mn‘;’ Mn‘;’ ] = (q,r) (qoro) ’ (226)
= DY oo D"
Dfﬁ’” j=n+1"J Dg.ﬁ

Using the notation of (132), from the (2,1) and (2,2) entries in (226), we obtain (222). Then, from
the (1,1) and (1,2) entries in (226) and using (222), we get (221). [ |

7 | THE ALTERNATE MARCHENKO SYSTEM

In this section, we derive the pair of scalar Marchenko equations given in (233) and (234), which
resembles the uncoupled Marchenko system given in (169). We refer to the uncoupled system
composed of (233) and (234) as the alternate Marchenko system. Such a system is the discrete
analog of the Marchenko system given in (6.22) and (6.23) of Ref. 13 in the continuous case. In this
section, we also show that the potentials g,, and r, are recovered as in (231) and (232) from the
solution to the alternate Marchenko system.

We remark that the uncoupled alternate Marchenko equation (233) is closely related to the
system (7) with the potential pair (u,v), and hence we use the superscript (u,v) in the quan-
tities appearing in (233). Similarly, the uncoupled alternate Marchenko equation (234) involves
the quantities closely related to (8) with the potential pair (p, s), and hence we use the super-
script (p, s) in the quantities appearing in (234). Our alternate Marchenko equations (233) and
(234) and our recovery formulas (231) and (232) are closely related to (4.12c), (4.12d), (4.21a), and
(4.21b), respectively, of Ref. 3. We remark that Tsuchida in Ref. 3 assumes that the bound states
are all simple, and we also mention that, contrary to our own (233) and (234), Tsuchida’s (4.12c)
and (4.12d) in Ref. 3 lack the appropriate symmetry for a standard Marchenko system apparent in
(169) in the discrete case.

Let us make a comparison between the alternate Marchenko system used in this section and
the Marchenko system introduced in Section 6. The Marchenko system (209) uses input from (1)
only, whereas the alternate Marchenko system given in (233) and (234) uses inputs from (7) and
(8), respectively. The Marchenko system (209) has the same standard form used in other inverse
problems arising in applications, but the recovery of the potentials g,, and r,, from the solution to
(209) is not “standard,” that is, the recovery is not of the form given in (171) or (172). On the other
hand, certain terms in the alternate Marchenko system involve some discrete spacial derivatives
and hence the alternate Marchenko system slightly differs from the standard Marchenko system
(162). However, the recovery of the potentials g, and r,, is similar to recovery described in (171) and
(172), which are used as the standard recovery formulas for other standard Marchenko systems.

Inspired by (133) and (136), we define the scalar quantities %" and % 7:*), respectively, as

M

[,
g ._Em s, (227)
£,

I
3

M8

Il
S
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o0
Z[ (p. s)
G . _Em T s (228)
nm . 00 = ’
Z K(p,S)]
nl 2

Il
S

where we use the notation of (132) and recall that Kf:l"v) and IZS;’”) satisfy (f) and (g) of Theorem 1,
and similarly, K;I; ) and Kifl) ) satisfy (a) and (b) of Corollary 1. We remark that the m-dependence

of Sﬁ,’lv) and # 55,’13) occurs only in the numerators in (227) and (228). When m = n, with the help
of (130), (131), (227), and (228), we obtain

FL = = L (229)

[s9)
(D)
FbY = =1 = 2 (230)

¥ [k [zﬁﬁf”“(l)]z

Comparing (133), (136) (229), and (230), we observe that the potentials g, and r,, are recovered
from H %) and F L, respectively, as

D(q,r)

_ ™ W,0) o (u,0)
n = (q.r) <%"” %(n+1)(n+1)>’ (231)
Ey
(q.r)
_Ex" (509 _(ps)
n = pn (’%(n—l)(n—l) ~ Knn ) (232)
where we recall that D(q’r) and E(q’r) are the constants appearing in (62) and (63), respectively.

