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For the one-dimensional Sclifimger equation, the analysis is provided to recover

the potential from the data consisting of the ratio of a reflection coefficient to the
transmission coefficient. It is investigated whether such data uniquely constructs a
reflection coefficient, the number of bound states, bound-state energies, bound-state
norming constants, and a corresponding potential. In all three cases when there is
no knowledge of the support of the potential, the support of the potential is con-
fined to a half-line, and the support is confined to a finite interval, various unique-
ness and nonuniqueness results are established, the precise criteria are provided for
the uniqueness and the nonuniqueness and the degree of nonuniqueness, and the
recovery is illustrated with some explicit examples. 2003 American Institute of
Physics. [DOI: 10.1063/1.1614871

I. INTRODUCTION

In this paper we investigate the recovery of the potential of the one-dimensionadBgeo
equation from the data consisting of the ratio of a reflection coefficient to the transmission coef-
ficient. We analyze the cases where the potential has no restriction on its support, half-line support,
and compact support. We assume no information about the number of bound states, and in fact we
try to recover that number as a part of our inverse problem.

Our work is motivated by the work of Rundell and Sackéere it was shown that a bounded,
compactly supported potential with a sufficiently smiaf-norm is uniquely determined by the
corresponding ratio of a reflection coefficient to the transmission coefficient. In our paper we show
exactly when such a determination is possible.

Consider the Schobnger equation

P (k,X)+ K2 gk, x)=V(X) y(k,x), XxeR, (1.1

where the potential/ belongs to the Faddeev class, i.e., it is real valued, measurable, and in
Li(R). Here, L,11(J) denotes the class of measurable functions on an intefvalch that
J30x (1+]x|™) [V(x)]| is finite. The prime is used for the derivative with respect to the spatial
coordinatex. The scattering solutions {d.1) behave likee'** or e~ asx— *+, and they occur
for ke R\{0}. A bound state of1.1) is a solution that belongs t?(R) in the x variable, and it
is knowrf~7 that the bound states can occur only at cerkairalues on the positive imaginary axis
I" in C*. We useC" for the upper-half complex plane amd:=i(0,+=); later we will letC*
:=C*UR and | :=i(—«,0). We will useN to denote the number of bound states, which is
known to be finite whelV is in the Faddeev class, and suppose that the bound states oécur at
=ix; with the ordering 6<x;<---<ky.

Among the scattering solutions (.1) aref, andf,, the Jost solutions from the left and right,
respectively, satisfying the respective boundary conditions
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e " (k,x)=1+0(1), e ®f/(k,x)=ik+0(1), X—+o,
e (k,x)=1+0(1), e*f/(k,x)=—ik+0(1), x— —o=. (1.2

From the spatial asymptotics

eikX L(k) e*ikx

f|(k,x)=_|_(k)+ TH +0(1), X——o0, (1.3

e—ikX R( k) eikX

f(k,x)= W-ﬁ- W

+0(1), X—+oo,

we obtain the transmission coefficieht and the reflection coefficientsandR from the left and
right, respectively. It is knowf” that

T(=k)=T(k)*, R(=k)=R(k)*, L(-k)=L(k)*, keR,

L(—k) T(k)

RIO=~ T

IT(K)|2+|L(k)|?=1, keR, (1.4

where the asterisk denotes complex conjugation. In generahdL are defined only for reat
values, butT has a meromorphic extension @". Each bound state corresponds t¢sanple
pole of T in C* and vice versa. Give[T (k)| for ke R and the bound-state pol&s-i Kj, One can
constructT ag™’

k‘f‘in
k_in

i s—k—i0"

N
T(k):(l_[l exp(i.f dsw), keC”. (1.5
1= —®

A potential V in the Faddeev class is said to be generit(©)=0 and exceptional i (0)
#0. Generically we have

l kLt _ DNWo|+0(1), k—0 inR 1.6
kmw—( N|Wo|+0(1), k—0 inR, (1.6
where the WronskiaWg:=f (0x) f{(0x)—f/(0x) f;(0x) is a nonzero constant. On the other
hand, in the exceptional case we have

Lk _ 71 .
ll(mm— 27 +0(1), k—0 inR, 1.7
where
Chox) [ fi0x)
YoTF (0x) f.(0)

is a nonzero constant.

