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Abstract. The Marchenko inversion method of the one-dimensional non-relativistic quantum 
mechanics is generalised to perturbations. The change in the potential that corresponds to a 
finite change in the scattering matrix is obtained by formulating a Marchenko-like integral 
equation. The method used here may be generalisable to higher dimensions because the 
inversion is formulated in terms of scattering matrices, not only in terms of reflection 
coefficients. 

1. Introduction 

Our purpose in this paper is to generalise the Marchenko inversion to perturbations, i.e., to 
obtain the change in the potential that corresponds to a finite change in the scattering 
matrix by using the method of Marchenko. In other words, our starting point is a 
comparison potential for which everything is assumed to be known and we try to obtain 
the solution to another inverse problem in terms of the known solution with the 
comparison potential by using the Marchenko method. 

The linear integral equation of Gel’fand and Levitan and that of Marchenko have been 
the sources of important developments later in the field. In the Gel’fand-Levitan 
procedure, one sets up a linear integral equation where the integration is performed on a 
finite interval containing the origin (Gel’fand and Levitan 195 1). The kernel of this integral 
equation is related to the spectral function, which is constructed from the scattering matrix. 
Then the potential can be recovered from the solution to the Gel’fand-Levitan integral 
equation. In the Marchenko procedure (Agranovich and Marchenko 1963, Marchenko 
1955), one sets up a linear integral equation where the integration is performed on an 
interval containing + CO or - CO. The kernel of this Marchenko equation is directly 
obtained from the scattering matrix, and the potential is recovered from the solution of the 
Marchenko equation. Note that many people misname the Marchenko equation and call it 
the Gel’fand-Levitan equation. 

The generalisation of the Gel’fand-Levitan and Marchenko procedures to obtain a 
perturbation of the potential in terms of a perturbation of the scattering matrix has been 
studied by several. The generalisation of the Gel’fand-Levitan method is already 
completed; the interested reader is referred to the classic by Newton (1 982b) for the 
method, development, and further references in the Gel’fand-Levitan case. The 
generalisation of the Marchenko method for perturbations has been less studied. In the 
radial case, Agranovich and Marchenko (1 963) mention that one can express the solution 
to the Schrodinger equation with potential V(x)  in terms of the solution with potential 
Vo(x)=I(I+ 1)/x2, i.e., in terms of Bessel functions; however, it is added that ‘this 
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approach leads to considerable analytical difficulties connected primarily with investigating 
the integral equations obtained. These difficulties are further compounded when matrix 
equations are considered.’ So, they try another approach, but they do this only when 1 is an 
integer, and they use a Crum transformation to find the perturbation V(x) -  Vo(x), and 
they also generalise this to the matrix case where they study it explicitly with the potential 
matrix 

In the Marchenko formalism, the perturbations are built on the potential Vo(x)= 
; ( x * ; ) - ~  in the radial case by Dyson (1976) using the language of Fredholm 
determinants. Deift and Trubowitz (1979) have shown how the potential changes when a 
bound state is added to the scattering matrix by using a Crum transformation in one 
dimension. In case the reflection coefficient R ( k )  is a rational function of k (Kay 1960), 
Sabatier (1983a, b) has shown how the potential changes when R ( k )  is changed by a phase 
factor that is also a rational function; this is done in the one-dimensional case by using the 
Darboux-Backlund transform. 

This paper is organised as follows. Section 2 is a summary of the main facts about the 
scattering matrix, the potential and the wavefunctions, and these results are used in later 
sections. The other purpose of this section is to set out the notation used in this study. In 
Q 3, the matrix solution to the Schrodinger equation is given and this matrix will be used to 
obtain the matrix Riemann-Hilbert problem. In 5 4, an integral expression for the Jost 
matrix is obtained, which will be used later. In Q 5 ,  the transformations of the scattering 
matrix and of the matrix solution are given when the space coordinate is shifted; hence it is 
shown how the matrix solution is related to the Jost matrix. In Q 6, the Riemann-Hilbert 
problem is given in the matrix form and the matrix Marchenko equation is obtained. The 
matrix potential is obtained from the solution to the matrix Marchenko equation. Another 
matrix Marchenko equation with a different kernel is given. The solutions to these two 
matrix Marchenko equations will be used later to obtain the perturbation of the matrix 
potential from a matrix integral equation. In 5 7, the matrix Riemann-Hilbert problem for 
perturbations is given. In Q 8 the Marchenko formalism is generalised to perturbations. 
Since the matrix formalism is used, the method of this section may be generalisable to 
higher dimensions. Starting from the matrix Riemann-Hilbert problem, a matrix integral 
equation is obtained, and this equation is the analogue of the Marchenko equation. The 
perturbation of the matrix potential is obtained in a similar way one obtains the potential in 
the Marchenko formalism. The properties of the kernel of this Marchenko-like integral 
equation are given; a bound on the eigenvalues of this kernel is obtained in terms of a 
bound on the perturbation of the scattering matrix so that the eigenvalues can be made less 
than one in absolute value and hence the existence and the uniqueness of the solution can 
be given. In § 9 some further properties of the solution to the Marchenko-like integral 
equation are presented. 

2. Preliminaries 

The Schrodinger equation 
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in one dimension, if the potential V(x )  N 0 in some appropriate sense, for real k, has two 
linearly independent solutions satisfying the boundary conditions 

@i(k ,x)=Z exp(ikx)+o(l)  as x-+ CO 

+i(k,x)=exp(ikx)+L exp(-ikx)+o(l)  a s x +  -cc 

&(k, x) = exp( -ikx) + R exp(ikx) + o( 1) 

+,(k, x) = T, exp( - i kx) + o( 1) 

as x-+ CO 

as x - i  -CO. 

These are the scattering states and the subscripts I and r are used to indicate that @I and *r 

are usually called waves travelling from the left and from the right respectively. 
The scattering matrix, often called the S matrix for short, is obtained from the 

asymptotics of and @, and it is given by 

We will assume V ( x )  is a real potential in L:, where LA is the space of measurable 
functions V(x )  such that the Lebesgue integral lFm dx(1 + 1x1") I V(x)l exists. Thus we 
assume (Deift and Trubowitz 1979) that S(k) is continuous and unitary, S( - k)= S(k)* 
where * denotes the complex conjugation, = T, E T, and that T(k) has a meromorphic 
extension to C', the complex upper-half plane, with a finite number of simple poles at 
{ipl, ip2, , . ., ipn} all located on the imaginary axis in C'. The characterisation problem for 
a potential in L: is recently given by Melin (1985); however, the analysis is simpler in class 
L: and hence we will work with potentials in L:. 

It is possible to combine the solutions ri/i and into a column vector 

and to write the vector Schrodinger equation (Newton 1983) : 

Let @#(k, x) *( - k, x). We can express *# in terms of * as (Newton 1983) : 

*# = s - 1  q * 
where the matrix q is defined as 

It is known that a real potential in L :  is uniquely determined by one of the reflection 
coefficients, bound states, and the so-called norming constants, which can be obtained 
from the asymptotics of the bound state solutions to the Schrodinger equation (Deift and 
Trubowitz 1979). Instead of determining a potential in a given class from one of the 
reflection coefficients, it is also desirable to have a method in one dimension that uses the 
whole S matrix and which can also be generalised to higher dimensions. This is because in 
higher dimensions the S matrix becomes an operator and there is no analogue of a 
reflection coefficient. The method that uses the whole S matrix is due to Newton (1980a) 
and its generalisation to three dimensions is also given by Newton (1 980b, 198 1, 1982a). 
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In this paper, we will use the whole S matrix to formulate the Marchenko equation for 
perturbations. Hence the method given here may be generalisable to higher dimensions. 

