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The inverse problem of determining the cross-sectional area of a human vocal tract
during the utterance of a vowel is considered. The frequency-dependent boundary
condition at the lips is expressed in terms of the acoustic impedance of a vibrating piston
on an infinite plane baffle. The corresponding pressure at the lips is expressed in terms
of the normalized impedance and a key quantity related to the so-called Jost function
of an associated Schrödinger equation. Various input data sets are considered to solve
the inverse problem, including the pressure at the lips, the absolute pressure at the lips,
and the poles of the pressure at the lips. The solution to the inverse problem is obtained
with the help of the Gel’fand–Levitan method for the associated Schrödinger equation.

© 2021 Published by Elsevier B.V.

1. Introduction

The human speech consists of units called phonemes. For example, in uttering the word ‘‘book’’, the phonemes /b/, /u/,
nd /k/ are produced in succession typically at the rate of 10 phonemes per second. The phonemes can be classified into
wo main groups, i.e. into vowels and consonants. To a good approximation the production of each vowel can be assumed
o occur in the vocal tract, by ignoring the articulators such as the nasal cavity and the tongue. During the utterance of
ach phoneme it can be assumed that the vocal tract is a circular cylindrical tube of some fixed length ℓ, which is about
7 cm for an adult male.
The vocal tract can be parameterized by using the independent variable x, which denotes the distance from the glottis

the opening between the vocal cords). The radius of the vocal tract at location x can be denoted by r(x), with the point
= 0 corresponding to the glottis and the point x = ℓ corresponding to the lips. For a mathematical description we can
ssume that in the vowel production the radius function belongs to the class A defined below, where we recall that ℓ is
fixed constant. Throughout the paper we use a prime to denote the derivative with respect to the independent spatial
ariable.

efinition 1.1. The vocal-tract radius r belongs to class A if the following conditions are satisfied:

(a) The quantity r(x) is real valued and positive for x ∈ [0, ℓ], where we let

r0 := r(0), rℓ := r(ℓ). (1.1)
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(b) The derivative function r ′ is continuous for x ∈ [0, ℓ], where we let

r ′

0 := r ′(0), r ′

ℓ := r ′(ℓ). (1.2)

We remark that r ′

0 and r ′

ℓ may be zero, positive, or negative.
(c) The second-derivative function r ′′ is integrable on x ∈ (0, ℓ).

The production of each phoneme in the vocal tract can be described by specifying the sound pressure p(x, t) and the
olume velocity v(x, t) at location x and at time t . Equivalently, we can use the Fourier transformation from the time
omain to the frequency domain as

P(k, x) =

∫
∞

−∞

dt p(x, t) e−ikct , V (k, x) =

∫
∞

−∞

dt v(x, t) e−ikct , (1.3)

here k is the angular wavenumber measured in radians per second and c is the sound speed in the vocal tract, which
an be assumed to have the constant value 3.5× 104 cm/s in the vocal tract at the normal body temperature 37◦C. Since
he quantities p(x, t) and v(x, t) are real valued, from (1.3) it follows that

P(−k, x) = P(k, x)∗, V (−k, x) = V (k, x)∗, k ∈ R, x ∈ [0, ℓ], (1.4)

here we use R to denote the real line and the asterisk denotes complex conjugation.
The angular wavenumber k and the frequency ν are related to each other as

k =
2πν
c
.

ince the sound speed c in the vocal tract is a constant, we can view the angular wavenumber as a measure of the
requency with the proportionality constant 2π/c , and hence we have k = 1.8 × 10−4 ν with k expressed in rad/cm and
expressed in Hertz (cycles per second). The air density µ also affects the sound production in the vocal tract, and its
alue is about 1.14 × 10−3 gm/cm3 in the vocal tract at the normal body temperature.
The production of each phoneme in the vocal tract is governed by the first-order system of differential equations [1–9]{

πr(x)2 P ′(k, x) + ikcµ V (k, x) = 0,
cµ V ′(k, x) + ikπ r(x)2 P(k, x) = 0, (1.5)

here the independent variable x is confined to the interval (0, ℓ), we recall that the prime denotes the x-derivative, and
(k, x) and V (k, x) are the dependent variables for k ∈ R. Eliminating one of the dependent variables, we can convert (1.5)
nto the second-order equation

[r(x)2 P ′(k, x)]′ + k2 r(x)2 P(k, x) = 0, x ∈ (0, ℓ), (1.6)

r into[
V ′(k, x)
r(x)2

]′

+ k2
V (k, x)
r(x)2

= 0, x ∈ (0, ℓ). (1.7)

We remark that (1.6) was first derived by Webster [9] and is known as the Webster horn equation.
In order to determine P(k, x) and V (k, x) appearing in (1.5) uniquely, we can provide some appropriate physical

restrictions at x = 0 and x = ℓ. An appropriate condition commonly used at x = 0 is

v(0, t) = δ(t), (1.8)

hich amounts to choosing the volume velocity v(x, t) at the glottis as the Dirac delta distribution. From (1.3) and (1.8)
it follows that

V (k, 0) ≡ 1, k ∈ R, (1.9)

r equivalently, with the help of the first line of (1.5) we have

P ′(k, 0) = −
ikcµ
πr20

. (1.10)

A reasonable physical restriction at x = ℓ is obtained by assuming that the sound pressure at the lips goes out of the
outh and there is no component of the sound pressure moving into the mouth at x = ℓ. Mathematically, this amounts

o the boundary condition at x = ℓ given by

P ′(k, ℓ) +

[
ik +

r ′

ℓ

rℓ

]
P(k, ℓ) = 0. (1.11)

or further information on the boundary condition specified in (1.11) we refer the reader to [10–12] and the references
herein.
2
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The boundary condition given in (1.11) is not the only boundary condition that can be chosen at x = ℓ. In mathematical
studies of human speech, the scientists with electrical engineering background usually describe the human vocal tract as
an acoustic tube with a piecewise constant radius function r(x), viewed as a cascade of networks containing analogous
ircuit elements with P(k, x) and V (k, x) playing the roles of the electric voltage and the electric current, respectively. The
mpedance at the lips, which we denote by Z(k), is defined as

Z(k) :=
P(k, ℓ)
V (k, ℓ)

, k ∈ R, (1.12)

nd the normalized impedance at the lips is defined as

z(k) :=
πr2ℓ
cµ

Z(k), k ∈ R. (1.13)

By viewing each component of the electric circuit as a parallel connection of a resistor and an inductor, we can express
the normalized impedance at the lips also as

1
z(k)

=
1
R

+
1

ikcL
,

where R and L denote the corresponding frequency-dependent normalized resistance and inductance, respectively.
If the impedance at the lips is known, then we can view (1.12) as a boundary condition at x = ℓ, and with the help of

he first line of (1.5), (1.12), and (1.13) we can express the corresponding boundary condition at x = ℓ as

P ′(k, ℓ) +
ik
z(k)

P(k, ℓ) = 0, k ∈ R. (1.14)

ence, specifying the normalized impedance at the lips is equivalent to having the boundary condition (1.14). We refer
he reader to Section 1.1 of [3] for some appropriate choices for z(k). We can view a typical human head as a sphere,
where the radius of the sphere is about 9 cm for an adult male. When rℓ is small compared to the radius of the head, the
normalized impedance at the lips can be approximated [3,4] in terms of the Bessel function of order one, i.e. J1(w), and
the Struve function of order one, i.e. H1(w), as

z(k) = 1 −
J1(2krℓ)

krℓ
+ i

H1(2krℓ)
krℓ

. (1.15)

he choice of z(k) can be described as the sound radiation at the lips being governed by a vibrating piston on an infinite
lane baffle. Throughout the paper, when we refer to the determination of z(k) we mean the determination of the specific
orm of z(k) given in (1.15), which is obtained when rℓ is known.

Let us consider the following direct and inverse scattering problems for the production of a vowel in the human vocal
ract. It is assumed that the sound pressure in the vocal tract is governed by (1.6) with the boundary conditions given in
1.10) and (1.14) with z(k) as in (1.15). Our direct problem consists of the determination of the sound pressure P(k, ℓ) at
he lips for k ∈ R when the vocal tract radius r(x) is given for x ∈ (0, ℓ) and is known to belong to the class A described in
efinition 1.1. Our inverse problem consists of the determination of r(x) for x ∈ (0, ℓ) when P(k, ℓ) is known for k ∈ R. A
odified inverse problem consists of the determination of r(x) for x ∈ (0, ℓ) when the absolute pressure |P(k, ℓ)| is known

or k ∈ R. Note that because of the first equality in (1.4) the pressure P(k, x) known for k ≥ 0 determines the pressure
(k, x) for k ∈ R. We refer the reader to [12] for the solutions to the corresponding direct and inverse scattering problems
hen the boundary conditions (1.10) at x = 0 and (1.11) at x = ℓ are used. In this paper we analyze the corresponding
irect and inverse scattering problems by using the boundary conditions (1.10) at x = 0 and (1.14) at x = ℓ with z(k) as

in (1.15). A main contribution of this paper is the solution of the inverse problem with the boundary condition involving
the special form of the impedance given in (1.15).

Our paper is organized as follows. In Section 2 we present the relevant properties of the normalized impedance z(k),
including its small-k asymptotics and large-k asymptotics. In Section 3 we explore the relationship between the Webster
horn equation (1.6) and the corresponding Schrödinger equation (3.2) whose potential q(x) is related to the radius function
r(x) as in (3.3). We introduce certain particular solutions to (3.2) and present their relevant properties, including their
small-k asymptotics and large-k asymptotics. Two such solutions, the regular solution ϕ(k, x) appearing in (3.6) and
another regular solution g(k, x) appearing in (3.7) are used to express the key quantity G(k) defined in (3.15). In the rest
of Section 3 and in Section 4 we present various relevant properties of G(k). In Section 4 the zeros of G(k) are analyzed
and G(k) is related to another key quantity, the so-called Jost function F (k) appearing in (4.30). In Section 5 we present
the solution P(k, x) to the Webster horn equation (1.6) with the boundary conditions (1.10) and (1.14). This enables us
to express the pressure at the lips in terms of the normalized impedance z(k) and the key quantity G(k), as in (5.9). In
Section 6 we present the solution to the inverse problem of recovery of r(x) from some input data set related to P(k, ℓ).
We identify such a data set and also present various equivalents, which are expressed in terms of the poles of P(k, ℓ), the
absolute pressure |P(k, ℓ)|, or P(k, ℓ) itself. Using the key relation (5.9) we show that r(x) can be recovered by constructing
the Jost function F (k) and using F (k) as input to the Gel’fand–Levitan method arising in the inverse scattering theory for
the Schrödinger equation. We clarify whether the vocal tract length ℓ should be a part of the input data set or it can be
recovered from some input data set. Finally, in Section 7 we illustrate some aspects of the theory developed via some
3
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explicit examples. In particular, we illustrate the relationship between the density of the zeros of G(k) for large k and the
constants ℓ and rℓ, where we recall that rℓ is the radius of the opening between the lips.

2. The properties of the normalized impedance

In this section we establish the relevant properties of the normalized impedance given in (1.15). In particular, we
present the properties related to the analyticity and the small-k and large-k asymptotics of z(k).

roposition 2.1. Assume that rℓ > 0, which is the case when the vocal-tract radius r(x) belongs to the class A specified in
efinition 1.1. Let z(k) be the quantity given in (1.15) expressed in terms of J1(w) and H1(w). Then, we have the following:

(a) The quantity z(k) is entire in k ∈ C, where we use C to denote the complex plane.
(b) We have the symmetry property

z(−k∗) = z(k)∗, k ∈ C. (2.1)

(c) The quantity z(k) has a simple zero at k = 0, and the small-k asymptotics of z(k) is given by

z(k) =
8ikrℓ
3π

+
k2r2ℓ
2

+ O(k3), k → 0 in C. (2.2)

(d) When k ∈ R the real part of z(k) given by

Re[z(k)] = 1 −
J1(2krℓ)

krℓ
, k ∈ R, (2.3)

has a double zero at k = 0, is positive when k > 0, has the limit equal to one when k → +∞, and is even in k ∈ R.
(e) When k ∈ R the imaginary part of z(k) given by

Im[z(k)] =
H1(2krℓ)

krℓ
, k ∈ R, (2.4)

has a simple zero at k = 0, is positive when k > 0, has the limit equal to zero when k → +∞, and is odd in k ∈ R.
(f) When k is on the imaginary axis in C, the quantity z(k) is real valued and is given by

z(iκ) = 1 −
4
π

∫ 1

0
dt e2κrℓt

√
1 − t2, κ ∈ R. (2.5)

The quantity z(iκ) is a decreasing function in κ ∈ R, has a simple zero at κ = 0, is negative when κ > 0, is positive
when κ < 0, z(iκ) → 1 as κ → −∞, and z(iκ) → −∞ as κ → +∞.

