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Glossary

AKNSmethod A method introduced by Ablowitz, Kaup,
Newell, and Segur in 1973 that identifies the nonlinear
partial differential equation (NPDE) associated with
a given first-order system of linear ordinary differen-
tial equations (LODEs) so that the initial value prob-
lem (IVP) for that NPDE can be solved by the inverse
scattering transform (IST) method.

Direct scattering problem The problem of determining
the scattering data corresponding to a given potential
in a differential equation.

Integrability A NPDE is said to be integrable if its IVP
can be solved via an IST.

Inverse scattering problem The problem of determining
the potential that corresponds to a given set of scatter-
ing data in a differential equation.

Inverse scattering transform A method introduced in
1967 by Gardner, Greene, Kruskal, and Miura that
yields a solution to the IVP for a NPDE with the help of
the solutions to the direct and inverse scattering prob-
lems for an associated LODE.

Lax method A method introduced by Lax in 1968 that de-
termines the integrable NPDE associated with a given
LODE so that the IVP for that NPDE can be solved
with the help of an IST.

Scattering data The scattering data associated with
a LODE usually consists of a reflection coefficient
which is a function of the spectral parameter �; a finite
number of constants � j that correspond to the poles

of the transmission coefficient in the upper half com-
plex plane, and the bound-state norming constants
whose number for each bound-state pole � j is the
same as the order of that pole. It is desirable that the
potential in the LODE is uniquely determined by the
corresponding scattering data and vice versa.

Soliton The part of a solution to an integrable NPDE due
to a pole of the transmission coefficient in the upper
half complex plane. The term soliton was introduced
by Zabusky and Kruskal in 1965 to denote a solitary
wave pulse with a particle-like behavior in the solution
to the Korteweg-de Vries (KdV) equation.

Time evolution of the scattering data The evolvement
of the scattering data from its initial value S(�; 0) at
t D 0 to its value S(�; t) at a later time t:

Definition of the Subject

A general theory to solve NPDEs does not seem to exist.
However, there are certain NPDEs, usually first order in
time, for which the corresponding IVPs can be solved by
the IST method. Such NPDEs are sometimes referred to
as integrable evolution equations. Some exact solutions to
such equations may be available in terms of elementary
functions, and such solutions are important to understand
nonlinearity better and they may also be useful in testing
accuracy of numerical methods to solve such NPDEs.

Certain special solutions to some of such NPDEs ex-
hibit particle-like behaviors. A single-soliton solution is
usually a localized disturbance that retains its shape but
only changes its location in time. A multi-soliton solution
consists of several solitons that interact nonlinearly when
they are close to each other but come out of such interac-
tions unchanged in shape except for a phase shift.

Integrable NPDEs have important physical applica-
tions. For example, the KdV equation is used to de-
scribe [14,23] surface water waves in long, narrow, shal-
low canals; it also arises [23] in the description of hydro-
magnetic waves in a cold plasma, and ion-acoustic waves
in anharmonic crystals. The nonlinear Schrödinger (NLS)
equation arises in modeling [24] electromagnetic waves in
optical fibers as well as surface waves in deep waters. The
sine-Gordon equation is helpful [1] in analyzing the mag-
netic field in a Josephson junction (gap between two su-
perconductors).

Introduction

The first observation of a soliton was made in 1834 by the
Scottish engineer John Scott Russell at the Union Canal
between Edinburgh and Glasgow. Russell reported [21]
his observation to the British Association of the Advance-
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ment of Science in September 1844, but he did not seem
to be successful in convincing the scientific community.
For example, his contemporary George Airy, the influen-
tial mathematician of the time, did not believe in the exis-
tence of solitary water waves [1].

The Dutch mathematician Korteweg and his doctoral
student de Vries published [14] a paper in 1895 based
on de Vries’ Ph.D. dissertation, in which surface waves
in shallow, narrow canals were modeled by what is now
known as the KdV equation. The importance of this paper
was not understood until 1965 even though it contained
as a special solution what is now known as the one-soliton
solution.

Enrico Fermi in his summer visits to the Los Alamos
National Laboratory, together with J. Pasta and S. Ulam,
used the computer named Maniac I to computationally
analyze a one-dimensional dynamical system of 64 par-
ticles in which adjacent particles were joined by springs
where the forces also included some nonlinear terms.
Their main goal was to determine the rate of approach
to the equipartition of energy among different modes of
the system. Contrary to their expectations there was lit-
tle tendency towards the equipartition of energy but in-
stead the almost ongoing recurrence to the initial state,
which was puzzling. After Fermi died in November 1954,
Pasta and Ulam completed their last few computational
examples and finished writing a preprint [11], which was
never published as a journal article. This preprint appears
in Fermi’s Collected Papers [10] and is also available on
the internet [25].

In 1965 Zabusky and Kruskal explained [23] the
Fermi-Pasta-Ulam puzzle in terms of solitary wave solu-
tions to the KdV equation. In their numerical analysis they
observed “solitary-wave pulses”, named such pulses “soli-
tons” because of their particle-like behavior, and noted
that such pulses interact with each other nonlinearly but
come out of interactions unaffected in size or shape except
for some phase shifts. Such unusual interactions among
solitons generated a lot of excitement, but at that time no
one knew how to solve the IVP for the KdV equation, ex-
cept numerically. In 1967 Gardner, Greene, Kruskal, and
Miura presented [12] a method, now known as the IST, to
solve that IVP, assuming that the initial profile u(x; 0) de-
cays to zero sufficiently rapidly as x ! ˙1:They showed
that the integrable NPDE, i. e. the KdV equation,

ut � 6uux C uxxx D 0 ; (1)

is associated with a LODE, i. e. the 1-D Schrödinger equa-
tion

�
d2 

dx2 C u(x; t) D k2 ; (2)

and that the solution u(x, t) to (1) can be recovered from
the initial profile u(x; 0) as explained in the diagram given
in Sect. “Inverse Scattering Transform”. They also ex-
plained that soliton solutions to the KdV equation cor-
respond to a zero reflection coefficient in the associated
scattering data. Note that the subscripts x and t in (1) and
throughout denote the partial derivatives with respect to
those variables.