3. Matrix formulation of the unperturbed problem 

In order to formulate a Marchenko-like equation for perturbations and to generalise it to 
higher dimensions, one must use 2 x 2 matrix solutions of the Schrodinger equation rather 
than vector or scalar solutions. One way to form a matrix solution is to combine the vector 
solutions that correspond to the scattering matrices 

where 

I=  (1 0 - 1  0 ) .  

Assume that the matrices S and IS1 are associated with potentials V(x) and U(x)  
respectively with the corresponding vector solutions I$') and @), where the superscripts 
refer to the potentials. These solutions must satisfy the equations that correspond to (2.2): 

@(OM = s-1 q @ ( u )  (3.1) 

@(U)# = (ISI)- '  q @ ' U '  z IS-'Iq@'"'. (3.2) 

and 

For a real potential in L:, if T(0) = 0, then V ( x )  and U(x)  cannot be simultaneously in L 
because the reflection coefficients for the potentials cannot both take the value of - 1 at 
k =  0 (Deift and Trubowitz 1979). For example, if 

However, if T(0) # 0, then whenever S ( k )  satisfies the characterisation conditions for a real 
potential in L$ given in Deift and Trubowitz (1979), so does the matrix ZS(k)I.  Hence, 
when T(O)#O, the simultaneous existence of the real potentials V(x)  and U(x)  in 
L: is guaranteed. 

In general, we can say the following. The matrices S and IS1 satisfy the same 
conditions for the existence and uniqueness of a real potential in L i ,  except for one 
condition, namely the behaviour of the corresponding reflection coefficients at k = 0. 
Therefore, it is possible that when T(O)=O, the simultaneous existence or uniqueness of the 
potentials V(x )  and U ( x )  in the specified class may not be known or may not be assured. 
One possible way to overcome this difficulty is as follows. The introduction of the second 
potential U(x)  is made for a technical reason only. The main interest lies in the potential 
V ( x )  of the scattering matrix S(k) ,  not in U(x).  Therefore, in case 
scattering matrix 

'such that limE+o S,(k)=  S ( k )  and that S,(k) and S(k)  satisfy the 

T(O)=O, we can form a 

same conditions for the 
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existence and uniqueness of the potential in L: except that T,(O) # 0. Once V,(x) and U,(x) 
are obtained as real potentials in L:, we can recover V(x)  as lima-+0 V,(x) provided that the 
mapping S(k)+ V ( x )  is stable. We expect lim,,o V,(x) to be in L :  if R(O)=L(O)= - 1. In 
general, we cannot expect lima+o U,@) to be in a previously specified class. Neither the 
existence nor the uniqueness of limE+o U,(x) is guaranteed. In fact, explicit examples are 
known where this limit is not unique (Aktosun and Newton 1985, Sabatier 1984). 

We can combine the Riemann-Hilbert problems for the vector solutions @(”) and @(‘I 
into a Riemann-Hilbert problem for a 2 x 2 matrix as follows. Let us define the matrix 

Y E (  *I *2 ) 
*3 *4 

as : 

From (3.1) and (3.2) we obtain 

Y# = s-‘ qY q. 

Define the potential matrix A(x) as 

I* 2 ( V ( x ) -  U ( x )  V ( x )  + U(x)  
1 V ( x )  + U ( x )  V ( x ) -  U(x )  A(x) = - 

Then the Schrodinger equation satisfied by the matrix Y is given by 

d 2 Y  
dx2  
-+ k 2 Y  =“A. 

(3.4) 

(3.5) 

(3.6) 

Let us call Y the physical solution of the matrix Schrodinger equation. From the properties 
of 

(Newton 1983), we 
obtain the Lippmann-Schwinger equation satisfied by the matrix solution Y(k, x): 

and @r we see that Y’”=Y* when k E  R. 
From the Lippmann-Schwinger equations satisfied by *(U) and 

Y(k, x)=exp(iIkx) +- dy exp(iklx-yl)Y(k,y)A(y). 
21k .im 

Let us define the matrix F(k, x) as 

(3.7) 

(3.8) 

where we have defined f (”=exp(-ikx)t,bP), f ?)=exp(ikx)q$), f P)=exp(ikx)~){’) and 
f p’ s exp(ikx)@). It is straightforward to show that F(k, x) satisfies the matrix 
differential equation 

d 2 F  d F  
- + 2iIk -=FA, 
d x 2  d x  

Let us define another matrix M ( k ,  x) as 

(3.9) 
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Since M(k, x) is a multiple of F(k, x), it satisfies the same differential equation that F(k,  x) 
satisfies, but certainly with different boundary conditions. 

We can also define the matrix solution @(k, x) by using the regular solutions pl(k, x) 
and qr(k,  x) of the Schrodinger equation which satisfy the boundary conditions from 
Newton (1983) 

dP1 - (k, O)=ik 
d x  

dPr - (k, O)= - 
d x  

ik 

(3.10) 

where the superscripts again refer to the potentials. Since the regular solutions satisfy the 
same Schrodinger equation the physical solutions satisfy, the matrix @(k, x) satisfies (3.6). 
We will call @(k,  x) the regular matrix solution. From the boundary conditions satisfied by 
the regular scalar solutions, we obtain 

@(k, 0)= 1 d@(k, O)/dx=ilk 

For k E R, the matrix solutions F, M ,  and @ satisfy, for real potentials, 

where Q = (: ) . 
F#=F* M " = M *  @ # = @ *  

because for these matrices k and i appear together as ki both in the matrix equations and 
the boundary conditions. 

4. Jost matrix 

Let J ( k )  be the Jost matrix that corresponds to the S matrix with the potential V(x) .  We 
have (Newton 1983): 

J(k)$(")(k, x)-q(")(k, x) (4.1) 

where the vector solutions $(") and q(") are given by 

The following theorem shows that the solutions Y and @ of the matrix Schrodinger 
equation are related to each other by the same Jost matrix given in (4.1). 

Theorem 4.1. J(k)Y(k, x) = @(k, x) where J(k) is the Jost matrix defined in (4.1) and Y and 
@ are the physical and regular solutions of the matrix Schrodinger equation respectively. 

Proof: Let J,, ( k )  be the Jost matrix of the scattering matrix ISI. From (4. l), we have 

Ju $(U) = q ( U )  (4.2) 

where $('I and p(') are the physical and regular vector solutions for the potential U(x) .  The 
Jost matrices satisfy (Newton 1983): 

J - 1 #  = s-1 qJ-' (4.3) 

J,'# =Is-'IqJ;'q. 
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Multiplying the last matrix equation by I both on the right and on the left, we obtain 

IJL'#I = I' SI' IqJ;'qI= S-' qIJ,' Iq (4.4) 

where we have used I* = .O and Iq = - 41, which are straightforward to verify. Subtracting 
(4.4) from (4.3), we obtain 

(J- '  -IJ; 'I)#=S-'q(J-'  -IJ;'I)q. 