(g) For any k-value in C, the quantity z(−k) is obtained from (1.15) by replacing +i there with −i, i.e. we have

z(−k) = 1 −
J1(2krℓ)

krℓ
− i

H1(2krℓ)
krℓ

. (2.6)

roof. It is known [13] that J1(w) and H1(w) can be expressed as the respective infinite series given by

J1(w) =

∞∑
j=0

(−1)jw2j+1

22j+1 j! (j + 1)!
, w ∈ C, (2.7)

H1(w) =

∞∑
j=0

(−1)jw2j+2

22j+2 Γ (j + 3/2)Γ (j + 5/2)
, w ∈ C, (2.8)

here Γ (α) denotes the gamma function. We recall that Γ (α) has various useful properties such as

Γ (α + 1) = α Γ (α), α > 0; Γ (1/2) =
√
π.

Using the ratio tests on the series in (2.7) and (2.8), one can establish that z(k) is entire, which proves (a). From (2.7) and
(2.8) we see that (2.1) holds, establishing (b), and that z(k) has the small-k asymptotics described in (2.2), which proves
c). Since J1(w) and H1(w) are real valued when w ∈ R, from (1.15) we see that, for k ∈ R, the real part of z(k) is given
y (2.3), and from the properties [13] of J1(w) we obtain the proof of (d). Similarly, for k ∈ R, we see that the imaginary

part of z(k) is given by (2.4), and using the properties [1,13] of H1(w) we establish the proof of (e). The proof of (f) can
e given as follows. From p. 360 and p. 498, respectively, in [13] we have

J1(iy) =
2iy
π

∫ π/2

0
dθ sin2 θ cos(iy cos θ ), y ∈ R,

H1(iy) = −
2y
∫ π/2

dθ sin2 θ sinh(y cos θ ), y ∈ R,

π 0

4



T. Aktosun, P. Sacks and X.-C. Xu Journal of Computational and Applied Mathematics 393 (2021) 113477

U

w

R

P
D
z

w

P

O

w
a
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J1(iy) − iH1(iy) =
2iy
π

∫ π/2

0
dθ sin2 θ e2y cos θ , y ∈ R. (2.9)

sing (2.9) in (1.15) we obtain

z(iκ) = 1 −
4
π

∫ π/2

0
dθ sin2 θ e2κrℓ cos θ , κ ∈ R,

hich is equivalent to (2.5). From (2.5) we get

dz(iκ)
dκ

= −
8rℓ
π

∫ 1

0
dt e2κrℓt t

√
1 − t2, κ ∈ R,

from which we see that the right-hand side is negative for κ ∈ R. Thus, the real-valued quantity z(iκ) is a decreasing
function of κ ∈ R. From (2.2) we already know that z(iκ) has a simple zero at κ = 0, and hence we conclude that z(iκ) > 0
for κ < 0 and we have z(iκ) < 0 for κ > 0. Thus, the proof of (f) is complete. We obtain the proof of (g) as follows. From
(2.7) we see that J1(2w)/w is even in w ∈ C and from (2.8) we observe that H1(2w)/w is odd in w ∈ C. Thus, replacing
k by −k in (1.15) we obtain (2.6). Hence, the proof of (g) is complete. ■

In the next proposition we establish the large-k asymptotics of z(k). We let C+ denote the upper-half complex plane,
C− the lower-half complex plane, C+ := C+

∪ R, and C− := C−
∪ R. We also use the notation R+

:= (0,+∞) and
−

:= (−∞, 0).

roposition 2.2. Assume that rℓ > 0, which is the case when the vocal-tract radius r(x) belongs to the class A specified in
efinition 1.1. Let z(k) be the quantity given in (1.15) expressed in terms of J1(w) and H1(w). Then, the large-k asymptotics of
(k) in C is given by

z(k) = 1 +
1
krℓ

[
2i
π

+ B(krℓ)
(
1 + O

(
1
k

))
+ O

(
1
k2

)]
, k → ∞ in C, (2.10)

where we have defined

B(krℓ) :=
(1 − i) e−2ikrℓ√

2πkrℓ
, (2.11)

ith the square-root function being the principal branch of the complex square-root function. Consequently, we have

e2ikrℓ z(k) =
(1 − i)

krℓ
√
2πkrℓ

[
1 + O

(
1
k

)]
+ O

(
e2ikrℓ

)
, k → ∞ in C+, (2.12)

z(k) = 1 +
2i
πkrℓ

+ O
(

1
|k|3/2

)
, k → ∞ in C−. (2.13)

roof. From p. 368 of [14] we know that we can express J1(w) in terms of the Whittaker function W0,1(w) as

J1(w) =
1

√
2πw

[
e3π i/4W0,1(2iw) + e−3π i/4W0,1(−2iw)

]
. (2.14)

n the other hand, from p. 497 of [13] we have

H1(w) =
2
π

+ Y1(w) + O
(

1
w2

)
, w → ∞ in C \ R−, (2.15)

here Y1(w) is the Bessel function of the second kind, which can be expressed in terms of the Whittaker function W0,1(w)
s

Y1(w) =
1

√
2πw

[
e5π i/4 W0,1(2iw) + e−5π i/4 W0,1(−2iw)

]
. (2.16)

Using

e3π i/4 − i e5π i/4 = −
√
2 (1 − i), e−3π i/4

− i e−5π i/4
= 0,

from (2.14)–(2.16) we get

J1(w) − iH1(w) = −
2i

−
1 − i
√ W0,1(w) + O

(
1
2

)
, w → ∞ in C \ R−. (2.17)
π πw w

5
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From p. 343 of [13] we have

W0,1(w) = e−w/2
[
1 + O

(
1
w

)]
, w → ∞ in C. (2.18)

sing (2.18) in (2.17), as w → ∞ in C \ R−, we get

J1(w) − iH1(w) = −
2i
π

−
1 − i
√
πw

e−w/2
[
1 + O

(
1
w

)]
+ O

(
1
w2

)
. (2.19)

inally using (2.19) in (1.15), we obtain (2.10) as w → ∞ in C\R−. On the other hand, z(k) is entire and satisfies (2.1) and
ence (2.10) holds for k → ∞ in C. From (2.10) and (2.11), by retaining the leading terms, we obtain (2.12) as k → ∞ in
+ and (2.13) as k → ∞ in C−, respectively. ■

3. The transformation to the Schrödinger equation

In order to analyze the aforementioned direct and inverse problems related to the Webster horn equation (1.6), we
can transform (1.6) into the more familiar Schrödinger equation and solve the direct and inverse problems for (1.6) in
terms of the quantities related to the Schrödinger equation.

Letting

ψ(k, x) = r(x) P(k, x), (3.1)

nd using the fact that P(k, x) is a solution to (1.6), we see that ψ(k, x) satisfies the Schrödinger equation

−ψ ′′(k, x) + q(x)ψ(k, x) = k2 ψ(k, x), x ∈ (0, ℓ), (3.2)

here the potential q(x) is related to the radius r(x) of the vocal tract as

q(x) :=
r ′′(x)
r(x)

, x ∈ (0, ℓ). (3.3)

There are various useful particular solutions to (3.2). One of them is the Jost solution f (k, x) satisfying the initial
conditions

f (k, ℓ) = eikℓ, f ′(k, ℓ) = ik eikℓ. (3.4)

nother particular solution, which we denote by S(k, x), to (3.2) is the sine-like solution satisfying the initial conditions

S(k, 0) = 0, S ′(k, 0) = 1. (3.5)

he regular solution to (3.2), which we denote by ϕ(k, x), satisfies the initial conditions

ϕ(k, 0) = 1, ϕ′(k, 0) =
r ′

0

r0
, (3.6)

here we recall that r0 and r ′

0 are the constants appearing in (1.1) and (1.2), respectively. We also introduce another
articular solution, which we denote by g(k, x), to (3.2) satisfying the initial conditions

g(k, ℓ) = z(k), g ′(k, ℓ) =
r ′

ℓ

rℓ
z(k) − ik, (3.7)

here z(k) is the normalized impedance given in (1.15) and the quantities rℓ and r ′

ℓ are the constants appearing in (1.1)
nd (1.2).
In the proposition below, we summarize the basic relevant properties of the aforementioned particular solutions to

3.2). These results will be useful in the analysis of the direct and inverse problems for (1.6).

roposition 3.1. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Then, we have the
ollowing:

(a) The potential q(x) defined in (3.3) is real valued and integrable for x ∈ (0, ℓ).
(b) Each of the particular solutions f (k, x), S(k, x), ϕ(k, x), and g(k, x) to (3.2) satisfying the initial conditions given in (3.4),

(3.5), (3.6), and (3.7), respectively, exists and is unique for each k ∈ C.
(c) For each fixed x ∈ [0, ℓ], the particular solutions f (k, x), S(k, x), ϕ(k, x), and g(k, x) and their x-derivatives f ′(k, x),

S ′(k, x), ϕ′(k, x), and g ′(k, x) are entire in k ∈ C.
(d) Each of the particular solutions f (k, x), S(k, x), ϕ(k, x), g(k, x) and their x-derivatives f ′(k, x), S ′(k, x), ϕ′(k, x), g ′(k, x)

contain k as ik, and hence they satisfy for k ∈ C

ψ(−k∗, x) = ψ(k, x)∗, ψ ′(−k∗, x) = ψ ′(k, x)∗, x ∈ [0, ℓ]. (3.8)
6
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(e) The regular solution ϕ(k, x) and its x-derivative ϕ′(k, x) satisfy

ϕ(−k, x) = ϕ(k, x), ϕ′(−k, x) = ϕ′(k, x), k ∈ C. (3.9)

(f) The quantity ϕ(0, x) satisfies the zero-energy Schrödinger equation

−ψ ′′(x) + q(x)ψ(x) = 0, x ∈ (0, ℓ), (3.10)

and it is related to r(x) as

ϕ(0, x) =
r(x)
r0
, ϕ′(0, x) =

r ′(x)
r0
, x ∈ [0, ℓ], (3.11)

and hence in particular we have

ϕ(0, 0) = 1, ϕ′(0, 0) =
r ′

0

r0
, ϕ(0, ℓ) =

rℓ
r0
, ϕ′(0, ℓ) =

r ′

ℓ

r0
. (3.12)

roof. We note that (a) directly follows from the properties of r(x) listed in (a) and (c) of Definition 1.1. For each particular
solution, the proof of (b) is obtained in the standard way by combining (3.2) and the relevant initial conditions into an
integral equation and by showing that the resulting integral equation can be represented as a uniformly convergent infinite
series. By using the fact that q(x) is integrable, one can solve the corresponding integral equation iteratively to establish the
uniform convergence. The proof of (c) is obtained as follows. In the proof of (b), one shows that each term in the infinite
series is entire in k and that the uniform convergence holds for k ∈ C. The x-derivatives of the four particular solutions
are also represented as uniformly convergent infinite series where each term is entire in k, and hence the Weierstrass
theorem implies (c). The proof of (d) directly follows from the fact that k appears as ik both in the Schrödinger equation
(3.2) and in each of the initial conditions (3.4)–(3.7). We obtain (e) by observing that k appears as k2 in (3.2) and (3.6).
he proof of (f) is obtained as follows. By taking the k-derivative of (3.2) and inserting k = 0 in the resulting equation, we
et (3.10). Using the analyticity at k = 0 of ϕ(k, x) for each fixed x ∈ [0, ℓ], we observe that ϕ(0, x) satisfies (3.10). Finally,
e obtain (3.11) by using the fact that ϕ(0, x) and r(x)/r0 both satisfy the zero-energy Schrödinger equation (3.10) and
he initial conditions (3.6) and that the corresponding initial-value problem has a unique solution. ■

Let us define the Wronskian of two solutions ψ(k, x) and φ(k, x) to (3.2) as

[ψ(k, x);φ(k, x)] := ψ(k, x)φ′(k, x) − ψ ′(k, x)φ(k, x). (3.13)

t is already known and can also be directly verified that the Wronskian given in (3.13) is independent of x, and hence its
alue can be evaluated at x = 0 or at x = ℓ, yielding the same quantity. Consequently, using (3.5) and (3.6) in (3.13) we
et

[ϕ(k, x); S(k, x)] = 1, (3.14)

hich indicates that ϕ(k, x) and S(k, x) are linearly independent for x ∈ [0, ℓ] for each fixed k ∈ C.
Let us use G(k) to denote the Wronskian of the solutions ϕ(k, x) and g(k, x) appearing in (3.6) and (3.7), respectively,

.e.

