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For the one-dimensional Schro¨dinger equation, the analysis is provided to recover
the potential from the data consisting of the ratio of a reflection coefficient to the
transmission coefficient. It is investigated whether such data uniquely constructs a
reflection coefficient, the number of bound states, bound-state energies, bound-state
norming constants, and a corresponding potential. In all three cases when there is
no knowledge of the support of the potential, the support of the potential is con-
fined to a half-line, and the support is confined to a finite interval, various unique-
ness and nonuniqueness results are established, the precise criteria are provided for
the uniqueness and the nonuniqueness and the degree of nonuniqueness, and the
recovery is illustrated with some explicit examples. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1614871#

I. INTRODUCTION

In this paper we investigate the recovery of the potential of the one-dimensional Schro¨dinger
equation from the data consisting of the ratio of a reflection coefficient to the transmission
ficient. We analyze the cases where the potential has no restriction on its support, half-line s
and compact support. We assume no information about the number of bound states, and in
try to recover that number as a part of our inverse problem.

Our work is motivated by the work of Rundell and Sacks1 where it was shown that a bounde
compactly supported potential with a sufficiently smallL2-norm is uniquely determined by th
corresponding ratio of a reflection coefficient to the transmission coefficient. In our paper we
exactly when such a determination is possible.

Consider the Schro¨dinger equation

c9~k,x!1k2 c~k,x!5V~x! c~k,x!, xPR, ~1.1!

where the potentialV belongs to the Faddeev class, i.e., it is real valued, measurable, a
L1

1(R). Here, Ln
1(J) denotes the class of measurable functions on an intervalJ such that

*Jdx (11uxun) uV(x)u is finite. The prime is used for the derivative with respect to the spa
coordinatex. The scattering solutions to~1.1! behave likeeikx or e2 ikx asx→6`, and they occur
for kPR\$0%. A bound state of~1.1! is a solution that belongs toL2(R) in the x variable, and it
is known2–7 that the bound states can occur only at certaink values on the positive imaginary ax
I1 in C1. We useC1 for the upper-half complex plane andI1

ª i (0,1`); later we will let C1

ªC1øR and I2
ª i (2`,0). We will useN to denote the number of bound states, which

known to be finite whenV is in the Faddeev class, and suppose that the bound states occuk
5 ik j with the ordering 0,k1,•••,kN .

Among the scattering solutions to~1.1! are f l and f r , the Jost solutions from the left and righ
respectively, satisfying the respective boundary conditions
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e2 ikxf l~k,x!511o~1!, e2 ikxf l8~k,x!5 ik1o~1!, x→1`,

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`. ~1.2!

From the spatial asymptotics

f l~k,x!5
eikx

T~k!
1

L~k! e2 ikx

T~k!
1o~1!, x→2`, ~1.3!

f r~k,x!5
e2 ikx

T~k!
1

R~k! eikx

T~k!
1o~1!, x→1`,

we obtain the transmission coefficientT, and the reflection coefficientsL andR from the left and
right, respectively. It is known2–7 that

T~2k!5T~k!* , R~2k!5R~k!* , L~2k!5L~k!* , kPR,

R~k!52
L~2k! T~k!

T~2k!
, uT~k!u21uL~k!u251, kPR, ~1.4!

where the asterisk denotes complex conjugation. In general,R andL are defined only for realk
values, butT has a meromorphic extension toC1. Each bound state corresponds to a~simple!
pole ofT in C1 and vice versa. GivenuT(k)u for kPR and the bound-state polesk5 ik j , one can
constructT as2–7

T~k!5S )
j 51

N
k1 ik j

k2 ik j
D expS 1

p i E2`

`

ds
loguT~s!u

s2k2 i01D , kPC1. ~1.5!

A potentialV in the Faddeev class is said to be generic ifT(0)50 and exceptional ifT(0)
Þ0. Generically we have

lim
k→0

2ik L~k!

T~k!
5~21!NuW0u1o~1!, k→0 in R, ~1.6!

where the WronskianW0ª f r(0,x) f l8(0,x)2 f r8(0,x) f l(0,x) is a nonzero constant. On the oth
hand, in the exceptional case we have

lim
k→0

L~k!