A potential in the Faddeev class is uniquely determined from the fatac;}.{c,}} or
{L.{xj}.17;}} by using any one of the available meth&d%.Here,cri , for eachj=1,... N,
represents the bound-state norming constant gnthe dependency constant associated \kith
=ixj, and they are related to the Jost solutions as

-12 f|(iKJ',X)

’ 7j'=fr(in'X)- (18)

Cyj ::{f dx f (i k;,x)?
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GivenV, we can remove’ all the bound states from the scattering coefficients and construct
the resulting potentia® corresponding to the transmission coeffici&tf¥ and the left reflection
coefficientL[°!, where

N keting N
T =TIl L= Lio=(=D"ClK]]
j=1 K= Ik j=1

k+in

K (1.9

Kj

The potentialV[®! belongs to the Faddeev class wheneVes in that class.
Without loss of any generality, our main problem can be reduced to the recovery of a potential
V in the Faddeev class from the dapgk):=L(k)/T(k) in the following cases:

(i)  V has no restrictions on its support.
(i)  The support ol is confined to a half-line.
(i)  The support ol is confined to a finite interval.

Our paper is organized as follows. In Sec. Il we study ¢Bs&ve see that our data cannot say
anything about the value df in the exceptional case and herde={0,1,2,.. }, and for each
suchN we have a Rl-parameter family of potentials corresponding to our data. On the other hand,
in the generic case from our data we §et{0,2,4,.. } orNe{1,3,5,.. }, as indicated ir{1.6);
for each allowed\ we again have alR-parameter family of potentials correspondingRoCase
(ii) is analyzed in Sec. Ill, and we show that our data puts a further restriction on the maximum
allowable value foN and thatN— 1 cannot exceed the number of zerogobn1*. In particular,
in the generic case whef@ has no zeros oh" and the limit in(1.6) is positive, we conclude that
N=0 and hence there is a unique potential correspondin®.téVe also show that our data
restricts the(open intervals in which thec; can occur, depending on the sign7fon [*. Then,
for each allowedN we obtain anN-parameter family of potentials supported on the positive
half-line corresponding to our data. We illustrate the nonuniqueness with some explicit examples.
Finally, in Sec. IV, we analyze casié ) and show that our data further puts severe restrictions on
the locations of theg;. In this case we show that for each allowd there can exist only a
discrete number of potentials corresponding to the s@m/e provide the exact criteria for the
unigueness as well as the nonuniqueness and the degree of nonuniqueness, and we illustrate the
theory with some explicit examples.

II. RECOVERY WITH NO RESTRICTION ON THE SUPPORT

We will analyze the construction of from the dataD by analyzing the construction of
{L.{&j}.{Crj}} from D.

Given D(k) for ke R, we can construcT®l. This is because, as seen frdh9) and the
second equation ifl.4), we have

R a2k
|T[O](k)|2_|T(k)|2_1+|D( )| ' eR, (21)
and hence(1.5 and(2.1) imply that
1 (= log(1[1+|D(s)|?]) —
Tlol(k):exp(z—qﬂf_xds T ) keC*. (2.2
Having foundT!®!, from (1.9) we get
Nkt
LI (k)= (= )*D(k) T (k), L(k>=D(k>T[°1(k>(H c ik’). 2.3
j=1 K=lkj
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Thus, to construct from D, we must know both the number of bound states and the bound-state
energies. In the generic cases,(a$) implies, fromD we are only able to determine whethér

is even or odd, but in the exceptional case even this is not possible, as implidd7pyFor N

=0, as seen fronf2.3), D uniquely determine& and hence als¥'.