In the next theorem, we show that the scalar quantities %, (u U) and %, (p given in (227) and
(228) satisfy the respective alternate Marchenko equations, for m > n, given by

[s9) [e)
%E%”)+G,ST2+ 2 Z < V) _%(uv)> (uv)<G(uv)_G(uv) )_0’ (233)

n(j+1) J+l I+m l+m—1
I=n+1 j=n+1

[o+] (o]
2+(D>S) (p,s) (p>s) (p $)\ ~(5) [ ~(p:s) (p>s)
Knm + GVH'm + 2 2 <%n(1+1) - '% >G1+l (Gl+m - Gl+m 1) =0, (234)
I=n+1 j=n+1
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where we have defined

(o]
G(u v) Z Q(u v) G(u v) z Q(u v) (235)
j=n j=n
G(p S) z Q(p 5) G(p S) Z Q(p ,8) (236)

with the scalar functions QE.“’”), QS.“’”), QSP S, QS.P ) defined as in (164) for the potential pairs (u, v)
and (p, s), respectively.

Theorem 21. Assume that the potentials q, and r,, appearing in (1) are rapidly decaying and satisfy
(2). Assume further that the potential pairs (u,v) and (p, s) are related to (q,r) as in (91)-(94). Let
X, (" %) and K, (p %) be the scalar quantities defined as in (227) and (228), respectively, and let G;u’v),
G(” U) G(p ) G(p ) be the quantities defined in (235) and (236). Then, %, (” %) and .7{55,’18) satisfy the
alternate Marchenko system given in (233) and (234), respectively.

Proof. In the notation of (132), the (1,2) entry in the matrix Marchenko system (162) for the poten-
tial pair (u, v) is given by

[c)
(u,0) (u, v) (u,v) (u,v)
[Kn";{”] +Q0 4 Y [K“”] oY =0, k>n (237)
I=n+1

Adding and subtracting Q(u *) to Qgig ) in (237), we obtain

(u,v) (u,v) (u,v) (u,v) (u,v) (u,0) (u,v)
[K"”] +00) 4 2 [K““] Qv 4 Z [K““ (o -0y =0, @®)

Using [K,%’v)]l = 1, as seen from the first equality in (25), we combine the second and third terms
on the left-hand side of (238) to obtain

0 00

(u,v) (w,0) (w,v) o (u,0) (w.0) (u,0)

[K e ] + ‘Qn+k 2 [K 1 ] + Z [Kn? ’ ] <Ql+k Qn+k > 0. (239)
I=n l=n+1

From (130), we see that the summation in the second term on the left-hand side of (239) is equal
to [$*(1)],, and hence by dividing (239) by that term we get

+ Q + I+k n+k

[ (u, u)(l)] l=n+1 [igu,u)(l)]l (240)

[ (u U)] © [K(u v)]
nk |y = (u, v) nl 1 (Q(u,v) Q(u v)) 0
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Using the (1,1) entry in the Marchenko system (162) for the potential pair (u, v), we write (240) as

[Kw,v) o [Km,v)]
nko |y = (u,v) no 1y W) ([ Awv)  A@v)) _
T, | n+k ) Two) | Qj+l <Ql+k — Q0 ) =0. (241)
32w, o s [0 w]
Taking the summation for k > m in (241) and using (235), we get
00 [K(u,v)] 00 ) [K(u,v)
nk |y ~(u,0) nj Iy (u,) { &u,) ~(u,0)
o) _ ——L ol <Gl+m - Gn+m> —0. (242)

=P 1 et (0] 1

Further, using (130), (227), and (235) in (242), for m > n, we obtain

(6] [Se]
%5::,’1”) + G _ Z 2 (%S;,v) _ ) )(G(u,v) _ gV ><G-(u,v) _ G_(usv)) =0. (243)

n+m n(j+1) I+j I+j+1 I+m n+m
I=n+1 j=n+1

It is lengthy but straightforward to show that

[S0] oo
(u,v) (u,v) ~(u,v) s(u,v)\ _ (w,v) ( ~(u,v) ~(u,v)
Z <G1+j _Gl+j+1><Gl+m _Gn+m> = 2 Gl <Gl+m _Gl+m—1>' (244)
I=n+1 I=n+1

Finally, using (244) in (243), we obtain (233). The derivation of (234) is similarly obtained with the
help of the (2,1) and (2,2) entries of (162) for the potential pair (p, s). [ |

8 | THE SOLUTION TO THE INVERSE PROBLEM

In this section, we describe various methods to recover the potentials g,, and r,, when the scat-
tering data set for (1) is available. We recall that the scattering data set consists of the scattering
coefficients and the bound-state information. As a consequence of Theorem 4, we see that the
four scattering coefficients T@n T@n R@r R@" contain all the information about the scat-
tering coefficients for (1). Similarly, as a consequence of Theorem 13, (156)-(161), and (179), we
observe that the matrix triplets (A, B, cl ”)) and (A4, B, C_'(‘”)) contain all the information related
to the bound states of (1). We let

D@ ;= {rl@n T Ran Rar (4, B,c@), (A,B,CaM)}, (245)

and refer to D" as the scattering data set for (1). Let us mention that the relevant constants ng”)
and EX7"” are obtained from T(@" and T@") via (71), and hence D" and EY" are known if D)
is known.