T~k!
5

g0
221

2g0
1o~1!, k→0 in R, ~1.7!

where

g0ª
f l~0,x!

f r~0,x!
5~21!NU f l~0,x!

f r~0,x!
U

is a nonzero constant.
A potential in the Faddeev class is uniquely determined from the data$L,$k j%,$cr j %% or

$L,$k j%,$g j%% by using any one of the available methods.2–7 Here, cr j , for each j 51, . . . ,N,
represents the bound-state norming constant andg j the dependency constant associated withk
5 ik j , and they are related to the Jost solutions as

cr jªF E
2`

`

dx fr~ ik j ,x!2G21/2

, g jª
f l~ ik j ,x!

f r~ ik j ,x!
. ~1.8!
d 27 Oct 2003 to 130.18.27.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



truct

tential

y

and,

imum

t
a

ive
ples.
on

e
trate the

f

4877J. Math. Phys., Vol. 44, No. 11, November 2003 Potential from ratio of scattering coefficients

Downloade
GivenV, we can remove2–7 all the bound states from the scattering coefficients and cons
the resulting potentialV[0] corresponding to the transmission coefficientT[0] and the left reflection
coefficientL [0] , where

T~k!5T[0]~k!)
j 51

N
k1 ik j

k2 ik j
, L~k!5~21!NL [0]~k!)

j 51

N
k1 ik j

k2 ik j
. ~1.9!

The potentialV[0] belongs to the Faddeev class wheneverV is in that class.
Without loss of any generality, our main problem can be reduced to the recovery of a po

V in the Faddeev class from the dataD(k)ªL(k)/T(k) in the following cases:

~i! V has no restrictions on its support.
~ii ! The support ofV is confined to a half-line.
~iii ! The support ofV is confined to a finite interval.

Our paper is organized as follows. In Sec. II we study case~i!; we see that our data cannot sa
anything about the value ofN in the exceptional case and henceNP$0,1,2, . . .%, and for each
suchN we have a 2N-parameter family of potentials corresponding to our data. On the other h
in the generic case from our data we getNP$0,2,4, . . .% or NP$1,3,5, . . .%, as indicated in~1.6!;
for each allowedN we again have a 2N-parameter family of potentials corresponding toD. Case
~ii ! is analyzed in Sec. III, and we show that our data puts a further restriction on the max
allowable value forN and thatN21 cannot exceed the number of zeros ofD on I1. In particular,
in the generic case whereD has no zeros onI1 and the limit in~1.6! is positive, we conclude tha
N50 and hence there is a unique potential corresponding toD. We also show that our dat
restricts the~open! intervals in which thek j can occur, depending on the sign ofD on I1. Then,
for each allowedN we obtain anN-parameter family of potentials supported on the posit
half-line corresponding to our data. We illustrate the nonuniqueness with some explicit exam
Finally, in Sec. IV, we analyze case~iii ! and show that our data further puts severe restrictions
the locations of thek j . In this case we show that for each allowedN, there can exist only a
discrete number of potentials corresponding to the sameD. We provide the exact criteria for th
uniqueness as well as the nonuniqueness and the degree of nonuniqueness, and we illus
theory with some explicit examples.

II. RECOVERY WITH NO RESTRICTION ON THE SUPPORT

We will analyze the construction ofV from the dataD by analyzing the construction o
$L,$k j%,$cr j %% from D.

Given D(k) for kPR, we can constructT[0] . This is because, as seen from~1.9! and the
second equation in~1.4!, we have

1

uT[0]~k!u2 5
1

uT~k!u2
511uD~k!u2, kPR, ~2.1!

and hence,~1.5! and ~2.1! imply that

T[0]~k!5expS 1

2p i E2`

`

ds
log~1/@11uD~s!u2# !

s2k2 i01 D , kPC1. ~2.2!

Having foundT[0] , from ~1.9! we get

L [0]~k!5~21!ND~k! T[0]~k!, L~k!5D~k! T[0]~k!S )
j 51

N
k1 ik j

k2 ik j
D . ~2.3!
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Thus, to constructL from D, we must know both the number of bound states and the bound-
energies. In the generic cases, as~1.6! implies, fromD we are only able to determine whetherN
is even or odd, but in the exceptional case even this is not possible, as implied by~1.7!. For N
50, as seen from~2.3!, D uniquely determinesL and hence alsoV.