Since J-' -1 and J;' -1 as Jk/  + CO in + (Newton 1983), where c + = C + U R, we have 
J-' - I J ; ' I - + O  as Ik/ --f CO in C'. Then the uniqueness of the solution to (4.3) requires that 
J-' = IJ;' I (Newton 1980a). Thus we obtain 

J= IJ, I. 

From (3.3) and (3.10) it is seen that 

Thus we obtain 

Jy (:I=@ (;) 
and 

(4.5) 

Hence the two vector equations (4.5) and (4.6) give us the matrix equation J Y  = @. QED 

Since @(k, O)=Q,  the above theorem gives us J(k)Y(k, O ) = l  or equivalently 

J- '(k)=Y(k, 0). (4.7) 
The following theorem shows that it is possible to express J-'(k) in terms of the vector 
solution alone. 

Theorem 4.2. The matrix inverse of the Jost matrix is given by 

where (g:) is the vector solution of the Schrodinger equation with the potential V(x). 

ProoJ The Wronskian 

- d 6 *  d Y  
d x  d x  

[Y; @*] E Y  6* 
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is equal to J-'[O; &*] as seen from theorem 4.1. Note that the tilde denotes the matrix 
transpose. Since the matrix potential A(x) is real and symmetric, from the matrix 
Schrodinger equation for @(k,,x), we obtain [@;&*I =-2iIk. In a similar way, we obtain 
the Wronskian 

d Y  
d x  

[Y; &*] = -ikJ-'I--- (k, 0). 

Thus, we have 

1 d Y  
J-' = 7 - (k, 0)I. 

ik d x  

Combining this last result with (4.7), we obtain the expression stated in the theorem. QED 

From the Lippmann-Schwinger equation for the vector solution +(k, x) (Newton 
1983), we obtain 

and 

5. Shifting the potential 

When the space coordinate x is shifted by z, the transformed potential matrix is given by 
A,(x)=A(x+ z). The transformed wavefunction Y,(k, x) can be obtained by using the 
matrix Lippmann-Schwinger equation given in (3.7) as follows : 

1 ,.cc 

Y(k, x) =exp(iIkx) + J ~- dy exp(ik)x-yl)Y(k,y)A(y) 2ik --m 

=exp ( i I k x ) + L  j dyexp(iklx-y-zl)Y(k,y+z)A(y+z). 
2ik --m 

Thus, replacing x by x + z, we obtain 

Y(k, x +z)=exp[iIk(x+ z)] + - 1 "  

2ik 1, dy exp(iklx-yl)Y(k,y + z)A,(y) 
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x exp( -iIkz)Y(k, y + z)Az(y). 

Since exp( -iIkz)Y(k, x + z) satisfies the matrix Lippmann-Schwinger equation with the 
shifted potential Az (x), assuming that the Lippmann-Schwinger equation has a unique 
solution, we obtain 

Y,(k,x)=exp(-iIkz)Y(k, x + z ) .  (5.1) 
At x=O this last expression becomes Y , ( k ,  O)=exp( -iIkz)Y(k, z). Since J- ' (k )=  Y (k ,  0) 
and F(k ,  x) = exp( - iIkx)Y(k, x), we obtain 

J; ' (k)=F(k ,  z). (5.2) 

Thus F(k ,  x) is nothing but the matrix inverse of the transformed Jost matrix when the 
potential is shifted. 

Since Y(k, x) satisfies (3.4), we have the canonical decomposition 

s=qYqY#-'. (5.3) 

The equivalent of this expression for S(k)  and the expression (2.1) in terms of the 
asymptotics of the physical solutions is already known when T(k)  is holomorphic in @' 
(Newton 1984). Since the transformation of Y ( k , x )  is explicitly known, from (5.3) we 
obtain 

SZ(k) = qYz(k, x)qYZ#(k, XI-' 

= q e x p ( - i I k z ) Y ( k , x + z ) q Y ( k , x + z ) # - '  exp(-iIkz) 

=exp(iIkz)qY(k, x + z)qY(k, x + z)#-' exp( -iIkz) 

= exp(iIkz)S(k) exp( - iIkz). 

Hence the transmission coefficient is transformed as Tz(k) = T(k) .  
It is known that det J- ' (k)=  T(k)  (Newton 1983), and hence we have 

det F(k, x)=det J;'(k)= T..(k)= T(k). 

Using 

1 Y(k ,  x)=exp(iIkx)F(k, x) and M ( k ,  x ) = - F ( k ,  x) 
T(k)  

we see that 

1 det Y ( k ,  x) = T(k)  and det M(k,  x) = - 
T(k)  

Thus we can write the matrix inverse of Y explicitly as follows : 
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Similarly we have 

1 
T 

F-' = - q I f I q  and M - ' = TqIfiIq. 

6. Matrix Riemann-Hilbert problem and matrix Marchenko formalism 

Using (3.8), we can write (3.4) as F' = exp(iIkx)S-' exp( -iIkx)qFq for k E R. Letting 
A(k, x) exp(iIkx)S-' exp( - iIkx), we obtain 

F' = AqFq k E  R. (6.1) 

From (3.8), we have F(k, x)= 1 + O(k-') as Ikl- CO in e'. Thus (6.1) constitutes a 
Riemann-Hilbert problem, which we will call Newton's formulation. Here we assume that 
there are no bound states, in which case F(k, x) has a holomorphic extension to C '(k) for 
each x. The case with bound states is studied in another paper (Aktosun 1987a). 

Subtracting the asymptotic value of F as lkl+ CO from both sides of (6. l), we obtain 

F #  - Q  =(A -Q)qFq + q(F-Q)q. (6.2) 

Letting E= A -'U and taking the Fourier transform by s z ,  dk( 1/271) exp(iky) of (6.2), we 
obtain 

where we have defined 

F-1 is holomorphic in C + and as 1 kl -+ CO in 
Hardy space; hence ~ ( x ,  y )  = 0 for y < 0. Thus (6.3) becomes 

+, F-Q = O(k-') and it belongs to the 

In case S(k) is a rational function, using (6.9, one can reduce the solution of the inverse 
problem to solving a system of linear equations (Aktosun and Newton 198.5). 

We can write (6.5) as 

and letting g(x, y )  = SZmdk( 1/271)C(k, x) exp(iky), the above equation becomes 

V(X> Y )  = g(x, .!J> + (g  * 4V#d (x, Y )  Y > O  
where * denotes the convolution as a function of y and q#(x,y)=v(x, -y). Since 
~ ( x ,  y )  = 0 for y < 0, we have 
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Hence we obtain the matrix Marchenko equation 

r(x2J) =Ax, Y )  + J , ,  d z  g(x, Y + z)qr(x, z)q y > o .  (6.6) 

For a function A(k, x) which satisfies A # = A * ,  i.e., A ( -  k, x)=A(k, x)*, its Fourier 
transform in L2 is real. Since S, exp(ilkx), F,  and their functions have this property, we see 
that g(x, y )  and ~ ( x ,  y )  are both real. Furthermore, since the Fourier transform on L is a 
unitary operator and since S - 1, F -  II E L2(  - CO < k < CO), we have g(x, y )  E L 2  
(- CO < y  < CO) and r (x ,y )  E L2(0  < y  < CO) for each x. 