In summary, given the dat®, we get, for each value o, a 2N-parameter family of
corresponding potentials, wheféx;},{c,;}} represents the parameter setDifk) is bounded at
k=0 thenN can be any non-negative integer;Tk) is unbounded ak=0, thenN is a non-
negative integer, which is odd or even depending on the sign gf ii2ik D(k)] as in(1.6).

Example 2.1Let us demonstrate that we can tell fradthwhetherN is even or odd in the
generic case, but not in the exceptional case. Consider

C.:=V10*=+/a?+36,

(k+ic,)(k+ic_)"

D(K) =

where a e[ —8,8] is a parameter. Note that=*+8 corresponds to the generic case and
e (—8,8) corresponds to the exceptional case. In the generic case(frémwe get 2k D(k)

= al\/5+0(k) ask—0, and henc& must be even ift=8 and odd ifa= — 8. On the other hand,
in the exceptional case, frofd.7) we getD(k) = a/ /64— o>+ O(k) ask—0, andN can be any
non-negative integer. In fact, the corresponding scattering coefficiends<for-8,8] are given by

(-D"a
(k-+2i)(k+4i)

L= S s

(k+icu)(k+ico) [T ktik
- TO= 0 kT an (

i=1 k_lKj

whereL(0)=—1 andT(0)=0 are assured in the generic case by the chhieg0,2,4,.. } if
a=8 andNe{1,3,5,.. } if a=-8.

lIl. RECOVERY WITH SUPPORT ON A HALF-LINE

In this section we analyze the construction \6ffrom D when we further know that the
support ofV is confined to a half-line. Equivalently, we analyze the constructidibgffx;},{C/; } }
from our data.

There is no loss of generality in assuming that the suppoxt & confined toR*. This can
be seen by the following argument. If the support of the potential is known to be confined to the
interval (a,+) for some real constamt, then the value o& can be extractédrom D; the shift
V(x)—V(x—a) results inL(k)/T(k)—L(k) e¥*3/T(k) and hence there is no loss of generality in
assuming thah=0. On the other hand, if the support of the potential is known to be confined to
R™, then, because of the first equation (ith4), our problem can also be formulated as the
recovery ofV from R/T, which is equivalent to the recovery ¥f from D.

When the support o is confined toR ™, it is already knowA **thatL uniquely determines
V. In fact, the meromorphic extension btk) from R to C* uniquely determine${«;}.{c,;}} as
indicated in Theorem 3.3 below. Thus, the number of arbitrary parameters appearing in the reflec-
tion coefficientL constructed from our data is the same as the number of parameters appearing in
the constructed/.

In Sec. Il we have seen th@t in the generic case reveals whetiers even or odd. We will
next show that knowledge that the supportvofs confined toR™ leads to an upper bound o
both in the generic and exceptional cases.

Proposition 3.1: Assume!¥ is a potential in the Faddeev class, has supporRin, and has
no bound states. Suppose V is the potential obtained by adding N successive bound stdtes to V
at k=ix; with 0<x;<---<ky, and let LI denote the left reflection coefficient fofVas in
(1.9). If the support of V is confined ®", then(—1)'LI%(ix;)>0 for j=1,... N, or equiva-
lently, (—1)N"ID(i k;)>0.

Proof: If V=0 for x<0, from (1.2) and(1.3) we see that
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eikX L(k) e—ikx