In summary, given the dataD, we get, for each value ofN, a 2N-parameter family of
corresponding potentials, where$$k j%,$cr j %% represents the parameter set. IfD(k) is bounded at
k50 thenN can be any non-negative integer; ifD(k) is unbounded atk50, thenN is a non-
negative integer, which is odd or even depending on the sign of limk→0@2ik D(k)# as in ~1.6!.

Example 2.1:Let us demonstrate that we can tell fromD whetherN is even or odd in the
generic case, but not in the exceptional case. Consider

D~k!5
a

~k1 ic1!~k1 ic2!
, c6ª

A106Aa2136,

where aP@28,8# is a parameter. Note thata568 corresponds to the generic case anda
P(28,8) corresponds to the exceptional case. In the generic case from~1.6! we get 2ik D(k)
5a/A51O(k) ask→0, and henceN must be even ifa58 and odd ifa528. On the other hand
in the exceptional case, from~1.7! we getD(k)5a/A642a21O(k) ask→0, andN can be any
non-negative integer. In fact, the corresponding scattering coefficients foraP@28,8# are given by

L~k!5
~21!Na

~k12i !~k14i ! S )j 51

N
k1 ik j

k2 ik j
D , T~k!5

~k1 ic1!~k1 ic2!

~k12i !~k14i ! S )
j 51

N
k1 ik j

k2 ik j
D ,

whereL(0)521 andT(0)50 are assured in the generic case by the choiceNP$0,2,4, . . .% if
a58 andNP$1,3,5, . . .% if a528.

III. RECOVERY WITH SUPPORT ON A HALF-LINE

In this section we analyze the construction ofV from D when we further know that the
support ofV is confined to a half-line. Equivalently, we analyze the construction of$L,$k j%,$cr j %%
from our data.

There is no loss of generality in assuming that the support ofV is confined toR1. This can
be seen by the following argument. If the support of the potential is known to be confined
interval (a,1`) for some real constanta, then the value ofa can be extracted8 from D; the shift
V(x)°V(x2a) results inL(k)/T(k)°L(k) e2ika/T(k) and hence there is no loss of generality
assuming thata[0. On the other hand, if the support of the potential is known to be confine
R2, then, because of the first equation in~1.4!, our problem can also be formulated as t
recovery ofV from R/T, which is equivalent to the recovery ofV from D.

When the support ofV is confined toR1, it is already known9–14 thatL uniquely determines
V. In fact, the meromorphic extension ofL(k) from R to C1 uniquely determines$$k j%,$cr j %% as
indicated in Theorem 3.3 below. Thus, the number of arbitrary parameters appearing in the
tion coefficientL constructed from our data is the same as the number of parameters appea
the constructedV.

In Sec. II we have seen thatD in the generic case reveals whetherN is even or odd. We will
next show that knowledge that the support ofV is confined toR1 leads to an upper bound onN
both in the generic and exceptional cases.

Proposition 3.1: Assume V[0] is a potential in the Faddeev class, has support inR1, and has
no bound states. Suppose V is the potential obtained by adding N successive bound states[0]

at k5 ik j with 0,k1, ¯ ,kN , and let L[0] denote the left reflection coefficient for V[0] as in
(1.9). If the support of V is confined toR1, then(21) jL [0] ( ik j ).0 for j 51, . . . ,N, or equiva-
lently, (21)N2 jD( ik j ).0.

Proof: If V[0 for x,0, from ~1.2! and ~1.3! we see that
d 27 Oct 2003 to 130.18.27.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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f r~k,x!5e2 ikx, f l~k,x!5
eikx

T~k!
1

L~k! e2 ikx

T~k!
, x<0. ~3.1!

Hence, using 1/T( ik j )50, ~3.1!, and the second equation in~1.8!, we reach the conclusion tha
g j5(L/T)( ik j ). Then, with the help of~1.9!, we getL [0] ( ik j )5(21)Ng j T[0] ( ik j ). It is already
known thatT[0] (k).0 on I1 and (21)N2 jg j.0. Thus, (21) jL [0] ( ik j ).0 for j 51, . . . ,N. With
the help ofD(k)5(21)NL [0] (k)/T[0] (k), we equivalently claim that (21)N2 jD( ik j ).0. j

For kPI1 we know thatL [0] (k) is real valued and continuous and 1/T[0] (k).0; hence, from
Proposition 3.1 we obtain the following result.