Using the theory developed in Sections 2-7, we are able to solve the inverse problem for (1) in
various ways, and we outline below some of those methods.
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(@)

(b)

(©

(d)

(e)

The standard Marchenko method. In this method, using the scattering data set D)
described in (245), we construct the scalar quantities Qf{q’r) and Qf{q’r) defined in (210) and
use them as input to the Marchenko system (209). It can be proved in the standard way that
(209) is uniquely solvable via iteration. From the solution [M,,,,, (@r) M, @ r)] to (209), we recover
g, and r,, via (221) and (222), respectively.

The alternate Marchenko method. In this method, using the scattering data set D(9"), we
first obtain the constants ng”) and EE,Z”) via (71) and also obtain Qiq’r) and Q;q’r) defined

in (210). Then, we construct the scalar quantities Qip %) and Qip ) via (214). Moreover, using
(197), (198), and (214), we construct Qf{u’”) and QE{"’U) as

(u, v) D(q g (q.r) (qr) (up) _ E( AR —(q r)
o = o <Q ol ) at = 2 Z @ (246)

Next, we use (235) to obtain GI(C”’U) and Gl({“’v) and use (236) to get G]({p %) and Gl((p ), Using

Gl({“’v) and Gl({”’u) as input to the uncoupled alternate Marchenko equation (233), we obtain

G(p ) and G_z(cp )

K (“’U). Similarly, using as input to the uncoupled alternate Marchenko equa-
tion (234), we obtain %, (p 5) . Finally, we recover the potentials g,, and r,, via (231) and (232),
respectively.

Inversion with the help of the Marchenko system for (7). In this method, from the scat-

tering data set D7) we first obtain the constants Dgi,”) and Egg’r) via (71) and also obtain Q;q’r)
and Q(q’r) defined in (210). Then, we get Q(”’U) and Q(u’v) via (246). Using Q(ku’v) and Q;{”’U) as
input to the Marchenko system (162), we obtain K" . and K" Next, using (130) we recover
the 2 x 2 matrix [$”(1)  $™(1)] from K% and Kff,‘nv). Flnally, we use (133) and (134) to
recover the potentials g,, and r,,, respectively.

Inversion with the help of the Marchenko system for (8). In this method, using (71) we
first obtain the constants ng"’ and Ef,?;r’ and also obtain chq’r) and Qgcq’r) defined in (210)
from the scattering data set D("). Then, we get QE{‘D ) and Qip S Via (214). Next, using Qf{p )
and Q(p ) as input to the Marchenko system (162), we obtain [IZ,?,),;S) Kff,);f)]. Then, via (131),
we get [zp(P S)(l) ¢§lp ’S)(l)]. Finally, we use (135) and (136) to recover the potentials gq,, and r,,,
respectively.

Inversion by first recovering the potentials 1, and s,,. In this method, from the scattering
data set D" we first obtain the constants ng’r) and Efg'” via (71) and also obtain Q;q’r)
and Qiq’r) defined in (210). Then, we construct Q?{”’U) and Q(ku’v) via (246) and also construct
Qf{p ) and Qf{p ) via (214). Next, using Qf{"’”) and Qf{“"’) as input in the uncoupled Marchenko
equation given in the first line of (169) related to (u, v), we obtain [Kf:f,;”)]l, from which we
recover u,, as in the first equality in (171). Similarly, using Qf{p %) and Q;{p ) as input in the
uncoupled Marchenko equation given in the second line of (169) related to (p, s), we obtain
[K(p S)]Z, from which we recover s,, as in the second equality in (172). Finally, we use (101) and
(102) with input (u,, s,,) and recover the potentials g, and r,,.
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9 | THE TIME EVOLUTION OF THE SCATTERING DATA