fo(k,x)=e f|(k,x)=_|_(k)+ T

x=<O0. (3.1

Hence, using T(i ;) =0, (3.1), and the second equation (&.8), we reach the conclusion that
=(L/T)(ik;). Then with the help of1.9), we getL%l(ix;) = (—1)Ny; TI%ix)). Itis already
known thatT(0] I(k)>0onl* and (—-1)N"1y;>0. Thus, (- 1)JL[o (ik; )>0 fOI‘j— . N. With
the help of D(k) = (—1)NLI(k)/ Tl (k), we equivalently claim thatf 1N~ 'D(|K )>O [ ]
Forkel™ we know that_[%(k) is real valued and continuous andf(k)>0; hence from
Proposition 3.1 we obtain the following result.
Corollary 3.2: Assume V belongs to the Faddeev class, has N bound states, and has support
in R™. Let L% denote the left reflection coefficient fot™/ which is obtained from V by removing
all the bound states, as in (1.9). Thari® must have at least N1 zeros onl ', equivalently D
must have at least N1 zeros onl *.
Let us note that the zeros &f°! on 1™, or equivalently those oP, need not be simple, as
indicated in Examples 3.8 and 3.9.
The following theorem gives a characterization of the left reflection coefficient corresponding
to a potential in the Faddeev class with support confineto Let

L(a):= f dk L(k) €%, R(a)= f dkL(T(k):)(k) gike, (3.2

Theorem 3.3: The left reflection coefficient L corresponds to a unique potential V in the
Faddeev class with support R and with N bound states atki«; (j=1,... N) if and only if
the following conditions hold:

(i) L is continuous orR, and L(—k)=L(k)* for keR.

(i) |L(k)|<1—CK?(1+k? onR for some positive constant.C

(i) L(0)e[—1,1).

(iv) L has a meromorphlc extension © with N simple poles occurring at=ix; and
re5|duesResL(|KJ)—|crJ for some positive constants;c Of course, if N=0 then the
extension of L taC* is analytic there

(v)  L(k)=0(1k) as k—o in C*.

(vi)  The function KT(k), where T(k) is given in (1.5) withT(s)|= J1=]L(s)[?, is continuous
inC*.

(vii) The functions Land R defined in (3.2) are absolutely continugus’ e L(—,0), and
R’ eLi(a,+x) for any a<O.

Proof: The proof is obtained by modifying the characterization conditions on the scattering
data'"*® corresponding to a potential in the Faddeev class in order to take into account the
vanishing property of the potential d®. It is knowr?~**that (iv) is equivalent to vanishing of
V on R™. The slight modification ir{vii) is also related to the vanishing of the potentialRn.

|

In the following we illustrate the recovery &f, or equivalently ofL, by presenting some
explicit examples.

Example 3.4:Let our data for a potential with support R be given by

—V3(k—i)(k—3i)
(k+1)2(k+ /5i)(k+3i)

D(k)=

Notice thatD(k) is bounded ak=0 and hence this corresponds to an exceptional case. Proceed-
ing as in(2.2), or equivalently by solving the Riemann—Hilbert probléch (2.1)]
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1
= 2y 110]
T~k (1+|D(k)|?) T (k), keR,
we obtain

(k+i)(k+5i)

IOl (k) : -
(k+v2i)(k+2i)

From (2.3) we get

—v3 (k—i)(k—3i)

(k)= (—1)NA(k k):= '
L) =(=1)7Ak),  Alk) (k+i)(k+v2i)(k+2i)(k+3i)

Notice thatD has two zeros oh”. Hence, the number of bound states/ofannot exceed 3. Since
this is the exceptional casdl is allowed to be any of 0, 1, 2, and 3. Recalling the fact that
uniquely determine¥ because of the support property\df with the help of the sign restriction
indicated in Proposition 3.1, or equivalently, with the help of Theoreni\B,3wve obtain all the
following possibilities forL and also forV:

(@ ForN=0, we haveL(k)=A(k), and the potentiaV/ is uniquely determined.

(b) ForN=1, we havel (k)=A(k) (k+ikq)/(k—ikq), wherek, e (0,1)U(3,+») is the only
arbitrary parameter iv.