G(k) := [ϕ(k, x); g(k, x)]. (3.15)

n the following proposition we list some useful properties of G(k).

roposition 3.2. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Then, the quantity
(k) defined in (3.15) has the following properties:

(a) It is entire and satisfies

G(−k∗) = G(k)∗, k ∈ C. (3.16)

Hence, the zeros of G(k) are located symmetrically with respect to the imaginary axis in C.
(b) It has a simple zero at k = 0 and we have

G(0) = 0, Ġ(0) = −i
rℓ
r0
, (3.17)

where an overdot denotes the k-derivative.
(c) The quantity G(k) is nonzero when k ∈ R \ {0}.
(d) The quantity G(k) is nonzero when k is on the imaginary axis in C, except at k = 0 where it has a simple zero. In fact,

G(iκ) > 0 for κ ∈ R+ and G(iκ) < 0 for κ ∈ R−.
(e) The quantity G(k) and the quantity z(k) appearing in (1.14) cannot simultaneously vanish at any point in C \ {0}.
(f) If G(k0) = 0 for some k0 ∈ C \ {0}, then G(−k0) = 0 if and only if J1(2k0rl) = k0rl.
7
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Proof. We observe that (a) directly follows by using (c) and (d) of Proposition 3.1 in (3.15). From (3.16) we conclude that
the zeros of G(k) appear symmetrically with respect to the imaginary axis in C. Thus, the proof of (a) is complete. The
proof of (b) is obtained as follows. Evaluating the right-hand side of (3.15) at x = ℓ and using (3.7) we obtain

G(k) = ϕ(k, ℓ)
[
r ′

ℓ

rℓ
z(k) − ik

]
− ϕ′(k, ℓ) z(k). (3.18)

From (3.9), because ϕ(k, ℓ) and ϕ′(k, ℓ) are entire, it follows that

ϕ(k, ℓ) = ϕ(0, ℓ) + O(k2), ϕ′(k, ℓ) = ϕ′(0, ℓ) + O(k2), k → 0 in C,

which, with the help of (3.12), can be written as

ϕ(k, ℓ) =
rℓ
r0

+ O(k2), ϕ′(k, ℓ) =
r ′

ℓ

r0
+ O(k2), k → 0 in C. (3.19)

From (2.2), (3.7), and the fact that z(k) is entire, we get

g(k, ℓ) =
8ikrℓ
3π

+ O(k2), k → 0 in C, (3.20)

g ′(k, ℓ) =

(
8ir ′

ℓ

3π
− i
)
k + O(k2), k → 0 in C. (3.21)

Using (3.19)–(3.21) in (3.18) we obtain the expansion

G(k) = −
rℓ
r0

ik + O(k2), k → 0 in C, (3.22)

hich proves (b) by also establishing (3.17). The proof of (c) can be obtained as follows. From the properties [1] of the
truve function H1(w), we already know that H1(w) > 0 when w > 0. Then, from (3.8) and (3.9) it follows that ϕ(k, ℓ)
nd ϕ′(k, ℓ) are real valued when k ∈ R. Hence, using (3.18) we can separate the real and imaginary parts of G(k) as

Re[G(k)] =

[
r ′

ℓ

rℓ
ϕ(k, ℓ) − ϕ′(k, ℓ)

]
Re[z(k)], k ∈ R, (3.23)

Im[G(k)] =

[
r ′

ℓ

rℓ
ϕ(k, ℓ) − ϕ′(k, ℓ)

]
Im[z(k)] − kϕ(k, ℓ), k ∈ R. (3.24)

rom (d) and (e) of Proposition 2.1, we know that

Re[z(k)] ̸= 0, Im[z(k)] ̸= 0, k ∈ R \ {0}.

hus, from (3.23) and (3.24) we conclude that G(k) would vanish at a real nonzero value k0 if and only if we had

ϕ(k0, ℓ) = 0, ϕ′(k0, ℓ) = 0. (3.25)

ince ϕ(k0, x) satisfies (3.2) with k = k0, we would conclude from (3.25) that ϕ(k0, x) ≡ 0, which contradicts the first
quality in (3.6). Thus, we must have G(k0) ̸= 0, which completes the proof of (c). Let us now prove (d). Using (3.2) and
3.3) we get

d
dx

[
ϕ(k, x)

(
ϕ′(k, x) −

r ′(x)
r(x)

ϕ(k, x)
)]

= −k2 ϕ(k, x)2 +

(
ϕ′(k, x) −

r ′(x)
r(x)

ϕ(k, x)
)2

,

hich, after using (3.6), yields∫ ℓ

0
dx

[
−k2 ϕ(k, x)2 +

(
ϕ′(k, x) −

r ′(x)
r(x)

ϕ(k, x)
)2
]

= ϕ(k, ℓ)
(
ϕ′(k, ℓ) −

r ′

ℓ

rℓ
ϕ(k, ℓ)

)
. (3.26)

rom (3.18) we have

ϕ′(k, ℓ) −
r ′

ℓ

rℓ
ϕ(k, ℓ) =

−ik
z(k)

ϕ(k, ℓ) −
G(k)
z(k)

. (3.27)

sing (3.27) on the right-hand side of (3.26) we obtain∫ ℓ

0
dx

[
−k2 ϕ(k, x)2 +

(
ϕ′(k, x) −

r ′(x)
r(x)

ϕ(k, x)
)2
]

=
−ik
z(k)

ϕ(k, ℓ)2 −
G(k)
z(k)

ϕ(k, ℓ). (3.28)

f we had G(iκ0) = 0 for some real nonzero κ0, then (3.28) would yield∫ ℓ

dx

[
κ2
0 ϕ(iκ0, x)

2
+

(
ϕ′(iκ0, x) −

r ′(x)
r(x)

ϕ(iκ0, x)
)2
]

=
κ0

z(iκ )
ϕ(iκ0, ℓ)2. (3.29)
0 0

8
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From Proposition 3.1(d) we know that ϕ(iκ0, x) and ϕ′(iκ0, x) are real valued, and hence the left-hand side of (3.29) is
positive unless ϕ(iκ0, x) ≡ 0, in which case that left-hand side is zero. From Proposition 2.1(f) we know that κ0/z(iκ0) is
egative. Hence, (3.29) could hold only when ϕ(iκ0, x) ≡ 0, but that contradicts the first equality in (3.6). Thus, we must

have G(iκ0) ̸= 0, which completes the proof of (d). Let us now prove (e). If we had G(k0) = z(k0) = 0 for some nonzero k0
n C, then we would see from (3.18) that ϕ(k0, ℓ) = 0. Thus, ϕ(k0, x) would be an eigenfunction with the eigenvalue k20 for
he operator associated with (3.2) on x ∈ (0, ℓ) with the real-valued potential q(x) and the selfadjoint boundary conditions

ψ ′(0) −
r ′

0

r0
ψ(0) = 0, ψ(ℓ) = 0. (3.30)

he corresponding operator is selfadjoint and hence the eigenvalue k20 would have to be real. This would require that k0
s either a real nonzero number or a purely imaginary nonzero number. However, from (c) and (d) we know that we must
hen have G(k0) ̸= 0. Thus, the proof of (e) is complete. Let us finally proceed with the proof of (f). Using (3.9) in (3.15)
e see that

G(−k) = [ϕ(k, x); g(−k, x)], k ∈ C. (3.31)

rom (3.15) we know that G(k0) = 0 for some nonzero k0 in C if and only if ϕ(k0, x) and g(k0, x) are linearly dependent.
imilarly, from (3.31) we see that G(−k0) = 0 if and only if ϕ(k0, x) and g(−k0, x) are linearly dependent. Thus, we have

G(k0) = G(−k0) = 0, (3.32)

f and only if ϕ(k0, x), g(k0, x), and g(−k0, x) are pairwise linearly dependent. Since both g(k0, x) and g(−k0, x) are solutions
o (3.2), their Wronskian can be evaluated at x = ℓ. Hence, from (3.13) we get

[g(k0, x); g(−k0, x)] = g(k0, ℓ) g ′(−k0, ℓ) − g(k0, ℓ) g ′(−k0, ℓ),

which, with the help of (3.7), can be written as

[g(k0, x); g(−k0, x)] = ik0 [z(k0) + z(−k0)] .

Thus, the linear dependence of g(k0, x) and g(−k0, x) is equivalent to

z(k0) + z(−k0) = 0. (3.33)

From (1.15) and (2.6) we see that (3.33) is equivalent to

1 −
J1(2k0rl)

k0rl
= 0. (3.34)

herefore, (3.32) yields (3.34). On the other hand, (3.34) implies that g(k0, x) and g(−k0, x) are linearly dependent and
(k0) = 0 implies that ϕ(k0, x) and g(k0, x) are linearly dependent. Thus, (3.34) and G(k0) = 0 together yield G(−k0) = 0,

which completes the proof of (f). ■

From Proposition 3.1(c) we know that the regular solution ϕ(k, x) and its derivative ϕ′(k, x) are entire in k for each
ixed x ∈ [0, ℓ]. In the next proposition we establish their large-k asymptotics in C.

roposition 3.3. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let ϕ(k, x) be the
egular solution to the Schrödinger equation (3.2) satisfying the initial conditions given in (3.6). We then have the following:

(a) The quantity e±ikxϕ(k, x) satisfies

e±ikxϕ(k, x) =
1
2

[
1 + e±2ikx]

∓
r ′

0

2ikr0

[
1 − e±2ikx]

∓
1
4ik

∫ x

0
dy
[
1 − e±2ikx

+ e±2iky
− e±2ik(x−y)] q(y)

+ O
(

1
k2

)
, k → ∞ in C±.

(3.35)

(b) The quantity e±ikxϕ′(k, x) satisfies

e±ikxϕ′(k, x) = ±
k
2i

[
1 − e±2ikx]

+
r ′

0

2r0

[
1 + e±2ikx]

+
1
4

∫ x

0
dy
[
1 + e±2ikx

+ e±2iky
+ e±2ik(x−y)] q(y)

+ O
(
1
k

)
, k → ∞ in C±.