Corollary 3.2: Assume V belongs to the Faddeev class, has N bound states, and has s
in R1. Let L[0] denote the left reflection coefficient for V[0] , which is obtained from V by removin
all the bound states, as in (1.9). Then, L [0] must have at least N21 zeros onI1, equivalently, D
must have at least N21 zeros onI1.

Let us note that the zeros ofL [0] on I1, or equivalently those ofD, need not be simple, a
indicated in Examples 3.8 and 3.9.

The following theorem gives a characterization of the left reflection coefficient correspon
to a potential in the Faddeev class with support confined toR1. Let

L̂~a!ª
1

2p E
2`

`

dk L~k! eika, R̂~a!5..2
1

2p E
2`

`

dk
L~2k! T~k!

T~2k!
eika. ~3.2!

Theorem 3.3: The left reflection coefficient L corresponds to a unique potential V in
Faddeev class with support inR1 and with N bound states at k5 ik j ( j 51, . . . ,N) if and only if
the following conditions hold:

~i! L is continuous onR, and L(2k)5L(k)* for kPR.
~ii ! uL(k)u<12Ck2/(11k2) on R for some positive constant C.
~iii ! L(0)P@21,1).
~iv! L has a meromorphic extension toC1 with N simple poles occurring at k5 ik j and

residuesResL( ik j )5 icr j
2 for some positive constants cr j . Of course, if N50 then the

extension of L toC1 is analytic there.
~v! L(k)5o(1/k) as k→` in C1.
~vi! The function k/T(k), where T(k) is given in (1.5) withuT(s)u5A12uL(s)u2, is continuous

in C1.
~vii ! The functions Lˆ and R̂ defined in (3.2) are absolutely continuous, L̂8PL1

1(2`,0), and

R̂8PL1
1(a,1`) for any a,0.

Proof: The proof is obtained by modifying the characterization conditions on the scatt
data5,7,15 corresponding to a potential in the Faddeev class in order to take into accoun
vanishing property of the potential onR2. It is known9–14 that ~iv! is equivalent to vanishing o
V on R2. The slight modification in~vii ! is also related to the vanishing of the potential onR2.

j

In the following we illustrate the recovery ofV, or equivalently ofL, by presenting some
explicit examples.

Example 3.4:Let our data for a potential with support inR1 be given by

D~k!5
2)~k2 i !~k23i !

~k1 i !2~k1A5i !~k13i !
.

Notice thatD(k) is bounded atk50 and hence this corresponds to an exceptional case. Pro
ing as in~2.2!, or equivalently by solving the Riemann–Hilbert problem@cf. ~2.1!#
d 27 Oct 2003 to 130.18.27.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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1

T[0]~2k!
5~11uD~k!u2! T[0]~k!, kPR,

we obtain

T[0]~k!5
~k1 i !~k1A5i !

~k1& i !~k12i !
.

From ~2.3! we get

L [0]~k!5~21!NA~k!, A~k!ª
2) ~k2 i !~k23i !

~k1 i !~k1& i !~k12i !~k13i !
.

Notice thatD has two zeros onI1. Hence, the number of bound states ofV cannot exceed 3. Sinc
this is the exceptional case,N is allowed to be any of 0, 1, 2, and 3. Recalling the fact thaL
uniquely determinesV because of the support property ofV, with the help of the sign restriction
indicated in Proposition 3.1, or equivalently, with the help of Theorem 3.3~iv!, we obtain all the
following possibilities forL and also forV:

~a! For N50, we haveL(k)5A(k), and the potentialV is uniquely determined.
~b! For N51, we haveL(k)5A(k) (k1 ik1)/(k2 ik1) , wherek1P(0,1)ø(3,1`) is the only

arbitrary parameter inV.
~c! For N52, we getL(k)5A(k)) j 51

2 (k1 ik j )/(k2 ik j ) , with k1P(1,3) andk2P(3,1`)
being the only two arbitrary parameters inV.