Define 

r(")(x, y )  = la (f ("'(k, x) - 1) exp( - iky) 
-02 

~ ! " ( ( ~ , y ) = ~ ~  g ( f ? ) ( k , x ) -  l)exp(-iky) 
-m 

.* d k  
r?'(x, y )  = - (f I"'@, x) - 1) exp( - iky) i, 2n 

where we have used (3.8) and the superscripts refer to the potentials. Thus we can write the 
matrix ~ ( x ,  y )  as 

Using the integral expressions for r("), q?), q?), and VI") (Newton 1983), we obtain the 
integral expression for the matrix ~ ( x ,  y )  : 

where L(x)  is the matrix potential and O(x) denotes the Heaviside function. From this 
integral expression for q(x,  y) ,  by differentiation we can obtain the partial differential 
equation 

From (6.7) we obtain 
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and hence we have 

d d r8 (x - r ) (1  ' ) A ( , z )  
d x  0 - 1  

= - ilA(x) 

where 6(x) is the Dirac delta function. Thus we obtain 

d 
dX 

A(x)= - 21- q(x, 0 + ). 

Letting 

(6.9) 

we obtain from (6.9) the scalar potentials 

and 

We can write (6.1) in terms of M =  ( l / T ) F  as 

M#=AMqMq k c  R 

where we have defined 

T 
T# 

AM = - exp(ilkx)S-'exp(i1kx). 

Note that the equation M # = A M ~ M ~  and (6.1) are similar. The asymptotic value of 
M ( k ,  x) as lkl- CO in 6' is Q because T(k)-* 1 and F(k ,  x)+ I. Since we assume there are 
no bound states, M ( k ,  x) is holomorphic in k E 6' for each x as F(k, x) is. Let us call this 
formulation of the Riemann-Hilbert problem Faddeev's formulation. Defining 

&=A,+,-Q 

B(x,y)- -(M(k, XI-Q) exp(-iky) 1: :: 
d k  

gM(x' J4 = 1, M k ,  XI exp(ikA 

we can solve the Riemann-Hilbert problem in Faddeev's formulation exactly the same 
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way we solve it in Newton’s formulation. Hence we obtain 

(6.10) 

which corresponds to (6.5), and the matrix Marchenko equation in Faddeev’s formulation 
which corresponds to (6.6): 

d k  
271 

~ ( x ,  Y> = j - z M ( k ,  x)qM(k, x)q  exp(iky) 

dm 

Y > O  

B(x, U) =gM(x, Y )  + dz gnn(x, Y + z)@ (x, z)q Y > O .  (6.11) 

Using exactly the same arguments as in Newton’s formulation, we see that gM(x,y) and 
B(x,y) are both real, and gM(x,y)czL2(-co < y ( c o )  and B ( x , y ) ~ L ~ ( O < y ( a o )  for 
each x. The integral equation for B(x, y )  which corresponds to (6.7) can be obtained as in 
Newton’s formulation. Defining 

where the superscripts again refer to the potentials. Hence we have 

where we have defined 

and 

d k  
B, (x, u> = 1, (mr (k ,  x> - 1) exp( - iky) 

with superscripts referring to the potentials. From the integral equations for BfV), BPI, B p )  
and BY’ (Deift and Trubowitz 1979)’ we obtain 

which corresponds to (6.7). The partial differential equation satisfied by B(x,  y )  can be 
obtained from (6.12) by differentiation 

- 
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which corresponds to (6.8). From (6.12) we have 

and thus we obtain, in a similar way we have obtained (6.9), 

dB(x, 0 + ) 
d x  

L(x) = - 21  (6.13) 

Each of the matrix Marchenko equations, (6.6) of Newton’s formulation and (6.1 1) of 
Faddeev’s formulation, is equivalent to two 2 x 1 vector equations, which can be obtained 
by multiplying these matrix Marchenko equations on the right by the column vectors (1’) 
and (- 1). For example, in Newton’s formulation we have 

and 

where we have used 

Let G,(y, z) Eg(x, y + z)q; then G,(y, z) becomes the kernel of the operator G, defined 
as 

(6.14) 

Thus, investigating the solvability of the matrix Marchenko equation in Newton’s 
formulation is equivalent to studying the properties of the kernel G,(y, z). 

According to a theorem by Titchmarsh (1937), a function A(k) and its derivative 
dA(k)/dk are both in L2(k) if and only i f l ( y )  a n d y l ( y )  are both in L2(y) ,  where the caret 
denotes the Fourier transform in L2.  Thus, if S-Q,  dS/dkE L2(k), then g ( x , y ) ,  
yg(x ,  y )  E L2(y) for each x. Using this result, we have the following theorem. 

Theorem 6.1. If S-1 and dSldk are in L2(k), then the operator G, defined in (6.14) is 
Hilbert-Schmidt. 

Proof. Define the absolute value of an arbitrary matrix A = (Aij) as 

lAl =max \Aij] .  (6.15) 

Then we have (Agranovich and Marchenko 1963), provided that A + B  and AB are 
meaningful and Jdx(A(x)l exists, ( A + B l < I A / + I B l ,  IABI<IAI IB(, I ldxA(x)l< 

l j  

s dxlA(x)l. 
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Using (6.15) we have 

< jy jr d y d z l g w z > l  Igh, Y + 4. 

Thus G, is Hilbert-Schmidt if we have 

la la dydzIgij(x3 Y + z)l Igmn(x, Y + z>\ < 

for i,j ,  m, n = 1, 2 where gij(x, y )  are the entries of the matrix g(x, y).  Because of the 
theorem of Titchmarsh mentioned above, gij E L2 in the second argument for each x. 
Hence the product gijgmn EL' by Holder's inequality and the change of the order of 
integration below is justified: 

Corollary 6.1. Being Hilbert-Schmidt, the operator G, defined in (6.14) is compact and 
hence bounded. 

7. Perturbations of the potential and of the S matrix 

Let us interpret Newton's formulation of the Riemann-Hilbert problem as follows. We 
have started with Y'#=S-'qYq given in (3.4). Then in order to find the potential matrix 
l ( x ) ,  we have used the transformation \I! -+ exp( - iIkx)Y, S-' -+ exp(i1kx)S-' exp( - iIkx), 
and hence S-,exp(iIkx)S exp(-iIkx), S-Q+exp(iIkx) (S-1) exp(-iilkx), l - + A - O .  
Since exp(i1kx) is the matrix wavefunction which corresponds to the identity scattering 
matrix with zero matrix potential, we can rewrite the above transformation, by letting 
A, =0, So=Q, and Yo=exp(iIkx), as follows: Y-+Y;'Y, S-Q-,(qYoq>-'(S-So)Y'O#, 
L - + l - A , .  With this motivation in mind, we will investigate if such a transforma- 
tion may lead to a Marchenko-like method to obtain a perturbation A - l o  of 
the potential matrix lo which corresponds to a perturbation S - S O  of the 
scattering matrix S O  also in cases A o f O  and SofQ. The subscript will refer to the 
quantities on which the perturbation is built. 