In this section, we consider an application of our results in integrable semi-discrete systems, and
we provide the solution to the nonlinear system (3) via the method of the inverse scattering trans-
form. This is done by describing the time evolution of the scattering data for (1) and determining
the corresponding time-evolved potentials g,, and r,. Hence, each of the methods to solve the
inverse problem for (1) presented in Section 8 can be used to solve (3) if we replace the scattering
data set D(¢") appearing in (245) with its time-evolved version. In this section, we also present
certain solution formulas for (3) expressed explicitly in terms of the matrix triplets (A, B, C) and
(A, B, C) for the linear system (1). Such solution formulas correspond to reflectionless scattering
data for (1), in which case the corresponding Marchenko integral system for (1) has separable
kernels and hence is solved in closed form by using standard linear algebraic methods.
It is already known™* that (3) can be derived by imposing the compatibility condition

Xy + Xy Tpi1 — Tn X, =0, (247)

where (X,, T,,) is the AKNS pair with X, being the 2x2 coefficient matrix appearing in (1) and 7,,
is the 2 X 2 matrix given by

—i(z>=D[1+(z*+1) g1 7] (Z2-Dgny _ i(z°=D)gy
T = 22(14+qp_17y) 1+gp-17n 22(1=qy )
n —iry_q iz%r, i(z2-1) ’
1-gp-17p—1 1+gp-17n 1+gp-17n

which plays the key role in the time evolution of the potential pair (g,,,r,). We recall that an
overdot denotes the derivative with respect to t. Let us remark that the AKNS pair for a given
nonlinear system is not unique. One can use the transformation

v, -9, :=¢9,,
Xy )gn =G0 Xy g;}_p
To Ty 1= GGy + G, T, Gyl
for any appropriate invertible matrix G,,, and the corresponding compatibility condition

)?n+(?n7;1+1_ﬁz)?n=0!

yields the same integrable nonlinear system that (247) yields. Since the choice of X, is not unique,
instead of analyzing the linear system

W, =X, Ynits
one can alternatively analyze the system
l:I‘In = (?n ‘ijn+l~

The linear system (7) is associated with the integrable nonlinear system given in (52). The AKNS
pair (X,,, T,,) for (52) consists of the matrix X,, appearing as the coefficient matrix in (7) and the
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matrix 7, given by

i(z2=1)—iu,_ v, iz2u,_; —iu,
n= i . . 1 .
——=Uy_1 iy, i\1——=)+iu,v,4
z2 z2

Similarly, the linear system (8) is associated with the integrable system (52) with (u,,, v,,) replaced
by (py, s,,) there.

In the following theorem, we summarize the time evolution of the scattering data for (7). A
proof is omitted because the time evolution of the scattering coefficients is described in Ref. 3 and
the time evolution of the norming constants for simple bound states described in Ref. 3 is readily
generalized to the case of nonsimple bound states and hence to the time evolution of the matrix
triplets.

Theorem 22. Assume that the potentials u,, and v, appearing in (7) and (52) are rapidly decaying
and 1 —u,v, # 0 for n € Z. Then, the corresponding reflection coefficients evolve in time as
RV RwV) e—it(z—z_l)2 Ry Rwv) eit(z—z_l)z
LWV oy [w) eit(z—z_l)z LWV [ @) e—it(z—z_l)2

and the transmission coefficients Tl(“’v), TE"’U), Tl("’u), Tﬁ“’v) do not change in time. Furthermore, in
the corresponding matrix triplets (A, B, C%Y) and (A, B, C®Y)) describing the bound-state data for
(7), the row vectors C%Y) and CY) evolve in time as

o)y Cw) g=it(A=AT? G oy ) pitlA=(A) 2 (248)

and the matrices A, A, B, B do not change in time. Moreover, the constant Df;"”’ appearing in (20)
does not change in time, either.

We remark that Theorem 22 holds in the same way for the system (8) with the potential pair
(p, s). Next, we present the time evolution of the scattering data for (1).

Theorem 23. Assume that the potentials q,, and r, appearing in (1) and (3) are rapidly decaying

and satisfy (2). Then, the corresponding reflection coefficients evolve in time as
R@") s R@D p—itz—z"1  R@r) oy R@r) pittz—z"1)’

’ ’ 249

L@ & 1@ gitz=2 [@n) o [@n) g-itlz—z") (249)

and the corresponding transmission coefficients T‘¢") and T\@") do not change in time. Furthermore,
in the matrix triplets (A, B, Cc@"yand (A, B, C\@") describing the bound-state data for (1), the row
vectors C'@") and C(@") evolve in time according to

C@n s @r) gmit(a-a"1?,

C@n s Gan) itl A=A (250)