~d! For N53, we haveL(k)5A(k)) j 51
3 (k1 ik j )/(k2 ik j ) , wherek1P(0,1), k2P(1,3), and

k2P(3,1`) are the only three arbitrary parameters inV.

Example 3.5:Let D(k)5 8/k(k1 iA20) . This is the generic case becauseD(k) is singular at
k50. Using ~2.1! we obtain T[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that
limk→0@2ik D(k)#58/A5, which is positive, and thereforeNP$0,2,4, . . .%. Then, from the first
equation in~2.3! we getL [0] (k)5 8/(k12i )(k14i ) . SinceD has no zeros onI1, Corollary 3.2
implies that the only possibility isN50. Thus,L(k)5L [0] (k), and our data uniquely determine
L andV.

Example 3.6:Let D(k)5 28/k(k1 iA20) . As in Example 3.5, this is the generic case a
T[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that limk→0@2ik D(k)#528/A5,
which is negative, and henceNP$1,3,5, . . .%. Then, from the first equation in~2.3! we get
L [0] (k)5 8/(k12i )(k14i ) . SinceD has no zeros onI1, Corollary 3.2 implies that the only
possibility isN51. Thus, we getL(k)52L [0] (k) (k1 ik1)/(k2 ik1) , wherek1P(0,1`) is an
arbitrary parameter. Because the constructedL contains one arbitrary parameter, there exist
one-parameter family of potentials corresponding to our data.

Example 3.7:Let D(k)5 28(k23i )(k24i )/k(k1 iA20)(k13i )(k14i ) . As in Example
3.5, this is the generic case andT[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that
limk→0@2ik D(k)#528/A5, which is negative, and henceNP$1,3,5, . . .%. Then, as in Example
3.5 we getL [0] (k)5 8(k23i )(k24i )/(k12i )(k13i )(k14i )2 . SinceD has two zeros onI1, N
cannot exceed 3. Thus, we must haveN51 or N53. In conjunction with Proposition 3.1 o
Theorem 3.3~iv!, for N51 we get the one-parameter familyL(k)52L [0] (k) (k1 ik1)/(k2 ik1)
with k1P(0,3)ø(4,1`) and forN53 we getL(k)52L [0] (k)) j 51

3 (k1 ik j )/(k2 ik j ) with k1

P(0,3), k2P(3,4), andk3P(4,1`). Thus, our data corresponds to a one-parameter famil
potentials whenN51, and it corresponds to a three-parameter family of potentials whenN53.

Example 3.8:Let D(k)5 8(k2 i )2/k(k1 iA20)(k1 i )2 . We see thatD has exactly one
~double! zero onI1. As in Example 3.5 we get
d 27 Oct 2003 to 130.18.27.181. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ten-

e the

e

t

g

ite
cessive
n
en

4881J. Math. Phys., Vol. 44, No. 11, November 2003 Potential from ratio of scattering coefficients

Downloade
T[0]~k!5
k~k1 iA20!

~k12i !~k14i !
, L [0]~k!5

8~k2 i !2

~k12i !~k14i !~k1 i !2 . ~3.3!

Note that limk→0@2ik D(k)#58/A5, which is positive, and hence~1.6! implies that N
P$0,2,4, . . .%. On the other hand, Corollary 3.2 implies thatN50 or N52; however, a sign
analysis ofD on I1 indicates thatD( ib),0 for bP(0,1)ø(1,1`) and D( ib)50 for b51.
Thus,N52 is incompatible with Proposition 3.1. Hence,N50 is the only possibility, andT and
L are uniquely determined by our data as equal toT[0] and L [0] , respectively, given in~3.3!.
Therefore, there exists a unique potential corresponding to our data.

Example 3.9:Let D(k)5 28(k2 i )2/k(k1 iA20)(k1 i )2 . The correspondingT[0] and L [0]

are the same as in~3.3!. From ~1.6! we see that limk→0@2ik D(k)#528/A5, which is negative,
and henceNP$1,3,5, . . .%, as implied by ~1.6!. A sign analysis ofD on I1 indicates that
D( ib).0 for bP(0,1)ø(1,1`) andD( ib)50 for b51. Hence, with the help of Corollary 3.2
we conclude thatN51 is the only possibility. We thus obtain

T~k!5
k~k1 iA20!~k1 ik1!