Let Yo" = S;'qYoq and Y# = S-'qYq for k E IR, where YO is the matrix wavefunction 
of the scattering matrix So with the corresponding matrix potential lo, and Y and S are the 
matrix wavefunction and the S matrix for the corresponding matrix potential l ,  Let us 
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define, as in the previous sections, 

and SE( T R  ) 
L T  

and As- ) vo + U0 v i - U ,  
v,-u, v, + U, 

&E- 

Since the case of bound states is studied in another paper (Aktosun 1987a), we can here 
assume that both So and S are free of bound states. 

It is already known that YO' is holomorphic in C' when To(0)fO (Newton 1984) or 
when z ( k )  vanishes linearly as k - 0  (Aktosun and Newton 1985). Multiplying (3.4) on 
the left by Y r ' ,  we obtain 

(Y'ol Y)# =Y'o#-l s-lqYq=(Yo#-l S-'qY,q)qYO1Yq. 

We can write this equation as 

where we have defined 

Comparing (7.1) with (6. l), we see that we have a matrix Riemann-Hilbert problem for H 
and we may solve (7.1) by a Marchenko-like method. For this we need to know the 
properties of the matrices H and 9. Define the matrices A(k)  and E(k ,  x )  as 

E r 9 - a .  (7.5) 

Since S # = s *  and y"=\y* for k E  R, Y#=Y* and &"=&'*for k E  R. From (7.3)itis 
straightforward to show that Y-'= 49'4. 

The equality of T and TI in 

is known as the reciprocity and it is equivalent to the statement s"=qSq (Newton 1983). 
The lemma below shows that in general Y i s  not reciprocal. 

Lemma 7.1. In general L?# q 9 q  and the equality holds only when So = 1, and hence in 
general Y i s  not unitary unless SO = Q. 
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ProoJ: Since Y*=Y#, 8*=8#. Since Y-' =qY#q, Y i s  unitary only when P*= 
qY*q, or equivalent 8= qYq. However, from (7.3) 

qYq= qYf-'S-'qYo 

g= q+oqs"-'+o#-' =q+os-'q$o#-'< 

and 

Since S and YO are independent of each other, we see that g= qYq only when Go = Y'O#-', 
or equivalently only when GO Yo# = 1. Since det Yo = To, $oYo" = 0 implies ITo[ = 1 ,  which 
occurs only when SO = 1 because we assume that So does not have bound states. QED 

In order to apply a Marchenko-like method on (7,1), we need the Fourier transform of 
9- d. Hence we need Y(k, x) -Q E Lz(k) for each x. For this we need the following 
lemmas. 

Lemma 7.2. For each x, c?(k,x) defined in (7.5) is continuous in k when the matrix 
(1 /G)  (S - SO) is bounded at k =  0. 

ProoJ: From (7.3) and Yo#=S~'qYoq we obtain Y=Yf - 'S - 'S  oYo". Replacing S-' by 
(SO + A)* or equivalently by S;' + d*, we obtain Y= Q + Yo#-'&*S0Wf. Thus we have 

& = Yf-'d*soYf. (7.6) 

From (5.4) we see that Yo"-' =(l/Tf)qZ+o#Zq. Hence we obtain 

1 
& = 7 qz Yo# zq&* so Yo#. 

TO 
In terms of Fo = exp( - iZkx)Yo, the last expression becomes 

1 
& =# qI@ exp( -iZkx)Zqd*So exp( - iZkx)Ff 

TO 

= qZ@Zq exp( - iZkx) (&/To)#SO exp( - iZkx)Fo#. (7.7) 

By (5.2) Fo is nothing but J;' shifted by x; i.e., Fo(k, X ) = ( J ; ' ) ~ .  Whenever Vo(x) is in 
L2(x), it is known that J;' is continuous (Newton 1983). Since the shift in the potential 
does not change the property of being in L2(x) ,  Fo is still continuous in k for each x. Since 
both SO and S are assumed to be continuous, it is seen from (7.7) that for each x, 8 ( k ,  x) is 
continuous in k everywhere except maybe at k=O when To vanishes linearly. If TO 
vanishes linearly at k=O, then by requiring that A also vanish linearly as k+O, we can 
make &(k, x )  continuous at k =  0. QED 

Lemma 7.3. As Ikl+ CO, 8 ( k ,  x)= O(k-'), where &(k, x) is the matrix in (7.5). 

ProoJ: As JkJ + CO, we have Fo = U + O(k-'), SO = d + O(k-') and S = U + O(k-'). 
Furthermore l/To = 1 + O(k-') (Deift and Trubowitz 1979). Hence from (7.7) we see that 
8=O(k- ')  as J k \ +  CO. QED 
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From the two previous lemmas, we have the following. 

Corollary 7.1. When (l/To) (S - SO) is bounded at k =  0, &(k, x) E L2(k) for each x, and 
hence the Fourier transform in L2(k) of &(k, x) exists. 

The following two lemmas are about the properties of H(k, x). 

Lemma 7.4.  The matrix H(k,  x) defined in (7.2) is holomorphic in k E @' for each x. 

Proof. In terms of FO =exp(-i1kx)Yo and F=exp(-ilkx)"', we can write (7.2) as H =  
FC'F. It is known that F;' is holomorphic in k E C' when To(O)#O (Newton 1984) or 
when T"(k) vanishes linearly as k+O (Aktosun and Newton 1985). Since F is alsc, 
holomorphic in C', the product FC'F is holomorphic in k E 6' for each x. QED 

In order to have the Fourier transform L2(k) of H-ll, we need the following lemma 
concerning the behaviour of Fo(k, x) near k =  0. 

Lemma 7.5. Assume T(O)=O and V ( x )  EL:. If the second derivative d2T/dk2(k=o exists, 
then we have F(k, x) = F(0, x) + O(k) as k-+ 0. 

Proof. By (5.2) J;'(k) =F(k, x), where the subscript x denotes the transformed quantity 
when the potential is shifted by x. Since the property VEL:  is independent of such a shift, 
it is enough to prove that J-'(k)=J-'(O) + O(k) as k-+O. 

We have as k-+ 0 

d T  d 2 T  
d k  dk2 

T(k) = k- (0) + i k 2  - (0) + o(k2) 

because we are assuming that T(0) = 0. 
T exp( - ikx)m,, we can write (4.8) as 

Letting, as in 0 6, @[E Texp(ikx)ml and 

If VEL:, we have from Deift and Trubowitz (1979) 

for k E  C' 

and hence 
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as k-i 0 and 
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+ o(k). 

It is known that lm,,r(k, x)l <constant x ( 1  + 1x1) when V E L :  (Deift and Trubowitz 1979). 
Thus the integrals above in the expression for J-' all converge and we obtain J - ' ( k ) =  
J-'(O) + O(k) as k+O. QED 

Next we have a lemma about the continuity of H(k, x). 

Lemma 7.6. Let H(k, x) be the matrix given in (7.2). If To(0)#O, H(k, x) is continuous in 
k for each x. In case To(0)=O, by requiring that T(O)=O and that dTo/dkjk=o and 
d2To/dk21k=o exist, we can make H(k, x) to be continuous in k for each x. 