Moreover, neither of the constants Df,?;’) and Egg’r) appearing in (62) and (63), respectively, changes
in time.
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Proof. Let us first prove that DE,Z’” does not change in time, that is, we have Dg‘g”) = 0, where we
recall that we use an overdot to denote the time derivative. From the second equality in (62) and
the fact that fo,’r) # 0, we see that Df;g” = 0 if and only if ijj”) /fo,’r) = 0, which is equivalent
to having

Intn+qn't

Qn n qn n — 0 (251)
n=—oo 1- dn'n

In order to prove that (251) holds, we multiply the first line of (3) with r,, and the second line of

(3) with g,, and then we add the resulting equations. Using the summation over n, after some

straightforward simplifications, we get

Qn rl’l + ql’l rl’l
= (A1 — (252)
n=—co 1= ura 9nTn n—z—oo
where we have let
A, :=i[;—1 n Tn-1 . (253)
1+qn—1rn (I_Qn 17n— 1)(1 ann)

Since the potentials g,, and r,, are rapidly decaying as n — +oo and satisfy (2), from (253) we see
that A, iswell defined and rapidly decayingasn — +o0. Hence, the telescoping series on the right-
hand side of (252) converges to 0, which completes the proof that Df;”) = 0. The proof of E'(;g”) =0
is obtained in a similar manner by establishing that E; g‘g”) /E ((g N = 0, which is equivalent to having
Z qn §n+1 + 4y rn+1 =0. (254)

+4an L

In order to prove (254), we replace n by n + 1 in the second line of (3) and multiply the resulting
equation by g, and then we add to that equation the first line of (3) multiplied by r,,,;. Then, a
summation over n, after some straightforward simplifications, yields

[s]
qn rn+1 + dn rn+1
= 0,,; —0,), (255)
Z 1 + T nzz_oo( n+1 n
where we have let
. 1 dn-1Tn+1 ]
0, =i -1- .
! [1_ann (1+qn—1 rn)(1+Qnrn+l)

From the properties of g, and r,, it follows that ®,, is well defined and rapidly decaying as
n — +o00. Thus, the telescoping series in (255) is convergent to 0, which establishes the proof that
E(q ") = 0. When the potential pairs (g, 7), (u, v), (p, s) are related to each other as in (91)-(94), we
have the matrices A, A, B, B appearing in (164) common and the scattering coefficients for (1), (7),
(8) are all related as described in Theorem 9. Thus, with the help of Theorem 9, Theorem 22, and

the fact that D(q ) =0and E(q ) = 0, we conclude that the transmission coefficients T@") and
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T@") do not change in time and the reflection coefficients evolve as in (249). Furthermore, from
(184), (248), and the fact that ng’” =0and E‘ﬁ‘g”) = 0, we obtain (250). [ ]

Next, we consider explicit solutions to the integrable systems (3) and (52) by using the method
of Refs. 22 and 23. Such explicit solutions correspond to the time-evolved scattering data sets with
zero reflection coefficients. From Theorems 22 and 23, we see that the matrix triplets correspond-
ing to (3) and (52) have similar time evolutions described as

(A,B,C) —~ (A,B,C&), (A,B,C)~ (A,B,CE), (256)
where we have defined
£ 1= omi(A=AT? g GU[A=(AD)TTP (257)

Let us remark that (162) and (164) for the potential pair (1, v) and that (209) and (210) for the
potential pair (g, r) are similar, and hence the solution to (209) is obtained in a similar way the
solution to (162) is obtained.

Our goal now is to present the corresponding explicit solutions to (162) and (209) when their
Marchenko kernels are given by

Quym = CEA™MIB Q. = CEA)M1B, (258)

Note that we impose no additional restrictions on the values of N, N, z s Zj, Mj, M in the matrix
triplets (A, B, C) and (A, B, C) appearing in (156) and (159), respectively. Hence, this method yields
an enormous number of explicit solutions to each of (162) and (209). From (258), we see that the
Marchenko kernels Q,,,,, and Q,,,,, are separable in n and m, that is, we can write them as the
matrix products given by

Quim = (CAMN(EA™B), Quym = (CA)™)(EA) ™ 1B), (259)

where we have used the fact that the matrices A and £ commute and that the matrices A and
£ commute.