~k12i !~k14i !~k2 ik1!
, L~k!5

28~k2 i !2~k1 ik1!

~k12i !~k14i !~k1 i !2~k2 ik1!
,

with k1P(0,1)ø(1,1`). Therefore, our data corresponds to a one-parameter family of po
tials, wherek1 acts as the parameter.

IV. RECOVERY WITH COMPACT SUPPORT

In this section we analyze the recovery ofV, or equivalently ofL, from D when it is further
known that the support ofV is confined to a finite interval. In constructing$L,$k j%,$cr j %% from D,
all the results obtained in Secs. II and III are certainly valid in this section as well. We hav
following:

~i! In the generic case, we are able to tell via~1.6! whether the non-negative integerN
representing the number of bound states ofV is even or odd.

~ii ! Using ~2.2! and the second equation in~2.3!, we are able to constructT[0] and determineL
except perhaps for the values ofk1 , . . . ,kN .

~iii ! Let us useZ to denote the number of zeros ofD on I1. From Corollary 3.2 we conclude
that N<Z11. Moreover, Proposition 3.1 imposes a further restriction onN depending on
the sign ofD on I1.

~iv! The quantityT[0] , which is uniquely determined byD, has a meromorphic extension to th
entire complex plane due to the fact that the support ofV is confined to a finite interval. We
will show that the set$2 ik j% has to be a subset of the set of zeros of 1/T[0] on I2.

The following result is already known,2 and hence its proof is omitted. By writing the firs
equation in~1.9! as

k

T~k! )j 51

N
1

k2 ik j
5

k

T[0]~k! )j 51

N
1

k1 ik j
,

which is valid on the entire complex plane, the reader can compare the zeros of 1/T[0] (k) and of
1/T(k) on the imaginary axis and verify the result stated in~iv! above as well as those in followin
proposition.

Proposition 4.1: Assume V[0] is real-valued, is integrable, has support confined to a fin
interval, and has no bound states. Suppose V is the potential obtained by adding N suc
bound states to V[0] at k5 ik j with 0,k1,•••,kN , and let T[0] and T denote the transmissio
coefficients for V[0] and V, respectively. If the support of V is confined to a finite interval, th
k/T[0] (k) and k/T(k) are both entire, 1/T[0] has a simple zero at k52 ik j for j 51, . . . ,N, and
any other zero of1/T[0] on I2 must also be a zero1/T with the same multiplicity.
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In the first example below, we show that not every zero of 1/T[0] on I2 necessarily corre-
sponds to a bound state ofV. In the second example we illustrate the recovery ofL andV from
our data.

Example 4.2:Consider the square-well potential supported on the interval@0, 1# with depth
equal toca2 for somec,a.0. The corresponding transmission coefficient satisfies

1

T~k!
5eikFcosg1

k21g2

2ikg
singG

with gªAk21ca2. It can be easily checked that 1/T(2 ia)50 if we choose a5 ln 8
52.079 44̄andc58/9, where the overline on a digit indicates a roundoff. With these valueV

has exactly one bound state occurring atk5 ik with k51.307 82̄. We have 1/T( ia)Þ0 and
1/T( ik)51/T[0] (2 ik)50. In other words,k5 ia does not correspond to a bound state ofV even
though 1/T[0] (2 ia)50.

Example 4.3:Let D(k)5 2e eik sinAk21e/2ik Ak21e , wheree is a non-negative param
eter. In fact, one corresponding potential is the square well of depthe with support on the interva
@0, 1#. For each value ofe, let us obtain all the potentials corresponding toD(k) with support
confined to a finite interval. We have limk→0@2ik D(k)#52Ae sinAe, and hence the exceptiona
case occurs whenAe5pp for p50,1, . . . and the generic case occurs whenAeÞpp. In the
generic case we see that the sign of limk→0@2ik D(k)# is that of (21)p11 when pp,Ae,(p
11)p, and hence we can tell frome whetherp is even or odd. The sign analysis ofD on I1

shows thatZ mentioned in~iii ! in the beginning of this section is equal tobAe/p c, i.e., the greates
integer less than or equal toAe/p; in other words,D hasZ zeros onI1 occurring atk5 izj with
zj5Ae2( j 21)2p2 for j 51, . . . ,Z. In this particular example,D happens to haveZ zeros onI2

as well occurring atk52 izj symmetrically located with respect to the origin. With the help
~2.1! and ~2.2! we obtain