Proof. Since F;' =( l/To)qIFoIq, as given in 0 5, we have 

H=F~'F=(l /To)qI foIqF.  (7.8) 

Since Fo, F and TO are continuous, and To#O except maybe at k=O, we see from the 
above expression in (7.8) that H is continuous for kfO.  Furthermore, if H(0, x) is 
bounded, from (7.8) it is seen that H becomes continuous even at k=O. Hence we only 
need to prove the second part of the lemma for the case To(0) = 0. 

We can write (6.1) at k=O as S(O)F(O, x)=qF(O, x)q.  Since T(O)=O, S(O)= -9. 
Thus, letting 

we obtain 

(-: -:) (; :)=(: :) (; :)(: :) 
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which yields 

- P  P 
-6 6 F(O,x)= ( ). 

Similarly, we obtain 

We also have ( l / T o ) =  ( l / k )  (constant) + O( 1) as k +  0 (Deift and Trubowitz 1979). Hence 
from (7 .8) ,  we have 

1 
k 

H =  - (constant) q l  

1 
k 

= - (constant) ($0 6 - SOP) - 1 )  + O(1) 
- 1  

as k+O. 

Hence if we choose PO/& =/I/& we obtain H =  0(1) as k+ 0 for each x. The choice of the 
ratio P/6 has been shown to be equivalent to the specification of the parameter in the one- 
parameter family of potentials U(x)  (Aktosun and Newton 1985). The same remark 
applies to the choice of the ratio ,Bo/So. Hence we can make H ( k ,  x) bounded at k =  0. 
From now on, without further mentioning, we will assume that we choose Fo(O,x) and 
F(0, x) such that Po/G0 =P/& QED 

The asymptotic value of H ( k , x )  as (kl+ CO is given in the following. 

Lemma 7.7. As Ikl+ CO in c' we have H(k ,  x)= U + O(k- ' ) ,  where H ( k ,  x) is the matrix 
defined in (7 .2) .  

ProoJ As Ikl+ CO in e', we have l / T o  = 1 + O ( l / k )  (Deift and Trubowitz 1979), Fo= 
Q + O ( l / k )  and F =  1 + O ( l / k ) .  Hence from (7 .8) ,  we have, as Ikl+ CO in c', 

H = ( l  + O ( l / k ) ) q l [ Q  + O ( l / k ) ] Z q [ Q  + O ( l / k ) ]  

= Q + O( l / k ) .  QED 

From lemma 7.6 and lemma 7.7 ,  we have the following. 

Corollary 7.2. H ( k ,  x) -d  E L * ( k )  for each x if we assume the hypothesis of lemma 7.6 .  

Having obtained the properties of H ( k ,  x) and &(k,  x), we can solve (7 .1)  by a method 
similar to the Marchenko method given in 0 6. Hence we will refer to the method to be used 
as the Marchenko formalism for perturbations. 

8. Marchenko formalism for perturbations 

Using (7 .5)  we can rewrite (7 .1)  as 
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Since H - i  Q as 1kl-i CO, we can subtract the matrix Q from both sides of (8.1) to obtain 

H# - 1 = FqHq + q(H - Q)q. 

Note that we essentially repeat the steps following (6.1). The Fourier transform of the 
above equation by JFm(dk/2n) exp(iky) gives us 

((x, Y )  = Jm dk 8 ( k ,  x)qH(k, x )q  exp(iky) + qt lx ,  -As (8.2) 27T 

where we have defined 

From lemma 7.4 and lemma 7.7, we obtain ((x, y )  = 0 for y < 0. Thus (8.2) becomes 

In the case where So and S are rational functions of k, one can use (8.4) to reduce the 
solution of the inverse problems for perturbations to solving a system of linear equations, 
as one can use (6.5) for the same purpose. From (8.4) we obtain 

Defining w(x, y )  as 

dk 
w ( x , y ) =  - €(k, x) exp(iky) 1, 271 

we obtain from (8.5) 

( (x ,  Y )  = w(x,  Y )  + (w * 9 Y q )  (x, U) Y > O  
where * denotes the convolution as a function of y and where ( # ( x , y ) = ( ( x ,  -y). 
Equivalently, the above equation can be written as 

where we have used ((x, y )  = 0 for y < 0. Comparing (8.7) with (6.6), we see that (8.7) is a 
matrix Marchenko equation, and we will refer to it as the Marchenko equation for 
perturbations. 

We have already seen in 9 7 that & #  = & *. From (7.8) it is seen that H # =  H* because 
G, FO and F satisfy the same property. Hence w(x,y)  and ((x,y) are both real due to the 
argument given following (6.6). Furthermore, for each x, w(x, y )  E L 2 (  - 00 < y  < CO)  and 
((x, y )  E L2(0  < y  < CO)  because these are the Fourier transforms of functions in L2(k). 

We can write (7.8) as 
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where MO = (l/To)Fo, which is the matrix used in Faddeev's formulation of the 
Riemann-Hilbert problem given in 9 6. From (8.8) we obtain 

H -  Q = qI(iC70 - Q)Iq + ( F -  Q) + qI(iG0 -Q)Iq(F-Q). 

Taking the Fourier transform by J-",(dk/271) exp( - iky), we obtain 
,m - ?- c 

T(x, ~>=@o(x ,  Y)Zq + V ( X ,  Y )  + dz  qIBo(x, ~ - z ) l q ~ ( x ,  2) (8.9) J-, 
where ((x, y )  is defined as in (8.3) and 

Bo(x, y )  = d k  
- (Mo(k, x) - U) exp( -iky) i, 271 

The properties of Bo(x,y) and q(x,y) are given in 9 6. Hence we already know that 
BO (x, y )  = 0 when y < 0 and ~(x, y )  = 0 for y < 0. Thus (8.9) becomes, for y > 0, 

- v 
Y )  = W o ( x ,  y)Iq + V ( X ,  Y )  + J: dz  qlBo(x, y - z)Zqy(x, z) 

and hence we obtain, as y-10' 

and taking the derivative of both sides, we obtain 

d d -  d 
dx d x  d x  
- ((x, 0 + )=qI-Bo(x, 0 + ) Z q  + - V ( X ,  0 +). 

Using (6.9) and (6.13), we can write this equation as 

d + 

d x  
- ((x, 0 + ) = - &I(I/lo (x))Iq - iI / l (x)  

= - 5qZAo(x)q- 1 -  f I / l ( X )  

= &J (x) - ;I/l(x). 1 

Hence we have 

d 
d x  

/l(x)- /lO(X) = - 2 1  - ((x, 0 + ). (8.10) 

Thus we see that the perturbation of the matrix potential is related to the solution of the 
matrix Marchenko equation for perturbations in exactly the same way as the potential is 
related to the solution of the Marchenko equation in either Newton's or Faddeev's 
formulation. 

The matrix Marchenko equation for perturbations given in (8.7) is equivalent to two 
2 x 1 vector equations that are obtained by multiplying (8.7) on the right by the column 
vectors (,') and (-:) respectively: 
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The computations are similar to those given in 5 6. 

defined as 
Let a,@, z) w(x, y + z)q. Then 51,(y, z) becomes the kernel of the operator 51, 

(8.1 1) 

Thus investigating the solvability of the Marchenko equation for perturbations becomes 
equivalent to the study of the properties of the kernel 51,(y, z). First we have the following 
theorem. 