(3.36)

(c) Consequently, we have

eikℓ ϕ(k, ℓ) =
1 (

1 + e2ikℓ
)
+ O

(
1
)
, k → ∞ in C+, (3.37)
2 k
9
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eikℓ ϕ′(k, ℓ) =
k
2i

(
1 − e2ikℓ

)
+ O(1), k → ∞ in C+, (3.38)

and we also have

e−ikℓ ϕ(k, ℓ) =
1
2

(
1 + e−2ikℓ)

+ O
(
1
k

)
, k → ∞ in C−, (3.39)

e−ikℓ ϕ′(k, ℓ) = −
k
2i

(
1 − e−2ikℓ)

+ O(1), k → ∞ in C−. (3.40)

roof. With the help of (3.6), since ϕ(k, x) satisfies (3.2), we get the integral relations

ϕ(k, x) = cos kx +
r ′

0

r0

sin kx
k

+
1
k

∫ x

0
dy [sin k(x − y)] q(y)ϕ(k, y), (3.41)

ϕ′(k, x) = −k sin kx +
r ′

0

r0
cos kx +

∫ x

0
dy [cos k(x − y)] q(y)ϕ(k, y). (3.42)

ultiplying both sides of (3.41) and (3.42) with e±ikx, we can write the resulting integral relations in terms of e±ikxϕ(k, x)
nd e±ikxϕ′(k, x). Using iteration on the resulting equations we obtain the large-k asymptotics given in (3.35) and (3.36).
e remark that all the exponential terms appearing on the right-hand sides of (3.35) and (3.36) are bounded in the

ppropriate upper or lower half of the complex plane. Using the leading asymptotics in (3.35) and (3.36) as k → ∞ in C+

we get (3.37) and (3.38). Similarly, by using the leading asymptotics in (3.35) and (3.36) as k → ∞ in C− we get (3.39)
nd (3.40). ■

With the help of the large k-asymptotics for z(k) established in Proposition 2.2 and large k-asymptotics for ϕ(k, ℓ)
nd ϕ′(k, ℓ) established in Proposition 3.3, in the next theorem we establish the large-k asymptotics of G(k) appearing in
3.18).

roposition 3.4. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let G(k) be the
uantity appearing in (3.15) and (3.18). We then have the following:

(a) The large-k behavior of G(k) in C+ is given by

eik(2rℓ+ℓ) G(k) =
1 + i

2rℓ
√
2πkrℓ

[
1 + O

(
1
k

)]
+ e2ikrℓ O(k) + e2ikℓ O

(
1

|k|1/2

)
, k → ∞ in C+. (3.43)

(b) The large-k behavior of G(k) in C− and in R is determined by

e−ikℓ G(k) = −ik + O(1) + e−2ikℓ O(k), k → ∞ in C−. (3.44)

(c) The entire function G(k) is of order one, i.e. it is of exponential type.
(d) The large-k behavior of G(k) in R is given by

G(k) =

[
−ik − γ +

r ′

ℓ

rℓ

]
cos kℓ+

[
k − iγ +

2i
πrℓ

]
sin kℓ+ o(1), k → ±∞, (3.45)

where we have defined the constant γ as

γ :=
r ′

0

r0
+

1
2

∫ ℓ

0
dy q(y). (3.46)

(e) The large-k behaviors of |G(k)| and the logarithm of |G(k)| in R are given by

|G(k)|
|k|

= 1 + O
(
1
k

)
, k → ±∞, (3.47)

ln |G(k)| = ln |k| + o(1), k → ±∞. (3.48)

(f) The quantity (ln |G(k)|) /(1 + k2) is integrable at k = ±∞, and we have∫
∞

−∞

dk
max{0, |ln |G(k)|}

1 + k2
< +∞. (3.49)

(g) The entire function G(k) belongs to the Cartwright class, as defined on p. 97 of [15].
(h) There are at most a finite number of zeros of G(k) in C−.
10
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(i) The quantity G(k) satisfies

lim
κ→+∞

[
ln |G(iκ)|

κ

]
= 2rℓ + ℓ, (3.50)

lim
κ→+∞

[
ln |G(−iκ)|

κ

]
= ℓ. (3.51)

roof. We obtain (3.44) by using (2.12), (3.37), and (3.38) in (3.18) and by keeping the leading terms as k → ∞ in C+.
imilarly, we obtain (3.44) by using (2.13), (3.39), and (3.40) in (3.18) and by keeping the leading terms as k → ∞ in

C−. Let us now prove (c). The exponential terms e2ikrℓ and e2ikℓ appearing on the right-hand side of (3.43) are bounded in
k ∈ C+. Similarly, the exponential term e−2ikℓ appearing on the right-hand side of (3.44) is bounded in k ∈ C−. From the
large-k asymptotics in C given in (3.43) and (3.44), we observe that the entire function G(k) has order one and hence it
is of exponential type. Thus, the proof of (c) is complete. We obtain (d) as follows. We multiply (3.35) by e∓ikx on both
sides, evaluate the resulting expansion at x = ℓ, apply the Riemann–Lebesgue lemma, and obtain

ϕ(k, ℓ) = cos kℓ+
γ sin kℓ

k
+ o

(
1
k

)
, k → ±∞. (3.52)

By a similar procedure from (3.36) we get

ϕ′(k, ℓ) = −k sin kℓ+ γ cos kℓ+ o(1), k → ±∞. (3.53)

Finally, using (2.13), (3.52), and (3.53) in (3.18) we obtain (3.45). Thus, the proof of (d) is complete. Next, from the behavior
in (3.44) as k → ±∞ in R, we obtain (3.47) and (3.48), completing the proof of (e). Let us now turn the proof of (f). Because
G(k) is entire, |G(k)| is continuous in k ∈ R. From (3.48) we observe that (ln |G(k)|)/(1 + k2) is integrable at k = ±∞ and
hence (3.49) holds, which completes the proof of (f). Being entire, exponential type, and satisfying (3.49), by the definition
of the Cartwright class [15] it follows that G(k) satisfies the property stated in (g). Let us now prove (h). From (a), (b),
and (c) of Proposition 3.2 we conclude that i e−ikℓ G(k)/k is an entire function and does not vanish for k ∈ R; furthermore,
from (3.44) we see that it has the behavior 1 + O(1/k) as k → ∞ in C−. Thus, it is analytic in C−, continuous in C−,
nd does not vanish on the boundary of C−. Hence, it cannot have infinitely many zeros in C−. Consequently, G(k) cannot
ave infinitely many zeros in C−, which completes the proof of (h). In fact, from (a), (b), and (d) of Proposition 3.2 we

know that G(k) has a simple zero at k = 0, has no other zeros on the imaginary axis, and all its nonzero zeros are located
symmetrically with respect to the imaginary axis. Let us finally prove (i). Letting k = iκ , from (3.43) we get

−κ(2rℓ + ℓ) + ln |G(iκ)| = O(ln |κ|), κ → +∞,

hich yields (3.50). Similarly, letting k = −iκ , from (3.44) we obtain

e−κℓ G(−iκ) = −κ

[
1 + O

(
1
κ

)]
, κ → +∞,

which yields (3.51). Hence, the proof of (i) is complete. We remark that, as indicated in Proposition 3.2(d), we can also
use ln(G(iκ)) in (3.50) instead of ln |G(iκ)| and we can use ln(−G(−iκ)) in (3.51) instead of ln |G(−iκ)|. ■

. Further properties of G(k)

In this section we present some further relevant properties of the key quantity G(k) appearing in (3.15) and (3.18).
Note that the real and imaginary axes divide C into four quadrants. Let us use {k−

j }
N−

j=1 to denote the set of zeros of
(k) in the fourth quadrant, where we allow the multiplicities of the zeros in our count and we order the zeros so that
k−

j | ≤ |k−

j+1|. Thus, we have

Re[k−

j ] > 0, Im[k−

j ] < 0, 1 ≤ j ≤ N−. (4.1)

y Proposition 3.4(h) we know that N− is finite. Furthermore, by Proposition 3.2(a) we conclude that the set of zeros of
(k) in the third quadrant is given by {−(k−

j )
∗
}
N−

j=1. Similarly, let us use {k+

j }
N+

j=1 to denote the set of zeros of G(k) in the
irst quadrant, where we allow the multiplicities of the zeros in our count and we order the zeros so that |k+

j | ≤ |k+

j+1|.
hus, we have

Re[k+

j ] > 0, Im[k+

j ] > 0, 1 ≤ j ≤ N+. (4.2)

y Proposition 3.2(a) we conclude that the set of zeros of G(k) in the second quadrant is given by {−(k+

j )
∗
}
N+

j=1. The next
roposition shows that N+

= +∞ and also describes the density of the zeros in the set {k+

j }
N+

j=1.

roposition 4.1. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. The quantity G(k)
ppearing in (3.15) and (3.18) has the following properties:
11
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(a) There are infinitely many zeros of G(k) in C+, and hence N+
= +∞.

(b) The zeros of G(k) in the first quadrant of C satisfy a

N+∑
j=1

⏐⏐⏐⏐Im
[

1
k+

j

] ⏐⏐⏐⏐ < +∞. (4.3)

(c) The density of the zeros of G(k) in the first quadrant as k → ∞ is given by (rℓ + ℓ)/π . In other words, the number of
zeros k+

j of G(k) satisfying ρ ≤ |k+

j | ≤ ρ + 1 in the limit ρ → +∞ is equal to (rℓ + ℓ)/π .

Proof. For each fixed positive ρ, let us use n+(ρ) to denote the number of zeros of G(k) with positive real parts and lying
in the disk |k| ≤ ρ in C. Thus, n+(ρ) is the number of zeros of G(k) satisfying

0 < |k−

j | ≤ ρ, 0 < |k+

j | ≤ ρ.

From Proposition 3.4(g), we know that G(k) belongs to the Cartwright class. Consequently, the Cartwright–Levinson
theorem, see e.g. p. 127 of [15], holds and we have

lim
ρ→+∞

n+(ρ)
ρ

=
1
2π

[
lim

κ→+∞

ln |G(iκ)|
κ

+ lim
κ→+∞

ln |G(−iκ)|
κ

]
. (4.4)

Using (3.50) and (3.51) on the right-hand side of (4.4) we get

lim
ρ→+∞

n+(ρ)
ρ

=
rℓ + ℓ

π
,

which yields

n+(ρ) =
rℓ + ℓ

π
ρ [1 + o(1)] , ρ → +∞. (4.5)

rom (4.5) we get

N−
+ N+

= +∞. (4.6)

he finiteness of N− is known from Proposition 3.4(h), and hence from (4.6) we conclude that N+
= +∞. Since the zeros

of G(k) are located symmetrically with respect to the imaginary axis, as stated in Proposition 3.2(a), the number of zeros
of G(k) in C+, which is equal to 2N+, must be infinite. Thus, the proof of (a) is complete. Let us now prove (b). From the
Cartwright–Levinson theorem we know that the finiteness in (4.3) holds when we include all nonzero zeros of G(k) on
the left-hand side of (4.3). In other words, the Cartwright–Levinson theorem yields

N+∑
j=1

⏐⏐⏐⏐Im
[

1
k+

j

] ⏐⏐⏐⏐+ N+∑
j=1

⏐⏐⏐⏐Im
[

1
−(k+

j )∗

] ⏐⏐⏐⏐+ N−∑
j=1

⏐⏐⏐⏐Im
[

1
k−

j

] ⏐⏐⏐⏐+ N−∑
j=1

⏐⏐⏐⏐Im
[

1
−(k−

j )∗

] ⏐⏐⏐⏐ < +∞,

hich is equivalent to

2
N+∑
j=1

⏐⏐⏐⏐Im
[

1
k+

j

] ⏐⏐⏐⏐+ 2
N−∑
j=1

⏐⏐⏐⏐Im
[

1
k−

j

] ⏐⏐⏐⏐ < +∞,

which in turn implies (4.3). Let us finally prove (c). Using ρ + 1 in (4.5) we obtain

n+(ρ + 1) =
rℓ + ℓ

π
(ρ + 1) [1 + o(1)] , ρ → +∞. (4.7)

ubtracting (4.7) from (4.5) we get

n+(ρ + 1) − n+(ρ) =
rℓ + ℓ

π
+ o(1), ρ → +∞,

which establishes (c). ■

In the next proposition we discuss the construction of G(k) for k ∈ C from its zeros.