(c) ForN=2, we getL(k)=A(k)Hj2:l(k+iKj)/(k—ixj), with «;e(1,3) andk, e (3,+)
being the only two arbitrary parameters\i

(d ForN=3, we han_(k)ZA(k)ng=l(k+iKj)/(k—in) , wherex, €(0,1), xk,e(1,3), and
Kk, € (3,+ ) are the only three arbitrary parametersvin

Example 3.51 et D(k)= 8/k(k+i/20) . This is the generic case beca@®) is singular at
k=0. Using (2.1) we obtain T%(k) = k(k+i20)/(k+2i)(k+4i). From (1.6) we see that
lim,_.o[ 2ik D(k)]1=8/1/5, which is positive, and therefold e {0,2,4,.. }. Then, from the first
equation in(2.3) we getL[®l(k)= 8/(k+ 2i)(k+4i) . SinceD has no zeros oh", Corollary 3.2
implies that the only possibility i8l=0. Thus,L(k)=L[°!(k), and our data uniquely determines
L andV.

Example 3.6:Let D(k)= —8/k(k+i20). As in Example 3.5, this is the generic case and
TON(k) = k(k+i20)/(k+2i)(k+4i). From (1.6) we see that lifo[2ik D(k)]=—8/\5,
which is negative, and hendde{1,3,5,..}. Then, from the first equation 2.3 we get
LIO1(k)= 8/(k+2i)(k+4i). SinceD has no zeros oh*, Corollary 3.2 implies that the only
possibility isN=1. Thus, we get (k)=—LPl(k) (k+ix;)/(k—ik;), wherek; e (0,+%) is an
arbitrary parameter. Because the construdtedontains one arbitrary parameter, there exists a
one-parameter family of potentials corresponding to our data.

Example 3.7:Let D(k)= —8(k—3i)(k—4i)/k(k+i20)(k+3i)(k+4i). As in Example
3.5, this is the generic case aféf! (k)= k(k+i+/20)/(k+2i)(k+4i). From (1.6) we see that
lim,_o[ 2ik D(k)]= —8/\/5, which is negative, and hendée {1,3,5,.. }. Then, as in Example
3.5 we get1%(k) = 8(k—3i)(k—4i)/(k+2i)(k+3i)(k+4i)?. SinceD has two zeros oh", N
cannot exceed 3. Thus, we must haNle=1 or N=3. In conjunction with Proposition 3.1 or
Theorem 3.8v), for N=1 we get the one-parameter famllyk)= — LIO(k) (k+ix;)/(k—ik;)
with «; € (0,3)U(4,+) and forN=3 we getL (k)= —LII(K)IT?_; (k+ix;)/(k—ik;) with «;
€(0,3), k,(3,4), andkze (4,+=). Thus, our data corresponds to a one-parameter family of
potentials wherN=1, and it corresponds to a three-parameter family of potentials \WzeB.

Example 3.8:Let D(k)= 8(k—i)%/k(k+i20)(k+i)2. We see thatD has exactly one
(double zero onl . As in Example 3.5 we get
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8(k—i)2
(k+2i)(k+4i)(k+i)?

k(k+i+/20)

000 = 2k an)

LIO(k) =

(3.3

Note that lim . o[2ik D(k)]=8/\/5, which is positive, and hencél.6) implies that N
€{0,2,4,..}. On the other hand, Corollary 3.2 implies tHd=0 or N=2; however, a sign
analysis ofD on 1" indicates thatD(i8)<0 for e (0,1)U(1,+*) andD(iB)=0 for B=1.
Thus,N=2 is incompatible with Proposition 3.1. Hend¢s=0 is the only possibility, and and
L are uniquely determined by our data as equaltd and L[°!, respectively, given in3.3.
Therefore, there exists a unique potential corresponding to our data.

Example 3.9:Let D(k)= —8(k—i)?/k(k+i/20)(k+i)?. The corresponding!® and L[°]
are the same as if8.3). From (1.6) we see that lig_ o[ 2ik D(k)]=—8/\/5, which is negative,
and henceNe{1,3,5,..}, as implied by(1.6). A sign analysis ofD on |I* indicates that
D(iB)>0 for Be(0,1)U(1,+) andD(iB)=0 for B=1. Hence, with the help of Corollary 3.2
we conclude thaN=1 is the only possibility. We thus obtain

K(k+iv20)(k+ixy) - —8(k—i)2(k+ixy)
kr 20k a(k=iry’ 0= W20k an (ke 2k=ixy)’

T(k)=

with k; € (0,1)U (1,+=). Therefore, our data corresponds to a one-parameter family of poten-
tials, wherex, acts as the parameter.