Theorem 8.1. The operator 51, defined in (8.11) becomes Hilbert-Schmidt if we assume 
that (l/To) ( S - S O )  is bounded at k=O and that a € ( k ,  x ) / a k E L 2 ( k )  for each x,  where 
&(k, x )  is as defined in (7.5). 

ProoJ As in the proof of theorem 6.1, 51, is Hilbert-Schmidt if we have & ( k , x )  and 
a & ( k , x ) / a k  in L 2 ( k )  for each x.  By corollary 7.1, € ( k , x ) E L 2 ( k )  if we assume that 
(1/7'0) ( S  - SO) is bounded at k = 0. Hence the boundedness of (l/To) ( S  - SO)  at k = 0 and 

QED the property a&(k, x)/ak E L 2 ( k )  are sufficient. 

Since Hilbert-Schmidt operators are compact and hence bounded, we have the 
following. 

Corollary 8.1. When the hypothesis of theorem 8.1 holds, the operator 51, defined in 
(8.11) is bounded and compact. 

However, in general, the operator 51, is not self-adjoint due to the fact stated in lemma 
7.1. Hence we cannot expect the eigenvalues of 51, to be real. Nevertheless, we will find a 
bound on the absolute value of the eigenvalues of 51,. For this we need the following two 
lemmas. 

Lemma 8.1. For any 2 x 1 column vector p ,  we have lp"l < ( p " * ~ ) ' / ~  and Ip l<2(p"*~) ' /~ ,  
where the absolute value denotes the matrix norm defined in (6.15). 

Proof: Let 

Then by (6.15), we have 



546 TAktosun 

Lemma 8.2. Let F(k ,  x) be the matrix defined in (7 .5)  and Fo=exp( -iZkx)Yo, where Y o  
is the matrix solution of the Schrodinger equation with the matrix potential Lo. Then we 
have 181, 181< lTo1-’ IFol - /POI . IS-Sol where the absolute value denotes the matrix 
norm defined in (6.15). 

P r o o j  From (6.1) we obtain So exp( - iZkx)Fo# = exp( - ifix)qFoq, and hence we can 
write (7.7) as 

1 
F=, qZPo#Zq exp(iZkx)d”’ exp( - iZkx)qFoq. 

TO 
(8.12) 

Hence we obtain 

where we have used (41 = 1, IZI = 1, /exp( f iZkx)I = 1. Since 

161 = 1s - $0 1 = 1s - so I 
we obtain  to^-' lFol . [POI . /S-Sol. To find a bound on 181, we take the matrix 
transpose of (8.12) to obtain 

1 

TO 
8=, q f o q  exp( - iZkx)A# exp(iZkx)qZFo#Iq. 

Thus 181 < IToI-’ IF01 1A1 IFoFOj. QED 

The two preceding lemmas give the following. 

Theorem 8.2. The eigenvalues of the operator SZ, defined in (8.1 1) are bounded in absolute 
value by maxk @lFo1 IFol ~(S--So)/T0~, where the absolute value of a matrix is as 
defined in (6.15) and Fo = exp( - iZkx)Yo, where Y o  is the physical solution to the matrix 
Schrodinger equation with the matrix potential ,lo. 

P r o o j  Let &. be an eigenvector of SZ, with the eigenvalue ,U. Then we have for y > 0, 

,u&.(Y) = Jm d z  Q ~ Y ,  z > U z > ~  

Taking the scalar product of both sides with &(y),  we obtain 

0 

JO 

where we have extended the domain of definition of &(y)  by setting <,(y) = 0 for y < 0. The 
Fourier transform of the last equation gives us 

where we have defined 
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The last equation can be written as p ( p , p ) = ( p " ,  € 4 ~ )  where (, ) is the usual scalar 
product on C2. Using the Schwarz inequality, we obtain 

lpl ( P , P )  Q ( P 5  P " ) 1 / 2 ( & P ,  &Y)1/2 = ( P ,  P ) ' /2 (P ,  48*84P) ll2* 

Thus we have 

(8.13) 

Using the matrix norm defined in (6.15), we obtain IP*q8*8spl QlPl 181 ( € 1  IPI and 
using lemma 8.1 and lemma 8.2, we have 

IP*48*84~I Q(F*P)"~(ITOI-~ P o l  - I f 0 1  * I S - S O I > ~ [ ~ ( P * P ) ~ / ~ I .  

Using this last inequality in (8.13), we obtain 

Note that in the Marchenko equation for perturbations given in (8.7), x appears only as 
a parameter. Hence we expect the eigenvalues of the operator SZ, also contain x as a 
parameter. The matrix Fo(k, x)  is continuous in k for each x and Fo(k, x)  - D = O( l/k) as 
Ikl+ 00. Thus IFol and I f o [  are both bounded in k for each x. Hence for each x, if we have 

IS-Sol 1 
max - < 

k I T ~ I  Jz max IFOI 
k 

then the eigenvalues of SZ, will be less than one in absolute value, in which case the 
Marchenko equation for perturbations given in (8.7) has a unique solution that can be 
found by iteration. 

Multiplying (8.10) by the row vector (1, 1) on the left and by the column vector ( i )  on 
the right, we obtain 

d 
d x  

V(x)-Vo(x)=-(l, l ) - - ( x , o + )  (8.14) 

Let us define the scalar A (k ,  x )  as 

A (k ,  X) E ( 1 ,  1)IE ( - k, x ) ~ H (  - k, x)q (8.15) 

where H(k,  x)  as in (7.2) and &(k, x)  as in (8.12). We can simplify (8.15) to obtain 

Using (8.14) and (8.4), we obtain 

(8.16) 

(8.17) 
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We will use (8.17) to study the stability of the Marchenko inversion in another paper 
(Aktosun 1987b). 

9. Further properties 

Using (3.6) we can find the Schrodinger equation satisfied by the matrix H(k,  x) defined in 
(7.2) as follows. Since Y = YoH, we have 

d2  
dx2 
-(YoH)+k2YoH=Yo HA. 

Using the matrix Schrodinger equation for Yo and multiplying the above equation by Y 0’ 
on the left, we obtain the equation satisfied by H(k, x) : 

dYo d H  + 2Y’a‘ -__ +&H=HA. 
d 2 H  
dx2 d x  dx 
- 

The next lemma shows that Y i 1  dYo/dx can be given explicitly. 