Proposition 4.2. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let G(k) be the
corresponding quantity appearing in (3.15) and (3.18). Let us use {k+

j }
N+

j=1 and {k−

j }
N−

j=1 to denote the set of zeros of G(k) in the
irst and fourth quadrants, respectively, where N− is a nonnegative integer and N+

= +∞. If we know the values of ℓ as well
as the sets {k+

j }
N+

j=1 and {k−

j }
N−

j=1, then we can uniquely and explicitly construct G(k) for k ∈ C.
12
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Proof. By Proposition 3.2(a) we know that G(k) is entire and by Proposition 3.4(c) we know that G(k) is of exponential
ype. Hence, the Hadamard factorization of G(k) can be written as

G(k) =
rℓ
r0

A eiCk E(k), (4.8)

here A and C are some constants and the quantity E(k) is uniquely determined by the zeros of G(k) as

E(k) := −ik E−(k) E+(k), (4.9)

E−(k) :=

N−∏
j=1

(
1 −

k
k−

j

)
ek/k

−

j

(
1 +

k
(k−

j )∗

)
e−k/(k−j )∗

, (4.10)

E+(k) :=

N+∏
j=1

(
1 −

k
k+

j

)
ek/k

+

j

(
1 +

k
(k+

j )∗

)
e−k/(k+j )∗

. (4.11)

ote that we have used the fact that G(k) has no zeros on the real and imaginary axes except for a simple zero at k = 0
nd that the zeros of G(k) are symmetrically located with respect to the imaginary axis, as stated in Proposition 3.2. We
emark that E(k) specified in (4.9)–(4.11) satisfies

E(−k∗) = E(k)∗, k ∈ C, (4.12)

nd hence E(k) is real valued when k is on the imaginary axis. In fact, the choice of the factor −i in (4.9) is for the
onvenience that the sign of E(iκ) coincides with the sign of κ when κ ∈ R. This follows from the fact that E−(iκ) and
+(iκ) are both positive for κ ∈ R because from (4.9)–(4.11) we get

E(iκ) = κ E−(iκ) E+(iκ), (4.13)

E−(iκ) =

N−∏
j=1

(
1 +

κ2

|k−

j |
2

)
exp

(
2κ Im[k−

j ]

|k−

j |
2

)
,

E+(iκ) =

N+∏
j=1

(
1 +

κ2

|k+

j |
2

)
exp

(
2κ Im[k+

j ]

|k+

j |
2

)
.

e will show that the constants A and C are determined by ℓ and E(k). From (3.22) we know that

lim
k→0

G(k)
k

= −i
rℓ
r0
. (4.14)

Using (4.8)–(4.11) on the left-hand side of (4.14) we see that A = 1, and hence (4.8) is equivalent to

G(k) =
rℓ
r0

eiCk E(k). (4.15)

e remark that G(k) satisfies (3.16) and E(k) satisfies (4.12), and hence we conclude from (4.15) that the value of C is
eal. Let us now show that C is uniquely determined by ℓ and E(k). Letting k = iκ for κ ∈ R in (4.15) we get

G(iκ) =
rℓ
r0

e−Cκ E(iκ), κ ∈ R. (4.16)

From (4.16) we have

|G(iκ)| =
rℓ
r0

e−Cκ
|E(iκ)|, κ ∈ R, (4.17)

r equivalently

ln |G(iκ)| = ln
(
rℓ
r0

)
− Cκ + ln |E(iκ)|, κ ∈ R, (4.18)

here we recall that r0 and rℓ are both positive, as stated in Definition 1.1(a). From (4.18) we get

C =
1
κ

ln
(
rℓ
r0

)
−

ln |G(iκ)|
κ

+
ln |E(iκ)|

κ
, κ ∈ R \ {0}. (4.19)

Letting κ → −∞ in (4.19) and using (3.51) we obtain

C = ℓ+ lim
[
ln |E(iκ)|

]
. (4.20)
κ→−∞ κ

13



T. Aktosun, P. Sacks and X.-C. Xu Journal of Computational and Applied Mathematics 393 (2021) 113477

(
a

H

T
o

T

S
t

t

P
c
f

P
s
i

B
a

a
P
c

c
a
k

Thus, (4.20) shows that C is uniquely determined by the value of ℓ and the zeros of G(k). Using the right-hand side of
4.20) in (4.15) we conclude that G(k) is determined by the values of ℓ and rℓ/r0 as well as the zeros of G(k). The following
rgument shows that both r0 and rℓ are determined by E(k). Letting κ → +∞ in (4.19) and using (3.50) we obtain

C = −2rℓ − ℓ+ lim
κ→+∞

[
ln |E(iκ)|

κ

]
. (4.21)

ence, equating the right-hand sides of (4.20) and (4.21) we obtain

rℓ = −ℓ+
1
2

lim
κ→+∞

[
ln |E(−iκ)| + ln |E(iκ)|

κ

]
. (4.22)

herefore, rℓ is determined by the knowledge of ℓ and E(k). Let us also show that r0/rℓ is determined by the asymptotics
f E(k) as k → ±∞. From (4.15), since r0 and rℓ are positive and C is real, we get

rℓ
r0

=
|G(k)|
|E(k)|

, k ∈ R.

hus, we get
rℓ
r0

=
|G(k)|
|k|

|k|
|E(k)|

, k ∈ R. (4.23)

Letting k → ±∞ in (4.23) and using (3.47) we obtain

rℓ
r0

= lim
k→±∞

[
|k|

|E(k)|

]
. (4.24)

ince we already know rℓ, from (4.24) we see that r0 is also determined. Then, from (4.15), (4.20), and (4.22) we conclude
hat G(k) is uniquely and explicitly determined by the knowledge of ℓ and the zeros of G(k). ■

In the next proposition we discuss the explicit construction of G(k) for k ∈ C− when we know |G(k)| for k ∈ R+ and
he zeros of G(k) in C−.

roposition 4.3. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let G(k) be the
orresponding quantity appearing in (3.15) and (3.18). Let us use {k+

j }
N+

j=1 and {k−

j }
N−

j=1 to denote the set of zeros of G(k) in the
irst and fourth quadrants, respectively, where N− is a nonnegative integer and N+

= +∞.

(a) The knowledge of G(k) for k ∈ R+ is sufficient to determine G(k) for k ∈ C and in particular its zeros in C.
(b) The quantity G(k) for k ∈ C− is explicitly determined from the knowledge of |G(k)| for k ∈ R+ and the set {k−

j }
N−

j=1 of
zeros of G(k) in the fourth quadrant.

roof. As stated in Proposition 3.2(a), the quantity G(k) is entire and hence by analytic extension from k ∈ R− to C, we
ee that G(k) is uniquely determined for k ∈ C. Thus, (a) is valid. Let us now prove (b). Let us introduce the quantity H(k)
n terms of G(k) as

H(k) := eikℓ
G(−k)
ik

, k ∈ C. (4.25)

y Proposition 3.2(b) we know that G(k) has a simple zero at k = 0 and hence H(k) is entire and that H(k) does not vanish
t k = 0. From (3.16) it follows that

H(−k) = H(k)∗, k ∈ R,

nd hence |H(−k)| = |H(k)| for k ∈ R, indicating that we know |H(k)| for k ∈ R when |G(k)| is known for k ∈ R+. From
ropositions 3.2 and 3.4(h), by using the fact that the set of zeros of G(k) in k ∈ C− \ {0} is given by {k−

j ,−(k−

j )
∗
}
N−

j=1, we
onclude that the set of zeros of H(k) in k ∈ C+ is given by {−k−

j , (k
−

j )
∗
}
N−

j=1. Let us define

R(k) :=

N−∏
j=1

(k − k−

j ) (k + (k−

j )
∗)

(k + k−

j ) (k − (k−

j )∗)
. (4.26)

We observe that |R(k)| = 1 for k ∈ R and we have R(k)−1
= R(−k) for k ∈ C. Note that R(k)H(k) is analytic in k ∈ C+,

ontinuous in k ∈ C+, has no zeros in k ∈ C+, and we have |R(k)H(k)| = |H(k)| for k ∈ R. Furthermore, from (3.44), (4.25),
nd (4.26) we conclude that R(k)H(k) has the behavior 1 + O(1/k) as k → ∞ in C+. Thus, we can construct R(k)H(k) in
∈ C+ from its absolute value known in k ∈ R. The construction is analogous to the construction [16] of the transmission

coefficient in the one-dimensional Schrödinger equation and we have

R(k)H(k) = exp
(

1
∫

∞

dy
ln |H(y)|

+

)
, k ∈ C+, (4.27)
π i −∞ y − k − i0
14
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where the presence of i0+ indicates that when k ∈ R the right-hand side of (4.27) must be evaluated in the limit where
k ∈ C+ moves to k ∈ R. With the help of (4.25) and (4.26) and using the properties of H(k), from (4.27) we get

eikℓ G(−k) = ik R(−k) exp
(

1
π i

∫
∞

−∞

dy
ln |G(−y)/y|
y − k − i0+

)
, k ∈ C+. (4.28)

hanging the dummy integration variable from y to −y in (4.28) we obtain the explicit expression for G(k) in k ∈ C−

given by

G(k) = −ik eikℓ R(k) exp
(

1
π i

∫
∞

−∞

dy
ln |G(y)/y|
y − k + i0+

)
, k ∈ C−. (4.29)

hus, the proof of (b) is complete. ■

In the next proposition we show that the knowledge of the key quantity G(k) for k ∈ R+ along with the constant ℓ is
ufficient to determine the constants r0, r ′

0, rℓ, r
′

ℓ, and the normalized impedance z(k).

roposition 4.4. Assume that the vocal-tract radius r(x) belongs to the class A with r0, r ′

0, rℓ, r
′

ℓ being the constants specified
n Definition 1.1. Let G(k) be the corresponding quantity appearing in (3.15) and (3.18). Let z(k) be the normalized impedance
iven in (1.15) and let q(x) be the potential defined in (3.3). Then, using the knowledge of ℓ and G(k) for k ∈ R+ as input, we
an construct r0, r ′

0, rℓ, r
′

ℓ, and z(k).

roof. From Proposition 4.3(a) we know that G(k) for k ∈ C, including all its zeros, is uniquely determined from the
nowledge of G(k) for k ∈ R+. Thus, we know E(k) defined in (4.9). Then, as seen from (4.22), we can construct rℓ by using
and E(k). From (4.20) we see that, by using ℓ and E(k), we can construct the constant C appearing and (4.15). Since G(k)

s known, from (4.17) and (4.20) we observe that r0 is also determined. Next, we obtain the constant γ defined in (3.46)
nd the constant r ′

ℓ from the large-k limit of G(k) described in (3.45). This can be achieved by letting k = 2nπ/ℓ with
→ +∞, and hence with cos kℓ = 1 and sin kℓ = 0 in (3.46), we obtain −γ + r ′

ℓ/rℓ. Then, by letting k = 2nπ/ℓ+π/(2ℓ)
ith n → +∞, and hence with cos kℓ = 0 and sin kℓ = 1 in (3.46), we obtain −γ + 2π/rℓ. Since we have already
etermined rℓ, we then obtain both r ′

ℓ and γ . Next, having the value of rℓ and using (1.15), we obtain the normalized
mpedance z(k). ■

A key quantity used in the inverse scattering theory related to the Schrödinger equation on the half line is the Jost
unction. The Jost function is usually denoted by F (k) and is defined as the Wronskian

F (k) := −i[ϕ(k, x); f (k, x)], (4.30)

here we recall that ϕ(k, x) is the regular solution to (3.2) satisfying (3.6) and f (k, x) is the Jost solution satisfying (3.7),
ith the understanding that the potential q(x) appearing in (3.3) is viewed in x ∈ R+ with compact support in [0, ℓ], and
his is achieved by using the mathematical convention

r(x) = r ′

ℓ(x − ℓ) + rℓ, x ≥ ℓ.

ince the Wronskian in (4.30) is independent of x, its value can be evaluated at x = 0, yielding

F (k) = −i
(
f ′(k, 0) −

r ′

0

r0
f (k, 0)

)
, (4.31)

r it can be evaluated at x = ℓ, yielding

F (k) = −i eikℓ
(
ikϕ(k, ℓ) − ϕ′(k, ℓ)

)
. (4.32)

The Jost function is used as input to the Gel’fand–Levitan integral equation to obtain the potential and the boundary
condition, which in our case correspond to q(x) given in (3.3) and the value of the constant r ′

0/r0, respectively.
As seen from (4.30), the Jost function F (k) is affected by the constants r0 and r ′

0 but not by rℓ or r ′

ℓ. In other words, the
boundary condition (1.11) at x = ℓ and the boundary condition (1.14) at x = ℓ yield the same Jost function F (k). Thus, all
the properties of F (k) presented in [12] still hold when we use (1.14) instead of (1.11).