Before we present our explicit solutions to (162) and (209), we introduce some auxiliary quan-
tities. In terms of the positive integers m;, N, m;, N appearing in (156)-(161), we introduce the
positive integers & and N as

N N
Ni=Ym, Ni=)m; (260)
=i =1

From the results in Section 4, it follows that 2(/ + /) corresponds to the total number of bound
states including the multiplicities for (1) and (7). In terms of the matrix triplets (A, B,C) and
(A, B, 0), let us introduce the & X # matrix Y and the # X # matrix Y as

Y := ) AKBC(A)*, Y :=) (A *BCAK (261)
k=0 k=0
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In terms of the two matrix triplets let us also introduce the N x N matrix U, and the N X N’
matrix U, as

ni=1—E(A) " 2Y A)=n-1, 262
U, I—EA)T2Y £ ALY (A) L (262)

U, :=1—-EA'YE(A)™3Y AL (263)

where we recall that the #// x # matrix € and the # X & matrix € are defined in (257).
In the next proposition, we elaborate on the matrices Y and Y.

Proposition 5. Let (A, B,C) and (A, B, C) be the matrix triplets appearing in (156)-(161) with | z;| <
1for1<j<Nand|z|>1for1<j<N. Then, the matrices Y and Y defined in (261) are the
unique solutions to the respective linear systems

Y-AY(A)'=BC, Y-(A)'YA=BC. (264)

Proof. By premultiplying the first equality in (261) by A and postmultiplying it by (A)~! and sub-
tracting the resulting matrix equality from the original equality, we obtain the first linear system
in (264). The second equality in (264) is similarly obtained from the second equality in (261). The
existence and uniqueness of the solutions to the two matrix systems in (264) can be analyzed as
in Theorem 18.2 of Ref. 25. Given the matrix triplets (A, B,C) and (4, B, C), we have the unique
solutions Y and Y to (264) if and only if the product of an eigenvalue of A and an eigenvalue of
(A)~lis never equal to 1. The satisfaction of the latter condition directly follows from the fact that
|zj] <1for1 < j<Nand|z;| >1for1 < j<N.Thus, the solutions Y and Y to (264) are unique
and given by (261). |

Next, we present the explicit solution formula for the Marchenko system (162) corresponding
to the Marchenko kernels given in (259) for the potential pair (u, v).

Theorem 24. Using the time-evolved reflectionless Marchenko kernels Q;tl:,)l and Q%ﬁ that have

the form as in (259) for the potential pair (u, v), the corresponding Marchenko system (162), in the
notation of (132), has the solution given by

|k@2] = —cwo @y U ey B, (265)
1
|| = c an (@) e any ) & Ay 2B, (266)
[KS:’,!U)] 1 = Cw) (A)_n (Uglu’v))_l g (A)—n—z yw) g (A)n+m B, (267)
[Ri] = —ctuo) an @yt e am=1 B, (268)
2

where YY) and YY) are the matrices appearing in (261) for the potential pair (u, v) and the matri-
ces UMY and U™ are defined as in (262) and (263), respectively, for the potential pair (u, v).
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Proof. For simplicity, we suppress the superscript (u, v) in the proof. We already know that the
Marchenko system (162) is equivalent to the combination of the uncoupled system (169) and the
system (170). To obtain (265), we proceed as follows. Using (259) as input to the first line of (169),
we get

[Kum], +CA"EA ™ B= Y 3 [K,], CEAFIBC(A)TEA) ™ B =0,
I=n+1 j=n+1
(269)

where we have used the fact that £ and A commute and £ and A commute. From (269), we see
that [K,,,,]; has the form

[Kum|, = H, ECA)™™'B, (270)
where H,, satisfies
oo [c9)
H, <1 - Y ) E@A@IT'BCeAITTIBC (A)—l> =—-C(A)™". (271)
I=n+1 j=n+1
Using (261) on the left-hand side of (271), we write (271) as
H,U, =-CA)™, @72)
where U, is the matrix defined in (262). From (272), we get
H,=-C(A)™ U™, (273)
and using (273) in (270) we obtain (265). The solution formula for [K’nm]z appearing in (268) is
obtained in a similar manner by using the second line of (169). Then, using (259) and (268) in the
second line of (170), we obtain the formula for [K,,,,, ], given in (266). Similarly, by using (259) and
(265) in the first line of (170), we obtain the formula for [K,,,,]; given in (267). [ |
We remark that the result of Theorem 24 remains valid for the Marchenko system (209) because
of the resemblance between (162) and (209) and the fact that (256) and (257) have the same appear-

ance for the potential pairs (u, v) and (g, r). So, without a proof, we state that result in the next
corollary.