1

T[0]~k!
5eikFcosAk21e1

2k21e

2ikAk21e
sinAk21eG )

j 51

Z11
k1 ib j

k2 ib j
, ~4.1!

where the$b j% is the ordered set with 0,b1, ¯ ,bZ11 consisting of those positiveb values
satisfying tanAe2b25 (2b Ae2b2)/(e22b2) . According to~iii ! we must haveN<Z11. Us-
ing all these constraints, we can determine all the possibilities forN, the corresponding bound
states, reflection coefficientL, and potentialV. For example, we have the following:

~a! Whene55, the above analysis shows thatZ50 and thusN<1, we are in the generic cas
and N must be odd, the quantity 1/T[0] given in ~4.1! has one simple zero onI2 at k

52 ib1 , whereb151.5857̄, and another one atk52 ib2 with b251.543 34̄. In the former
case, we must haveN51 with the bound state occurring atk5 ib1 , and

L~k!5D~k! T[0]~k!
k1 ib1

k2 ib1
5

2e tanAk21e

2ik Ak21e1~2k21e! tanAk21e
.

~b! Whene510, we find thatZ51 with z150.036 110 2̄, and thusN<2, we are in the generic
case andN must be even, the quantity 1/T[0] given in ~4.1! has two simple zeros onI2 at
k52 ib j , whereb150.324 422̄andb252.547 59̄. Thus, we have either of the two cas
where N50 or N52. For N50, we getL(k)5D(k) T[0] (k). On the other hand, forN
52 we get

L~k!5D~k! T[0]~k!
~k1 ib1!~k1 ib2!

~k2 ib1!~k2 ib2!
.
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~c! When e550, we find that we are in the generic case,N must be odd,Z52 with z1

53.2437̄andz256.334 86̄, and thusN<3; moreover, the quantity 1/T[0] given in ~4.1! has
four simple zeros onI2 at k52 ib j , whereb151.8715̄, b255.198 39̄, b355.426 49̄, and
b456.6376̄. Thus, we have either of the two cases whereN51 or N53. For the caseN
51 there is double nonuniqueness withL(k)5D(k) T[0] (k) (k1 ib1)/(k2 ib1) or L(k)
5D(k) T[0] (k) (k1 ib4)/(k2 ib4) , which is a consequence ofD( ib1).0, D( ib2),0,
D( ib3),0, andD( ib4).0. ForN53 we again have double nonuniqueness with the th
bound states occurring atk5 ik j with the ordered set$k1 ,k2 ,k3% being equal to either
$b1 ,b2 ,b4% or $b1 ,b3 ,b4%.

~d! When e5100, we find that we are in the generic case,N must be even,Z53 with z1

53.342 69̄, z257.7787̄, andz359.493 79̄, and thusN<4; moreover, the quantity 1/T[0]

given in ~4.1! has six simple zeros onI2 at k52 ib j , where b151.926 93̄, b2

55.710 38̄, b356.410 14̄, b458.546 07̄, b559.184 76̄, andb659.652 62̄. Thus, we have
either of the three cases whereN50, N52, orN54. ForN50 our data uniquely determine
L and V, with L(k)5D(k) T[0] (k). With L(k)5D(k) T[0] (k)) j 51

2 (k1 ik j )/(k2 ik j ) for
N52, we have fivefold nonuniqueness where the two bound states occurring atk5 ik j with
the ordered set$k1 ,k2% being equal to either of$b1 ,b2%, $b1 ,b3%, $b1 ,b6%, $b4 ,b6%, and
$b5 ,b6%. On the other hand, forN54 we have fourfold nonuniqueness where the fo
bound states occurring atk5 ik j with the ordered set$k1 ,k2 ,k3 ,k4% being equal to either of
$b1 ,b2 ,b4 ,b6%, $b1 ,b2 ,b5 ,b6%, $b1 ,b3 ,b4 ,b6%, $b1 ,b3 ,b5 ,b6%.
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