Lemma 9.1. Let Y be the physical solution to the matrix Schrodinger equation with the 
matrix potential 

1 1 v+u v - U  
2 v-U v+u A=-- ( 

Then we have 

ProoJ Using (5.4) and some straightforward algebra, we obtain 

[@P’; @I”’] + [@PI; @?’I [@PI; @I”’] - [@I“; @I”’] 
-[@I.“);@f“] + [@PI; @?)I - [@I.“’; @I”’] - [@/I.“; @P’l 

d 
- [ tp@r”’ + @I”’@p’] 

- [@E @I”’] - [@I.“’; @I”’] 

- [ @B’; @1”’] - [@I”’; @!“’I 

- [@I.”’@I”’ + @p’@p] 4T d 
d x  

The Wronskians [@I“; I+@)] and [@PI; @I”)] are both equal to 2ikT (Newton 1983). We 
have @i/fu)@p) + @?)@!“)=2 det Y =2T and this is independent of x. The Wronskians 
[@$“’; @1”’] and [I#’; @I”’] can be evaluated directly in the usual way to obtain 

d 
d x  
- [@I”’; @I.“’] = ( V -  U)@c/tv’@I”’ 

and 

d dx [@PI; @I”’] = ( V -  U)@p’@I”’ 
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and thus using the asymptotics of I&’, I&), @’ and I@, we have 

d 
dx  
- ([GI”); @I“’] + [lp; &’])=(V- U )  [ l p I ( / I ” ’ +  @!“’*I”’] 

= ( V -  U )  (2 det Y) 

= 2T( V -  U )  
and by integration, we obtain 

.X 

[@I”’; &‘’I + [@’; @’]=2T dt(V(t)-U(t)) iCO 
CO 

=- 2 T l  dt(V(t)-U(t)). 

Using all these results in the expression for Y-’ dY/dx, we obtain 

d Y  
d x  

Y-’ - = (b“ - pk) + iq  j:CO dt( V(t) - U(t)). QED 

From (9.2) and (9.3), we have the following. 

Corollary 9.1. SEm d x  U(x) = j -”, d x  V(x), where V(x) and U(x) are the potentials for the 
scattering matrices 

T -R  
and ISZ=( -L T )  

respectively. 
Define K(x) as follows : 

.X 

K(x)- dt(Vo(t)- Uo(t)). i, 
Then the Schrodinger equation satisfied by H(k, x) given in (9.1) can be written as 

d 2 H  d H  d H  
- + 2iZk - + Kq -+ &H= HA, 
dx2 d x  d x  

(9.4) 

(9.5) 

The partial differential equation satisfied by ((x, y )  is given in the following. 

Lemma 9.2. The matrix ((x, y),  which is defined in (8.3), satisfies 

where K(x) is the scalar defined in (9.4), and LO and ,I are the matrix potentials for the 
scattering matrices SO and S respectively. 

Proof: From (8.3) we obtain 
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Hence using (9.6) in (9.9,  we obtain 

-a d2 d d 
- + 2iIk - + K(x)q - + Ao(x) )  jr dy ((x, y )  exp(iky) - dy ((x, y )  exp(iky)A(x) ( dx2 d x  d x  0 

= L(x) - Lo(x). 

Using integration by parts, the above equation becomes 

The right side of the equation vanishes due to (8. IO). Hence the left side must also vanish, 
and by unfolding the Fourier transform we obtain the partial differential equation stated in 
the lemma. QED 

In order to show that the solution to the Marchenko equation for perturbations satisfies 
the equation given in lemma 9.2, we need to prove the following three lemmas. 

Lemma 9.3. The matrix w(x, y )  defined in (8.6) satisfies the partial differential equation 

where K(x)  is the scalar defined in (9.4) and Lo is the potential matrix of the scattering 
matrix SO. 

ProoJ From (7.6) we obtain YO€”=~SfYo .  The second derivative of this equation, 
after using the matrix Schrodinger equation for YO, gives us 

Multiplying both sides by Ycl on the left and using lemma 9.1, we have 

d & #  d € #  + 2iIk - + Kq - + A0 & # = & ’20. 
d 2 € #  
dx2 d x  d x  

Using (8.6), we can take the Fourier transform of (9.7) to obtain 

(9.7) 

m d ( dx2 d x  d x  - W  

d2 d - + 2iZk - + Kq - + A0 dy w(x,  y )  exp(iky) = dy w(x, y )  exp(iky)Lo. 
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The integration by parts gives us 

2w(x, y ,  + Ao(x)w(x, y )  
ax 

m 

= Lm dy exp(iky)w(x, ~)Ao(x> 

and by unfolding the Fourier transform, we obtain the partial differential equation stated 
in the lemma. QED 

Lemma 9.4. The matrix w(x,y) which is defined in (8.6) satisfies the first order partial 
differential equation 

2w(x,y) I +  iw(x,y)K(x)q 
2Y 

2 2 1  - - l - + $(x)q i ax ay 

where K(x) is the scalar defined in (9.4). 

ProoJ: From (7.6) we have YoB#=&SO#YO. The first derivative of this equation gives us 

dB# dYo - dYo +-&#=AS$-.  
dx y o  - d x  dx 

After multiplying both sides by ‘3’;’ on the left and using lemma 9.1, we obtain 

dQ” 
- + i lk 8’ + iKq  8” = 8’ i lk + I&# Kq. 

d x  

Taking the Fourier transform of this equation and using integration by parts, we obtain 

2 2  
a x  ay  
--I - + iK(x)q 

Unfolding the Fourier transform, we obtain the first order equation stated in the 
lemma. QED 

Lemma 9.5. Let &(y)=((x,y) where ( ( x , y )  is the matrix defined in (8.3). Then <,(y) 
satisfies 

where 
given in (8.6), a, is the operator defined in (8.1 l), and 0 is the operator defined as 

and A are the matrix potentials for SO and S respectively, w ( x , y )  is the matrix 
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ProoJ The straightforward computation gives us, after using integration by parts 

aw(x, y + z )  aw(x ,  y + z )  
- 21 + K(x)qw(x ,  y + z> 

B X  aY 
+J” dz ( 2  

-m 

+ w(x,y)4(A(x)-Ao(x))q. 

The first and second integrals above vanish by lemma 9.3 and lemma 9.4 respectively. 
Since & and A are symmetric matrices, the non-vanishing part of the above equation gives 
us the equation stated in the lemma. QED 

Using the three lemmas given above, we have the following. 

Theorem 9.1. If the matrix Marchenko equation for perturbations given in (8.7) has a 
unique solution, then this solution satisfies the partial differential equation given in lemma 
9.2. 

ProoJ Let & ( ~ ) E < ( x ,  y )  be the unique solution to the Marchenko equation for 
perturbations given in (8.7). Then the corresponding homogeneous equation has only the 
trivial solution. Let @x be the operator defined in lemma 9.5. We then only need to show 
that @x& =&A. We can write (8.7) in the operator notation as <, = w, + n,rxq, where we 
have defined wx( y )  w(x,  y) .  Thus we have 

@x r x  - & A = @Jw, + 52, r x  - r x  A 
=@xw, + ox51,r,q-&A. 

@, 51, & q = 51, @& q + w, A - w, Act. 

@x& - &A = %@x,r,q + (wx - <,>A. 

From lemma 9.3 we have @,w, = w,&. From lemma 9.5 we have 

Using these two results in (9.8), we obtain 

From the operator form of (8.7), we have w, - rx = - O,<,q. Thus (9.9) becomes 

@xxG - LA = n , ( @ x r ,  - r x 4 s .  

(9.9) 
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Hence flX& -&A satisfies the homogeneous equation corresponding to (8.7), and it must 
vanish. Therefore Ox& =&A. QED 

10. Conclusion 

In this paper we have extended the Marchenko inversion method to find the change in the 
potential which corresponds to a finite change in the scattering matrix. Starting from the 
Riemann-Hilbert problem, the Marchenko equation for perturbations is derived. The 
change in the potential is related to the solution of the Marchenko equation for 
perturbations the same way as in the regular Marchenko formulation. 
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