Corollary 6. Using the time-evolved reflectionless Marchenko kernels Q9" and 0% that have

n+m n+m

the form as in (259) for the potential pair (q,r), the corresponding Marchenko system (209), in the
notation of (132), has the solution given by

[M&P] = -cn Gy Uiy e Ay B, (274)
1

[M%p{)]z = clar) pgn (U’(qq,r))—l gAnyY@n g (A)—n—m—Z B, (275)
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[Mfgnr)] = ¢ (A)—n (Ugl%r))—l E (A)—n—z Y@ g (A)n+m B, (276)
1
(W] = —can an @@y g a1, @)
2

where Y@ and Y(@") are the matrices appearing in (261) for the potential pair (q,r) and the matri-
ces U,(f”) and Uﬁl‘”) are defined as (262) and (263), respectively, for the potential pair (q,r).

In the next proposition, when (91)-(94) hold, we show how some relevant quantities for the
potential pairs (u,v) and (p, s) are related to the corresponding quantities for the potential pair
(g, 7). These results will enable us to obtain explicit solutions to the nonlinear system (3) by using
the input data directly related to the potential pair (g, r).

Proposition 6. Assume that the potentials q,, and r,, appearing in (1) are rapidly decaying and
satisfy (2). Assume further that the potential pairs (u,v) and (p, s) are related to the potential pair
(q,r) as in (91)-(94). Then, we have the following:

(a) The matrices Y and Y appearing in (261) corresponding to the potential pairs (u,v) and (p, s)
are related to those for the potential pair (q,r) as

(q.) 217!
Y(u’u) — % Y(q,r) [I _ (A) 2] ,

o (278)
i} DY 5
Y@ — —am Y(@.r) (1 —A ) ,
E@n . pan
Y@ = Zr) Y@n, — yps) = ?;r Y@n, (279)
Doo’ EOO

where ng’r) and Egi,”) are the constants appearing in (62) and (63), respectively.
(b) The matrices U, and U, appearing in (262) and (263), respectively, corresponding to the poten-
tial pairs (u, v) and (p, s) are related to the quantities relevant to the potential pair (gq,r) as

UMY = [ 4 & (A 2760 g A2-1(1 — A2)Y@D (A1 1 — (A, (280)
U =1+ £ AMY@D & (A3 [ (A)2] Y@ art(1-4%), (28D
U’gp’s) — U;q”’), U;P’S) — U;q)r)’ (282)

where Y@ and Y(@") are the matrices appearing in (261) for the potential pair (q,r).

Proof. Using (184) in (261), we get (278). Similarly, using (183) in (261), we have (279). Next, using
(278) in (262), we obtain (280). Then, using (278) in (263), we get (281). Finally, using (279) in (262)
and (263), we obtain (282). [ ]
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In the next theorem, we present the explicit solution formulas for the alternate Marchenko
equations (233) and (234) corresponding to the time-evolved reflectionless scattering data
expressed in terms of the matrix triplets (4, B, C®Y), (4, B, C®), (A, B, C(P%)), and (4, B, C(P%).

Theorem 25. Using as input the time-evolved reflectionless Marchenko kernels Q,(;f;,)l and QE,T;,),

that have the form as in (259) for the potential pair (u, v), the corresponding alternate Marchenko
equation (233) has the explicit solution given by

Hi = =€ (A [T = (A7 (V) E (A B, (283)
where the ' x & matrix V" is defined as
VEIM’U) =T+ & (A)—n—l [I _ (A)—I]Y(u,v) £ A2n+l (I _ A)—IY(u,v) (A)—n—l’
with A being the positive integer defined in (260) and with Y®) and Y®V) being the matrices
appearing in (261) for the potential pair (u,v). Similarly, using as input the time-evolved reflection-
less Marchenko kernels Qipfn)q and Qgﬂial that have the form as in (259) for the potential pair (p, s),
the corresponding alternate Marchenko equation (234) has the explicit solution given by
HLY =~ Ar=1(1 — Ay (VEV) L e Am B, (284)
where Vﬁlp ) is the ¥ X N matrix defined as
VP = L4 £ AL = A)YPS) & (A 231 — (A)71] T Y@ anl,

with NV being the positive integer defined in (260) and with YP-) and Y P-5) being the matrices appear-
ing in (261) for the potential pair (p, ).