In the next proposition we show that the Jost function F (k) can be constructed from the key quantity G(k).

Proposition 4.5. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let G(k) be the
corresponding quantity appearing in (3.15) and (3.18). Let F (k) be the Jost function appearing in (4.30)–(4.32), and let q(x) be
the potential defined in (3.3). Then, using the knowledge of ℓ and G(k) for k ∈ R+ as input, we can construct F (k) and q(x).

Proof. From Proposition 4.3(a) we know that the knowledge of ℓ and G(k) for k ∈ R+ yields the knowledge of G(k) for
∈ C. We also know from Proposition 4.4 that the constants r and r ′ as well as the quantity z(k) are also constructed
ℓ ℓ

15
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from ℓ and G(k). We can then view (3.23) and (3.24) as a linear algebraic system for the unknowns ϕ(k, ℓ) and ϕ′(k, ℓ),
nd we obtain its unique solution as

ϕ(k, ℓ) =
Im[z(k)] Re[G(k)] − Re[z(k)] Im[G(k)]

k Re[z(k)]
, k ∈ R, (4.33)

ϕ′(k, ℓ) =

(
r ′

ℓ Im[z(k)] − k rℓ
)
Re[G(k)] − r ′

ℓ Re[z(k)] Im[G(k)]
k rℓ Re[z(k)]

, k ∈ R. (4.34)

rom Proposition 2.1(d) we know that Re[z(k)] is nonzero for k ∈ R \ {0}. Using (4.33) and (4.34) in (4.32) we construct
he Jost function F (k). As stated in Proposition 3.1(c) the quantities ϕ(k, ℓ) and ϕ′(k, ℓ) are entire in k ∈ C, and hence
rom (4.32) we see that F (k) is also entire. Viewing q(x) given in (3.3) as a compactly supported potential in R+, we can
onstruct q(x) for x ∈ (0, ℓ) from F (k) known for k ∈ R via the Gel’fand–Levitan method as follows. As already mentioned,
y Theorem 3.1 of [12] we know that F (k) has one simple zero on the positive imaginary axis if and only if r ′

ℓ < 0 and
hat F (k) is nonzero on the positive imaginary axis if and only if r ′

ℓ ≥ 0. Because F (k) is entire, its only possible zero on
he positive imaginary axis is uniquely determined and we use k = iκ1 to denote that zero, where κ1 is some positive
umber. Such a zero corresponds to a bound state of the corresponding Schrödinger operator, and because of the compact
upport of the potential in x ∈ R+, the Gel’fand–Levitan norming constant g1 corresponding to k = iκ1 is determined from
(k) as in (4.18) of [12] as

g2
1 =

−4iκ2
1

F (−iκ1) Ḟ (iκ1)
, (4.35)

here we recall that an overdot denotes the k-derivative. The potential q(x) is constructed via the Gel’fand–Levitan method
s follows [17–20]. We first construct the Gel’fand–Levitan kernel G(x, y) as

G(x, y) :=
1
π

∫
∞

−∞

dk
(

k2

|F (k)|2
− 1

)
cos kx cos ky + g2

1 cosh κ1x cosh κ1y, (4.36)

here it is understood that the second term on the right-hand side is absent when r ′

ℓ ≥ 0. We use G(x, y) as input to the
el’fand–Levitan integral equation

A(x, y) + G(x, y) +

∫ x

0
ds A(x, s)G(s, y) = 0, 0 ≤ y < x. (4.37)

he potential q(x) is recovered from the solution A(x, y) to (4.37) as

q(x) = 2
dA(x, x)

dx
, x ∈ (0, ℓ), (4.38)

where A(x, x) is understood to be A(x, x−). The regular solution ϕ(k, x) is constructed from A(x, y) as

ϕ(k, x) = cos kx +

∫ x

0
dy A(x, y) cos ky, (4.39)

and we also have r ′

0/r0 = A(0, 0). ■

In the proof of Proposition 4.5, using ℓ and G(k) as input, we have described the recovery of the potential q(x) and the
regular solution ϕ(k, x), respectively, via (4.38) and (4.39), which is based on using the Gel’fand–Levitan method. Let us
remark that those two quantities can also be obtained by using various inverse spectral methods. For example, having
determined ϕ(k, ℓ) and ϕ′(k, ℓ) we also know their zeros. Thus, we can consider the Sturm–Liouville problem consisting
of the Schrödinger equation (3.2) and the two sets of boundary conditions given by⎧⎪⎪⎨⎪⎪⎩

ϕ′(k, 0) −
r ′

0

r0
ϕ(k, 0) = 0, ϕ(k, ℓ) = 0,

ϕ′(k, 0) −
r ′

0

r0
ϕ(k, 0) = 0, ϕ′(k, ℓ) = 0.

Then, Borg’s uniqueness theorem [21,22] becomes applicable, and the quantities q(x) and ϕ(k, x) can be constructed by
using various techniques presented in [23].

5. The solution to the direct problem

In Section 3 we have established the relevant properties of certain particular solutions to the Schrödinger equation
and the relevant properties of the quantity G(k) appearing in (3.15) and (3.18). Those properties will help us to obtain
a useful representation of the solution P(k, x) to the Webster horn equation (1.6) with the boundary condition (1.10) at
x = 0 and the boundary condition (1.14) at x = ℓ, where z(k) is the normalized impedance given in (1.15).
16
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Theorem 5.1. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Then, for k ∈ C the
olution P(k, x) to the Webster horn equation (1.6) satisfying the boundary conditions (1.10) and (1.14) exists, is unique, and
s given by

P(k, x) = −
ikcµ
πr0 r(x)

[
g(k, 0)
G(k)

ϕ(k, x) + S(k, x)
]
, x ∈ [0, ℓ], (5.1)

here S(k, x) and g(k, x) are the particular solutions to the Schrödinger equation (3.2) satisfying the respective initial conditions
3.5) and (3.7), G(k) is the quantity appearing in (3.15) and (3.18), and r0 is the positive constant appearing in (1.1).

roof. From (3.1) we know that the general solution to (1.6) can be expressed in terms of two linearly independent
olutions to (3.2). From (3.14) we see that ϕ(k, x) and S(k, x) are two linearly independent solutions to (3.2) for any k ∈ C.
hus, we have

P(k, x) =
1

r(x)
[α(k)ϕ(k, x) + β(k) S(k, x)] , x ∈ [0, ℓ], (5.2)

where α(k) and β(k) are to be determined by requiring that the right-hand side of (5.2) satisfies (1.10) and (1.14). By
taking the x-derivative of both sides of (5.2), we have

P ′(k, x) = −
r ′(x)
r(x)2

[α(k)ϕ(k, x) + β(k) S(k, x)] +
1

r(x)

[
α(k)ϕ′(k, x) + β(k) S ′(k, x)

]
. (5.3)

valuating both sides of (5.3) at x = 0, and using (1.10), (3.5), and (3.6) in the resulting equation we get

−
ikcµ
πr20

=
β(k)
r0
,

from which we obtain

β(k) = −
ikcµ
πr0

. (5.4)

sing (5.2) and (5.3) in (1.14), we obtain[
−

r ′

ℓ

r2ℓ
ϕ(k, ℓ) +

1
rℓ
ϕ′(k, ℓ) +

ik
z(k) rℓ

ϕ(k, ℓ)
]
α(k) = −

[
−

r ′

ℓ

r2ℓ
S(k, ℓ) +

1
rℓ

S ′(k, ℓ) +
ik

z(k) rℓ
S(k, ℓ)

]
β(k). (5.5)

ince rℓ is positive and z(k) is nonzero for k ∈ R \ {0}, from (5.5) we get[
z(k)ϕ′(k, ℓ) −

(
r ′

ℓ

rℓ
z(k) − ik

)
ϕ(k, ℓ)

]
α(k) = −

[
z(k) S ′(k, ℓ) −

(
r ′

ℓ

rℓ
z(k) − ik

)
S(k, ℓ)

]
β(k), (5.6)

hich also holds at k = 0 as a result of Proposition 3.1(c) and the analyticity of z(k) at k = 0. Using (3.7) in (5.6), we
rite the resulting equality in terms of the Wronskians as

[g(k, x);ϕ(k, x)]α(k) = −[g(k, x); S(k, x)]β(k). (5.7)

rom (3.15) we see that the Wronskian on the left-hand side of (5.7) is equal to −G(k). Since the Wronskian on the
ight-hand side of (5.7) is independent of x, it can be evaluated at x = 0 and with the help of (3.5) we see that the
forementioned Wronskian is equal to g(k, 0). Thus, (5.7) is equivalent to

−G(k)α(k) = −g(k, 0)β(k). (5.8)

ence, from (5.4) and (5.8) we get

α(k) =
g(k, 0)
G(k)

β(k) = −
ikcµ
πr0

g(k, 0)
G(k)

,

hich establishes (5.1). We remark that by Proposition 3.1(c) the quantities g(k, 0), ϕ(k, x), and S(k, x) are entire in k, and
y Proposition 3.2(a) the quantity G(k) is entire. Hence, (5.1) is valid for k ∈ C and the poles of P(k, x) in k ∈ C can only

occur at the corresponding zeros of G(k). ■

For the analysis of the direct and inverse problems for (1.6) we need an expression for the pressure at the lips. That
expression is given in the next proposition.

Proposition 5.2. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Then, the quantity
(k, ℓ) representing the pressure at the lips is given by

P(k, ℓ) = −
ikcµ
πr0 rℓ

z(k)
G(k)

, k ∈ C, (5.9)

here z(k) is the normalized impedance appearing in (1.14) and (1.15), G(k) is the quantity appearing in (3.15) and (3.18),
and r and r are the positive constants appearing in (1.1).
0 ℓ
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Proof. Evaluating (5.1) at x = ℓ we get

P(k, ℓ) = −
ikcµ
πr0 rℓ

∆(k)
G(k)

, k ∈ C, (5.10)

here we have defined

∆(k) := g(k, 0)ϕ(k, ℓ) + G(k) S(k, ℓ). (5.11)

rom (3.5) and the definition of the Wronskian given in (3.13), we see that

g(k, 0) = [g(k, x); S(k, x)], (5.12)

nd since the Wronskian in (5.12) is independent of x, it can be evaluated at x = ℓ. Thus, from (5.12) we get

g(k, 0) = g(k, ℓ) S ′(k, ℓ) − g ′(k, ℓ) S(k, ℓ). (5.13)

n the other hand, from (3.15) with the right-hand side evaluated at x = ℓ we obtain

G(k) = ϕ(k, ℓ) g ′(k, ℓ) − ϕ′(k, ℓ) g(k, ℓ). (5.14)

sing (5.13) and (5.14) in (5.11) we have

∆(k) = g(k, ℓ)
[
ϕ(k, ℓ) S ′(k, ℓ) − ϕ′(k, ℓ) S(k, ℓ)

]
, (5.15)

here the quantity in the brackets is a Wronskian evaluated at x = ℓ. However, that Wronskian is independent of x and
s seen from (3.14) the value of that Wronskian is equal to one. Thus, from (5.15) we obtain

∆(k) = g(k, ℓ). (5.16)

n the other hand, from the first equality in (3.7) we see that the right-hand side in (5.16) is equal to z(k). Thus, (5.10)
ields (5.9). ■

From (1.5) we see that the volume velocity V (k, x) can be expressed in terms of P ′(k, x) and that V ′(k, x) can be
xpressed in terms of P(k, x). Thus, using the x-derivative of (5.1) in the first line of (1.5) we obtain the following result.

orollary 5.3. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Then, for k ∈ C the
olution P(k, x) and V (k, x) to (1.5) satisfying the boundary conditions (1.10) and (1.14) exist and are unique. The quantity
(k, x) is given by (5.1) and the quantity V (k, x) is given by

V (k, x) =
r(x)
r0

[
g(k, 0)
G(k)

ϕ′(k, x) + S ′(k, x)
]

−
r ′(x)
r0

[
g(k, 0)
G(k)

+ S(k, x)ϕ(k, x)
]
, x ∈ [0, ℓ],

here S(k, x) and g(k, x) are the particular solutions to the Schrödinger equation (3.2) satisfying the respective initial conditions
3.5) and (3.7), G(k) is the quantity appearing in (3.15) and (3.18), and r0 is the positive constant appearing in (1.1). We remark
that V (k, x) given in (5.1) is also the unique solution to (1.7) satisfying the boundary condition (1.9) at x = 0 and the boundary
condition, which is equivalent of (1.14), at x = ℓ expressed as

V ′(k, ℓ) + ik z(k) V (k, ℓ) = 0.