IV. RECOVERY WITH COMPACT SUPPORT

In this section we analyze the recovery\o6f or equivalently ofL, from D when it is further
known that the support of is confined to a finite interval. In constructif,{ «;},{c;}} from D,
all the results obtained in Secs. Il and Ill are certainly valid in this section as well. We have the
following:

(i) In the generic case, we are able to tell \ia6) whether the non-negative integéf
representing the number of bound state&/dé even or odd.

(i) Using (2.2 and the second equation (B.3), we are able to constru@®! and determiné.
except perhaps for the values ®f, . . . ,xy.

(ili) Let us useZ to denote the number of zeros Bfon | *. From Corollary 3.2 we conclude
thatN=Z+ 1. Moreover, Proposition 3.1 imposes a further restrictiorNodepending on
the sign of D on| ™.

(iv) The quantityTI®!, which is uniquely determined b, has a meromorphic extension to the
entire complex plane due to the fact that the suppoxt &f confined to a finite interval. We
will show that the sef—i«;} has to be a subset of the set of zeros at%/on1-.

The following result is already knowhand hence its proof is omitted. By writing the first
equation in(1.9) as
k 1'_“[ 1 ko1
T(k)j=1 k—ik;  TO(k) j=1 k+ikg’

which is valid on the entire complex plane, the reader can compare the zera8%¢K)/ and of
1/T(k) on the imaginary axis and verify the result statecivn above as well as those in following
proposition.

Proposition 4.1: Assume ¥ is real-valued, is integrable, has support confined to a finite
interval, and has no bound states. Suppose V is the potential obtained by adding N successive
bound states to ¥! at k=ix; with 0<«,<---<ky, and let 1 and T denote the transmission
coefficients for VP! and V, respectively. If the support of V is confined to a finite interval, then
k/T°(k) and K T(k) are both entire 1/T[%! has a simple zero atk—ix; for j=1,... N, and
any other zero ofl/T% on |~ must also be a zert/T with the same multiplicity
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In the first example below, we show that not every zero di%/on |~ necessarily corre-
sponds to a bound state ¥f In the second example we illustrate the recovery gndV from
our data.

Example 4.2:Consider the square-well potential supported on the intdfal] with depth
equal toca? for somec,a>0. The corresponding transmission coefficient satisfies

1 k2+ yz

=e| cosy+ Tkysin y

T(k)

with y:=\k?’+ca?. It can be easily checked that T{/~ia)=0 if we choose a=In8
=2.07944andc=8/9, where the overline on a digit indicates a roundoff. With these vales,
has exactly one bound state occurringkatix with «=1.30782 We have 1T(ia)#0 and
1T (i k)= LT (—ik)=0. In other wordsk=1i« does not correspond to a bound stat&/afven
though 1T (—ia)=0.

Example 4.3:Let D(k) = — e ¥ sink?>+ e/2ik Vk?>+ €, wheree is a non-negative param-
eter. In fact, one corresponding potential is the square well of depith support on the interval
[0, 1]. For each value o¢, let us obtain all the potentials corresponding?¢k) with support
confined to a finite interval. We have lim[ 2ik D(k)]= — Ve sin /e, and hence the exceptional
case occurs wheRe=pw for p=0,1,... and the generic case occurs whér# pr. In the
generic case we see that the sign of,lirg[ 2ik D(k)] is that of (—1)P™! when pm<+/e<(p
+1)7, and hence we can tell fromawhetherp is even or odd. The sign analysis Bfon | *
shows thaZ mentioned iniii ) in the beginning of this section is equal|tde/ 7|, i.e., the greatest
integer less than or equal té/7; in other words;D hasZ zeros onl * occurring atk=iz; with
Zj=ve—(] —1)%27% for j=1,... Z. In this particular example) happens to hav zeros onl -
as well occurring ak= —iz; symmetrically located with respect to the origin. With the help of
(2.1) and (2.2 we obtain