Proof. Using (258) with the potential pair (u, v), from (235) we obtain

o)

G;(qu’v) — Z C(u,U)gAk—lB,
k=n
which is equivalent to
G = cwv) gAn=1(1 — A)B. (285)

Let us remark that (I — A)~!is well defined because |z il <1for1l < j < N,asseen from (157) and
Theorem 13. In the same way, from (236) and (258) we get

[Se]
G = Y ¢ g (A)yk-1B,
k=n
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or equivalently
G = CwE(A)y=1[1 - (A)—l]_lB. (286)

Using (285) and (286) in (233) and by proceeding in a similar way as in the proof of Theorem 24, we
obtain (283). The explicit solution given in (284) is obtained similarly by using in (234) the analogs
of (285) and (286) for the potential pair (p, s). [ |

Let us remark that, using (265) and (268) in (171), respectively, we obtain an explicit solution
formula for the nonlinear system (52), where u,, and v,, are expressed explicitly in terms of the
matrix triplets (A, B, C%Y)) and (A4, B, %)) as

-1
u, = —CEIA) " (U)  EA)TB,
_{ (287)
v, = —_cw.v) An<U)(1u,v)> EAMLB,

where € and & are the matrices defined in (257), and U™ and U are the matrices appearing
in (262) and (263), respectively, for the potential pair (u, v).

Let us finally discuss explicit solutions to the nonlinear system (3). We can express any time-
evolved reflectionless scattering data for the potential pair (g, r) in terms of the Marchenko kernels
Q;qf,zl and Q;qfrzl appearing in (258). Hence, as seen from (257) and (258), we can explicitly deter-
mine the corresponding solution to (3), where g,, and r,, are explicitly expressed in terms of the
matrix triplets (A, B, Cc(@") and (A, B, C{@"). In fact, using these two matrix triplets as input in
any of the inversion methods outlined in Section 8, we are able to obtain explicit solution formulas
for (3).

For example, using these two matrix triplets on the right-hand sides of (274)—-(277), we first
obtain the four scalar quantities [M2"],, [MZ7],, [M%7],, [M'%"],, and use them in (221)
and (222) to obtain the solution (g, r,) to (3) explicitly displayed in terms of the matrix triplets
(A,B,C@")and (A, B,C@").

We can obtain another explicit solution formula for (3) by expressing the right-hand sides of
(231) and (232) in terms of the matrix triplets (4, B, C'%")) and (4, B, C(¢")). That formula is given
by

where we have defined

— D(()g,r) (u,0)
Egg’r) nn

= ._Ec(g’r) 2+ (D,S)

: , 1= FEon s 288
n n D(()g’r) nn ( )

and the right-hand sides in (288) are expressed in terms of the quantities relevant to the potential
pair (g, r) with the help of (183), (184), (278), (279), (283), and (284). We get

£, = —Can [1 _ (A)—Z]_l [1 — A" _I(A)‘”‘l(vf,q”))_lé(/i)‘” B,

£, = —C@M) A1 — A)" (Vﬁ?’”) £A"B,
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where we have defined

VE,q’r) T4 (A)—n—l [I _ (A)_l] Y@ (1 — A~2) £ A2+
—n—1

(I — A Y@ 1 = (A7) (A",

-1
P = Lk e AT (I = AY@D £ 1= ()] ven an,

with Y(@") and Y(@") denoting the matrices in (261) for (g, r).

We can also obtain an explicit solution formula for (3) by using g, and r, given in (133) and
(134), respectively, after expressing their right-hand sides in terms of the quantities relevant to the
potential pair (g, 7), and this can be achieved with the help of (130), (184), (265)—(268), (280), and
(281). In a similar way, it is possible to obtain an explicit solution formula by using gq,, and r,, given
in (135) and (136), respectively, after expressing their right-hand sides in terms of the quantities
relevant to the potential pair (g, r). Still another solution formula for (3) is obtained via (101) and
(102), and this is done as follows. We first express the right-hand side of the first line of (287)
in terms of the matrix triplet for the potential pair (g, r), and hence recover u, in terms of the
quantities relevant to (g, r). In a similar way, we use the analog of the second line of (287) for the
potential pair (p, s) and obtain s, in terms of the quantities relevant to (g, r). Finally, we use the
resulting expressions for u,, and s, on the right-hand sides of (101) and (102) and obtain a solution
formula for g,, and r,, as a solution to (3).
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