6. The inverse problem

In this section we consider the inverse problem of recovery of the vocal tract radius r(x) in the class A specified in
Definition 1.1 from an appropriate input data set related to some measurements taken at the lips. In particular we consider
some input data sets related to the pressure P(k, ℓ) for k ∈ R+, the absolute pressure |P(k, ℓ)| for k ∈ R+, and the poles
of P(k, ℓ) in k ∈ C. We also indicate whether the knowledge of ℓ should be included in our input data set or else ℓ can
be obtained from the available input data set used for the recovery.

As indicated in the proof of Proposition 4.5, the Jost function F (k) appearing in (4.30) and (4.32) plays a key role as
input in order to solve a relevant inverse problem to recover the potential q(x) by the Gel’fand–Levitan method. Another
relevant key quantity is given by G(k) appearing in (3.15) and (3.18). We already know that the pressure P(k, ℓ) at the lips
is related to G(k) as in (5.9). Our main strategy to recover r(x) from some input data set related to P(k, ℓ) is as follows. From
the available input data set, we first construct G(k) and then construct F (k). We then use the Gel’fand–Levitan method
to recover r(x). The advantage of using the Gel’fand–Levitan method in the recovery of r(x) is due to the fact that r(x)
is readily constructed from the regular solution ϕ(k, x) as in the first equality in (3.11) and that ϕ(k, x) itself is readily
constructed as in (4.39) from the solution to the Gel’fand–Levitan equation (4.37).

In the next theorem we elaborate on (5.9), which describes the relationship among various key quantities.

Theorem 6.1. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let P(k, x) be the
corresponding pressure satisfying the boundary conditions (1.10) and (1.14). We then have the following:
18
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(a) The knowledge of |P(k, ℓ)| for k ∈ R+ yields |P(k, ℓ)| for k ∈ R, the constants r0 and rℓ, the normalized impedance z(k),
and the quantity |G(k)| for k ∈ R.

(b) The quantity P(k, ℓ) has a simple zero at k = 0 and is meromorphic in C with its poles in C \ {0} coinciding with the
nonzero zeros of G(k) in C. Hence, the set {k−

j }
N−

j=1 appearing in (4.1) corresponds to the poles of P(k, ℓ) in the fourth
quadrant in C, and the set {k+

j }
N+

j=1 appearing in (4.2) corresponds to the poles of P(k, ℓ) in the first quadrant.
(c) In addition to the yielded quantities mentioned in (a), the combined knowledge of |P(k, ℓ)| for k ∈ R+ and the poles

(including multiplicities) of P(k, ℓ) in the fourth quadrant of C yields G(k) for k ∈ C, the quantity E(k) for k ∈ C, and the
constant ℓ.

(d) The knowledge of P(k, ℓ) for k ∈ R+ yields P(k, ℓ) for k ∈ C and hence also yields G(k) for k ∈ C, the quantity E(k) for
k ∈ C, and the constant ℓ.

roof. The proof of (a) can be given as follows. From the first equality in (1.4) we see that |P(−k, ℓ)| = |P(k, ℓ)| for k ∈ R,
howing that we know |P(k, ℓ)| for k ∈ R when we have |P(k, ℓ)| for k ∈ R+. From (5.9) we have

|P(k, ℓ)| =
|k| cµ
πr0rℓ

|z(k)|
|G(k)|

, k ∈ R. (6.1)

etting k → 0 in (6.1) and using (2.2) and (3.22) we obtain

|P(k, ℓ)|
|k|

=
8cµ
3π2rℓ

+ O(k), k → 0 in R. (6.2)

Thus, rℓ is determined. On the other hand, letting k → ±∞ in (6.1) and using (2.13) and (3.47) we get

|P(k, ℓ)| =
cµ
πr0rℓ

+ O
(

1
√

|k|

)
, k → ±∞.

Hence, r0 is also determined. Knowing rℓ we see from (1.15) that z(k) is determined. Then, (6.1) reveals that |G(k)| for k ∈ R
s also determined. Thus, the proof of (a) is complete. Let us now prove (b). By Proposition 2.1(a) and Proposition 3.2(a),
espectively, we know that z(k) and G(k) are entire. From (6.2) we know that P(k, ℓ) has a simple zero at k = 0. Thus,
sing Proposition 3.2(e) in (5.9) we conclude that the zeros of G(k) in C \ {0} correspond to the poles of P(k, ℓ). Hence,
he proof of (b) is complete. Let us turn to the proof of (c). By (b) we know that the poles of P(k, ℓ) and the zeros of G(k)
n the fourth quadrant are equivalent and given by the set {k−

j }
N−

j=1 appearing in (4.1). Then, using (4.26) and (4.29) we
an construct e−ikℓ G(k) for k ∈ C−. Since G(k) is entire, it then follows that e−ikℓ G(k) for k ∈ C and all the zeros of G(k) in
C are determined. Hence, we know E(k) defined in (4.13). Then, as seen from (4.22) we also know rℓ + ℓ. However, from
(a) we already know rℓ. Thus, we also know the value of ℓ. Therefore, the proof of (c) is complete. For the proof of (d),
we remark that (b) implies that the knowledge of P(k, ℓ) for k ∈ R+ yields P(k, ℓ) in k ∈ C including its poles. Thus, (c)
applies and the proof of (d) is complete. ■

In the next theorem we indicate that the combined knowledge of ℓ and the zeros of P(k, ℓ) in the right-half complex
lane yields all the relevant information to determine r(x).

heorem 6.2. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let P(k, x) be the
orresponding pressure satisfying the boundary conditions (1.10) and (1.14). We then have the following:

(a) The combined knowledge of ℓ and the zeros of P(k, ℓ) in the right-half complex plane yields the quantity E(k) in (4.13),
the constants rℓ and r0, the normalized impedance z(k) for k ∈ C, the quantity G(k) for k ∈ C, and the Jost function F (k)
for k ∈ C appearing in (4.30) and (4.32).

(b) The combined knowledge of ℓ and the zeros of P(k, ℓ) in the right-half complex plane is equivalent to the combined
knowledge of rℓ and the zeros of P(k, ℓ) in the right-half complex plane. Hence, the latter set also yields the quantities
mentioned in (a).

roof. By Theorem 6.1(b) we know that the poles of P(k, ℓ) in C and the nonzero zeros of G(k) in C coincide. Using
4.9)–(4.11) we conclude that the poles of P(k, ℓ) in the right-half complex plane determine E(k) defined in (4.9). Then,
sing (4.22) we obtain rℓ and then we get r0 via (4.24). Using rℓ in (1.15) we obtain z(k). From (4.20) we obtain the
onstant C and hence we also get G(k) via (4.15). Next, using (3.45) we determine the two constants

−γ +
r ′

ℓ

rℓ
, −γ +

2
πrℓ

, (6.3)

here γ is the constant defined in (3.46). Since we already have rℓ, we recover r ′

ℓ from the two constants listed in (6.3).
hen, via (4.33) and (4.34) we get the quantities ϕ(k, ℓ) and ϕ′(k, ℓ). Finally, using (4.32) we obtain the Jost function F (k).
ince z(k) and G(k) are entire, their knowledge for k ∈ R is equivalent to their knowledge for k ∈ C. Thus, the proof of (a)
s complete. We remark that (b) directly follows from (4.22). ■
19
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In order to state our results in a concise and precise manner, we introduce several input data sets denoted by Dj for
≤ j ≤ 6. The following proposition shows that these six data sets are equivalent.

roposition 6.3. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let P(k, x) be the
orresponding pressure satisfying the boundary conditions (1.10) and (1.14). Let {k+

j }
N+

j=1 and {k−

j }
N−

j=1 be the set of poles of
(k, ℓ) in the first and fourth quadrants in C, respectively. Let

D1 := {P(k, ℓ) : k ∈ R+
}, (6.4)

D2 := {|P(k, ℓ)| : k ∈ R+
; {k−

j }
N−

j=1}, (6.5)

D3 := {ℓ; {k−

j }
N−

j=1; {k+

j }
N+

j=1}, D4 := {rℓ; {k−

j }
N−

j=1; {k+

j }
N+

j=1}, (6.6)

D5 := {ℓ; E(k) : k ∈ C}, D6 := {rℓ; E(k) : k ∈ C}. (6.7)

hen, these six data sets are equivalent.

roof. We remark that Theorem 6.2(b) implies that D3 and D4 are equivalent and that D5 and D6 are equivalent. Because
f Theorem 6.1(b) and the first equality in (1.4) we have the equivalence of D3 and D5. Using (a) and (b) of Theorem 6.1
e get the equivalence of D1 and D2. From Theorem 6.1(d) it follows that D1 contains D5 as a subset, and Theorem 6.2(a)

mplies that D5 contains D1 as a subset. This completes the proof that all the six input data sets appearing in (6.4)–(6.7)
re equivalent. ■

In the next theorem we show that any one of the six data sets described in (6.4)–(6.7), or any data set equivalent to
ne of those six data sets, uniquely determines the vocal tract radius.

heorem 6.4. Assume that the vocal-tract radius r(x) belongs to the class A specified in Definition 1.1. Let P(k, x) be the
orresponding pressure satisfying the boundary conditions (1.10) and (1.14). Any one of the input data sets described in
6.4)–(6.7), or any data set equivalent to one of those six data sets, uniquely determines r(x).

roof. By Theorem 6.2(a) we know that the Jost function F (k) is determined for k ∈ R. We can view q(x) given in (3.3)
s a real, integrable, compactly supported potential on the half line. Then, considering the Schrödinger equation (3.10)
ith the boundary condition at x = 0 described by the first equality in (3.30) we know [24] that the corresponding Jost

unction F (k) is entire, it has either a simple zero at k = 0 or does not vanish at k = 0, its zeros in C+ \ {0} can only occur
n the positive imaginary axis and such zeros are simple and their number is finite. Then, we can use the Gel’fand–Levitan
rocedure summarized in (4.35)–(4.39) by using F (k) as input into (4.36) and recover the regular solution ϕ(k, x) as in
4.39). Hence, in particular we have ϕ(0, x) for x ∈ (0, ℓ). As indicated in Theorem 6.2(a), we also have r0. Then, we use
he first equality in (3.11) to recover r(x) as

r(x) = r0 ϕ(0, x), x ∈ (0, ℓ). (6.8)

hus, the proof is complete. ■

Even though the construction of r(x) is outlined in the proofs of Theorems 6.1, 6.2, and 6.4, for the convenience of the
eader we provide an orderly summary of those steps below. The steps are given for the input data set D5 defined in (6.7)
nd can easily be adapted for other equivalent input data sets. Hence, the following are the steps to construct r(x) when
and the quantity E(k) defined in (4.9) are known.

(a) Using (4.20), obtain the constant C .
(b) Using (4.22), determine rℓ.
(c) Using rℓ in (1.15), obtain z(k).
(d) Using rℓ in (4.24), obtain r0.
(e) Using (4.15), determine G(k) for k ∈ C.
(f) Using (3.45), with the help of (6.3), obtain r ′

ℓ.
(g) Using (4.33) and (4.34), determine ϕ(k, ℓ) and ϕ′(k, ℓ), respectively.
(h) Using (4.32), obtain F (k).
(i) If r ′

ℓ < 0, determine the only zero of F (k) on the positive imaginary axis occurring at k = iκ1, where κ1 is the
constant appearing in (4.36). If r ′

ℓ ≥ 0, then this step can be omitted.
(j) If r ′

ℓ < 0, then using (4.35) determine g2
1 . If r

′

ℓ ≥ 0, then this step can be omitted and we recall that the term in
(4.36) containing κ1 is missing from the definition of G(x, y).