1 . 2k%+ € 21kt
=ek| cos\Vk2+ e+ ———sinVk2+ iy 4.1
TOT(k) ikt e ¢ ,1;[1 k—iB; @D

where the{;} is the ordered set with€903,< --- <87, consisting of those positivg values
satisfying tan/e— 82= (28 Je— B?)/(e—2?) . According to(iii) we must haveN<Z+1. Us-
ing all these constraints, we can determine all the possibilitiedNfothe corresponding bound
states, reflection coefficieht, and potentiaV. For example, we have the following:

(@ Whene=5, the above analysis shows th&at 0 and thusN<1, we are in the generic case
and N must be odd, the quantity Ti’! given in (4.1) has one simple zero oh™ at k

=—iB,, wherep,= 1.5857, and another one &t= —i By with 8,=1.543 34 In the former
case, we must havd =1 with the bound state occurring k=i 3, and

+i,81_ —etanyk’®+e
—iB1 2ik VKZ+ e+ (2Kk2+€) tankZ+ e

L=l T |

(b) Whene=10, we find thaZ=1 with z;=0.036 110 2and thusN<2, we are in the generic
case andN must be even, the quantityTIP! given in (4.1) has two simple zeros o at
k=—iB;, where,;=0.324 422and Bo,=2.547 59 Thus, we have either of the two cases
whereN=0 or N=2. For N=0, we getL(k)=D(k) TI°l(k). On the other hand, foN
=2 we get

(k+iB1)(K+iB3)

(k=iB1)(k=ip3)"

L(k)=D(k) TI%(k)
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(c) When =50, we find that we are in the generic cadé,must be oddZ=2 with z;
=3.2437andz,=6.334 86 and thusN=3; moreover, the quantity T/! given in(4.1) has
four simple zeros oh™ atk=—ig;, whereg,;=1.8715 §,=5.19839 3;=5.42649 and

B,=6.6376 Thus, we have either of the two cases whisrel or N=3. For the casé&\

=1 there is double nonuniqueness witiik) =D(k) TIl(k) (k+iB,)/(k—iB;) or L(k)
=D(k) TION(k) (k+iB,)/(k—iBs), which is a consequence d(iB,)>0, D(iB,)<0,
D(iB3)<0, andD(i B4) >0. ForN=3 we again have double nonuniqueness with the three
bound states occurring &t=i«; with the ordered sef«x,,«,,x3} being equal to either

1B1.B2,B4} or{B1,B3,Ba}-

(d When e=100, we find that we are in the generic cabemust be evenZ=3 with z;
=3.34269 7z,=7.7787 andz;=9.49379 and thusN<4; moreover, the quantity Ti°!
given in (4.1) has six simple zeros on~ at k=—igB;, where /31:1.9269_3 B
=5.71038 8;=6.41014 5,=8.546 07 Bs=9.18476 andBs=9.652 62 Thus, we have
either of the three cases whé¥e=0,N=2, orN=4. ForN=0 our data uniquely determines
L andV, with L(k)=D(k) TI(k). With L(k)=D(k) T[O](k)H1-2=1(k+iKj)/(k_in) for
N=2, we have fivefold nonuniqueness where the two bound states occuriigi & with

the ordered sdix 1, x,} being equal to either diB,8,}, {B1:83}, {B1.Bs} {Ba4.Be}, and
{Bs,Bs}- On the other hand, foN=4 we have fourfold nonuniqueness where the four

bound states occurring &t=i «; with the ordered seftxy, x,, k3, x4} being equal to either of
{B1,B2,84.86}, {B1.B2.Bs,B6} {B1.83,84,B6}, {B1.83,85,B6}
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