(k) Use (4.36) as input to the Gel’fand–Levitan integral equation (4.37).
(l) By solving (4.37), obtain A(x, y) for 0 ≤ y < x ≤ ℓ.

(m) Using (4.39), determine ϕ(k, x) for x ∈ (0, ℓ).
(n) Recover r(x) by using (6.8).
20
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7. Examples

In this section we present some explicit examples to illustrate the theory presented in the previous sections.
We recall that the key quantity G(k) appearing in (3.15) and (3.18) is closely related to the pressure at the lips, and

s seen from (5.9) the zeros of G(k) in C correspond to the poles of P(k, ℓ). We can determine G(k) in terms of the Jost
olution f (k, x) appearing in (3.4). Expressing g(k, x) appearing in (3.7) as a linear combination of f (k, x) and f (−k, x),
valuating the resulting equation at x = 0 and x = ℓ, respectively, and using (3.4) and (3.7), we obtain[

g(k, 0)
g ′(k, 0)

]
=

[
f (k, 0) f (−k, 0)
f ′(k, 0) f ′(−k, 0)

][
eikℓ e−ikℓ

ik eikℓ −ik e−ikℓ

]−1
⎡⎣ z(k)
r ′

ℓ

rℓ
z(k) − ik

⎤⎦ . (7.1)

e can express G(k) by evaluating the Wronskian on the right-hand side of (3.15) at x = 0, and we get

G(k) =
[
−ϕ′(k, 0) ϕ(k, 0)

] [g(k, 0)
g ′(k, 0)

]
. (7.2)

sing (3.6) and (7.1) on the right-hand side of (7.2) we have

G(k) =

[
−

r ′

0

r0
1
][

f (k, 0) f (−k, 0)
f ′(k, 0) f ′(−k, 0)

][
eikℓ e−ikℓ

ik eikℓ −ik e−ikℓ

]−1
⎡⎣ z(k)
r ′

ℓ

rℓ
z(k) − ik

⎤⎦ . (7.3)

f we know the Jost solution f (k, x) explicitly, we can use (7.3) to obtain G(k) explicitly.
In order to understand the properties of G(k) better, let us consider some explicit examples. In the first example below,

e consider a uniform tube of constant radius to describe the vocal tract.

xample 7.1. Let us assume that the vocal tract radius r(x) is equal to b for some appropriate constant b. Let us use two
ree parameters given by r0 and ℓ. Thus, we have

b = r0, rℓ = r0, r ′

0 = r ′

ℓ = 0.

rom (3.3) we see that q(x) ≡ 0, and hence the corresponding Jost solution appearing in (3.4) is given by f (k, x) = eikx.
Then, from (7.3) we obtain

G(k) = −ik cos kℓ+ k z(k) sin kℓ,

where we remark that the dependence on rℓ is through the normalized impedance z(k). One can check the properties of
G(k) listed in the previous sections by using some input values such as r0 = 1 and ℓ = 17, where the centimeter is used
as the length unit.

In the next example, we consider the vocal tract radius as a linear function of x and evaluate the corresponding quantity
G(k) explicitly.

Example 7.2. Let us consider the radius r(x) as equal to ax+ b for some appropriate constants a and b. We can use three
free parameters given by r0, r ′

0, and ℓ. We then have

a = r ′

0, b = r0, rℓ = r0 + ℓr ′

0, r ′

ℓ = r ′

0.

In this case, from (3.3) we see that q(x) ≡ 0 and hence f (k, x) = eikx. Then, from (7.3) we get

G(k) =
e−ikℓ Q1 + eikℓ Q2

2kr0 (r0 + ℓr ′

0)
,

where we have defined

Q1 := −(r ′

0 − ikr0)
[
kℓr ′

0 (−1 + z) + kr0 (−1 + z) − iz r ′

0

]
,

Q2 := −(r ′

0 + ikr0)
[
kℓr ′

0 (1 + z) + kr0 (1 + z) + iz r ′

0

]
,

with z denoting z(k). For example, using some particular values for the free parameters such as

r0 =
1

√
5
, r ′

0 =
2(

√
5 − 1)
85

, ℓ = 17,

r0 =
1

√
5
, r ′

0 = −

√
5 − 1
85

, ℓ = 17,

one can investigate various properties of G(k) numerically.
In the next example, we consider the vocal tract radius r(x) as a quadratic function of x.
21
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Fig. 7.1. The vocal-tract radius r(x) given in (7.7).

Example 7.3. Let us assume that the vocal tract radius r(x) is equal to (ax + b)2 for some appropriate constants a and b.
et us use three free parameters given by r0, r ′

0, and ℓ. We have

a =
r ′

0

2
√
r0
, b =

√
r0, rℓ =

(
√
r0 +

ℓr ′

0

2
√
r0

)2

, r ′

ℓ = r ′

0 +
ℓ(r ′

0)
2

2r0
.

n this case, the potential q(x) is given by

q(x) =
2a2

(ax + b)2
, x ∈ (0, ℓ),

and the Jost solution f (k, x) can be constructed as a linear combination of the two solutions to (2.3) that are given by
eikxm(k, x) and e−ikxm(k, x), where

m(k, x) := 1 +
ia

k (ax + b)
, (7.4)

n such a way that f (k, x) satisfies (3.4). In this case, with the help (7.4) from (7.3) we obtain

G(k) =
Q1 cos kℓ+ Q2 sin kℓ
8ik3r20 (2r0 + ℓ r ′

0)2
, (7.5)

here z denotes z(k) and we have

Q1 := −18ik z ℓ(r ′

0)
4
− k2

[
12ℓr0(r ′

0)
3
+ 6ℓ2(r ′

0)
4]

+ ik3 Q3 + k4 Q4,

Q2 := 18i z (r ′

0)
4
+ k

[
12r0(r ′

0)
3
+ 6ℓ(r ′

0)
4]

+ ik2 Q5 + k3 Q6 + ik4 Q7,

Q3 := −24 z ℓr20 (r
′

0)
2
− 12 z ℓ2r0(r ′

0)
3, Q4 := 32r40 + 32ℓr30 r

′

0 + 8ℓ2r20 (r
′

0)
2,

Q5 := 24 z r20 (r
′

0)
2
+ 12 z ℓr0(r ′

0)
3
− 6 z ℓ2(r ′

0)
4, Q6 := 32r30 r

′

0 + 40ℓr20 (r
′

0)
2
+ 12ℓ2r0(r ′

0)
3,

Q7 := 32 z r40 + 32 z ℓr30 r
′

0 + 8 z ℓ2r20 (r
′

0)
2.

sing the input values

r0 =
1

√
5
, r ′

0 =
2(

√
5 − 1)
85

, ℓ = 17, (7.6)

e get

r(x) =

(
53/4

− 51/4

85
x +

1
51/4

)2

, x ∈ (0, 17), (7.7)

whose graph is indicated in Fig. 7.1. We can numerically investigate the corresponding G(k) given in (7.5) with input from
7.6). The zeros of G(k) in the first quadrant in C are shown in Fig. 7.2. From Fig. 7.2 we observe that in the first quadrant
f C, the key quantity G(k) has 11 zeros when |k| < 2, it has 28 zeros when |k| < 5, and it has 57 zeros when |k| < 10.
ote that the density of the zeros of G(k) in the first quadrant as k → ∞ is predicted in Proposition 4.1(c) as (r + ℓ)/π ,
ℓ
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Fig. 7.2. The location of zeros of G(k) in the first quadrant with r(x) as in (7.7).

which is 5.7545, with the overline on a digit indicating a round off. A numerical investigation can also be carried out by
using another set of values such as

r0 =
1

√
5
, r ′

0 = −

√
5 + 1
85

, ℓ = 17.

Acknowledgments

The third author is supported in part by the National Natural Science Foundation of China (119001304) and the Startup
Foundation for Introducing Talent of NUIST, China.

References

[1] R.M. Aarts, A.J.E.M. Jaanssen, Approximation of the Struve function H1 occurring in impedance calculations, J. Acoust. Soc. Am. 113 (2003)
2635–2637.

[2] G. Fant, Acoustic Theory of Speech Production, Mouton, The Hague, 1970.
[3] J.L. Flanagan, Speech Analysis Synthesis and Perception, second ed., Springer, New York, 1972.
[4] P.M. Morse, U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.
[5] L.R. Rabiner, R.W. Schafer, Introduction to Digital Speech Processing, Now Publ., Hanover, MA, 2007.
[6] J. Schroeter, M.M. Sondhi, Techniques for estimating vocal-tract shapes from the speech signal, IEEE Trans. Speech Audio Process. 2 (1994)

133–149.
[7] M.M. Sondhi, A survey of the vocal tract inverse problem: theory, computations and experiments, in: F. Santosa, Y.H. Pao, W.W. Symes, C.

Holland (Eds.), Inverse Problems of Acoustic and Elastic Waves, SIAM, Philadelphia, 1984, pp. 1–19.
[8] K.N. Stevens, Acoustic Phonetics, MIT Press, Cambridge, MA, 1998.
[9] A.G. Webster, Acoustical impedance, and the theory of horns and of the phonograph, Proc. Natl. Acad. Sci. USA 2 (1919) 275–282.

[10] T. Aktosun, Inverse scattering for vowel articulation with frequency-domain data, Inverse Problems 21 (2005) 899–914.
[11] T. Aktosun, Inverse scattering to determine the shape of a vocal tract, in: M.A. Dritschel (Ed.), The Extended Field of Operator Theory, Birkhäuser,

Basel, 2007, pp. 1–16.
[12] T. Aktosun, A. Machuca, P. Sacks, Determining the shape of a human vocal tract from pressure measurements at the lips, Inverse Problems 33

(2017) 115002.
[13] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, National Bureau of

Standards, Washington, DC, 1972.
[14] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, fourth ed., Cambridge University Press, New York, 1958.
[15] B.Y. Levin, Lectures on Entire Functions, Amer. Math. Soc., Providence, RI, 1996.
[16] P. Deift, E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979) 121–251.
[17] T. Aktosun, R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation, Inverse Problems

22 (2006) 89–114.
[18] I.M. Gel’fand, B.M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl. (Ser. 2) 1 (1955)

253–304.
[19] B.M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987.
[20] V.A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser, Basel, 1986.
[21] G. Borg, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math.

78 (1946) 1–96.
[22] G. Borg, Uniqueness theorems in the spectral theory of y′′

+(λ−q(x)) y = 0, in: Proc. 11th Scandinavian Congress of Mathematicians (Trondheim,
1949), Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276–287.
23

http://refhub.elsevier.com/S0377-0427(21)00096-0/sb1
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb1
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb1
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb2
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb3
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb4
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb5
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb8
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb9
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb10
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb11
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb11
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb11
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb12
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb12
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb12
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb13
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb13
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb13
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb14
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb16
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb18
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb18
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb18
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb19
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb20
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb22
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb22
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb22


T. Aktosun, P. Sacks and X.-C. Xu Journal of Computational and Applied Mathematics 393 (2021) 113477
[23] W. Rundell, P.E. Sacks, Reconstruction techniques for classical inverse Sturm–Liouville problems, Math. Comp. 58 (1992) 161–183.
[24] T. Aktosun, P. Sacks, M. Unlu, Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials, J.

Math. Phys. 56 (2015) 022106.
24

http://refhub.elsevier.com/S0377-0427(21)00096-0/sb23
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb24
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb24
http://refhub.elsevier.com/S0377-0427(21)00096-0/sb24

	An inverse problem to determine the shape of a human vocal tract
	Introduction
	The properties of the normalized impedance
	The transformation to the Schrodinger equation
	Further properties of G(k)
	The solution to the direct problem
	The inverse problem
	Examples
	Acknowledgments
	References