In 1972 Zakharov and Shabat showed [24] that the IST
method is applicable also to the IVP for the NLS equation

iut C uxx C 2ujuj2 D 0 ; (3)

where i denotes the imaginary number
p
�1. They proved

that the associated LODE is the first-order linear system
8
ˆ̂<

ˆ̂:

d�
dx
D �i�� C u(x; t) � ;

d�
dx
D i�� � u(x; t) � ;

(4)

where � is the spectral parameter and an overline denotes
complex conjugation. The system in (4) is now known as
the Zakharov–Shabat system.

Soon afterwards, again in 1972 Wadati showed in
a one-page publication [22] that the IVP for the modified
Korteweg-de Vries (mKdV) equation

ut C 6u2ux C uxxx D 0 ; (5)

can be solved with the help of the inverse scattering prob-
lem for the linear system

8
ˆ̂<

ˆ̂:

d�
dx
D �i�� C u(x; t) � ;

d�
dx
D i�� � u(x; t) � :

(6)

Next, in 1973 Ablowitz, Kaup, Newell, and Segur
showed [2,3] that the IVP for the sine-Gordon equation

ux t D sin u ;

can be solved in the same way by exploiting the inverse
scattering problem associated with the linear system
8
ˆ̂<

ˆ̂:

d�
dx
D �i�� �

1
2

ux (x; t) � ;

d�
dx
D i��C

1
2

ux (x; t) � :

Since then, many other NPDEs have been discovered to be
solvable by the IST method.
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u(x; 0)
direct scattering for LODE at tD0
��������������������! S(�; 0)

solution to NPDE
??y

??ytime evolution of scattering data

u(x; t)  ����������������������
inverse scattering for LODE at time t

S(�; t)

Inverse Scattering Transform and the Theory of Solitons, Diagram 1
Themethod of inverse scattering transform

Our review is organized as follows. In the next sec-
tion we explain the idea behind the IST. Given a LODE
known to be associated with an integrable NPDE, there
are two primary methods enabling us to determine the
corresponding NPDE. We review those two methods,
the Lax method and the AKNS method, in Sect. “The
Lax Method” and in Sect. “The AKNS Method”, respec-
tively. In Sect. “Direct Scattering” we introduce the scat-
tering data associated with a LODE containing a spec-
tral parameter and a potential, and we illustrate it for the
Schrödinger equation and for the Zakharov–Shabat sys-
tem. In Sect. “Time Evolution of the Scattering Data” we
explain the time evolution of the scattering data and in-
dicate how the scattering data sets evolve for those two
LODEs. In Sect. “Inverse Scatering Problem” we summa-
rize the Marchenko method to solve the inverse scatter-
ing problem for the Schrödinger equation and that for the
Zakharov–Shabat system, and we outline how the solu-
tions to the IVPs for the KdV equation and the NLS equa-
tion are obtained with the help of the IST. In Sect. “Soli-
tons” we present soliton solutions to the KdV and NLS
equations. A brief conclusion is provided in Sect. “Future
Directions”.

Inverse Scattering Transform

Certain NPDEs are classified as integrable in the sense that
their corresponding IVPs can be solved with the help of an
IST. The idea behind the IST method is as follows: Each in-
tegrable NPDE is associated with a LODE (or a system of
LODEs) containing a parameter � (usually known as the
spectral parameter), and the solution u(x, t) to the NPDE
appears as a coefficient (usually known as the potential)
in the corresponding LODE. In the NPDE the quantities x
and t appear as independent variables (usually known as
the spatial and temporal coordinates, respectively), and in
the LODE x is an independent variable and � and t appear
as parameters. It is usually the case that u(x, t) vanishes at
each fixed t as x becomes infinite so that a scattering sce-
nario can be created for the related LODE, in which the
potential u(x, t) can uniquely be associated with some scat-
tering data S(�; t): The problem of determining S(�; t) for
all � values from u(x, t) given for all x values is known as

the direct scattering problem for the LODE. On the other
hand, the problem of determining u(x, t) from S(�; t) is
known as the inverse scattering problem for that LODE.

The IST method for an integrable NPDE can be ex-
plained with the help of Diagram 1.

In order to solve the IVP for the NPDE, i. e. in order to
determine u(x, t) from u(x; 0); one needs to perform the
following three steps:

(i) Solve the corresponding direct scattering problem for
the associated LODE at t D 0; i. e. determine the ini-
tial scattering data S(�; 0) from the initial potential
u(x; 0):

(ii) Time evolve the scattering data from its initial value
S(�; 0) to its value S(�; t) at time t: Such an evolu-
tion is usually a simple one and is particular to each
integrable NPDE.

(iii) Solve the corresponding inverse scattering problem
for the associated LODE at fixed t; i. e. determine the
potential u(x, t) from the scattering data S(�; t):

It is amazing that the resulting u(x, t) satisfies the inte-
grable NPDE and that the limiting value of u(x, t) as t ! 0
agrees with the initial profile u(x; 0):

The LaxMethod

In 1968 Peter Lax introduced [15] a method yielding an in-
tegrable NPDE corresponding to a given LODE. The basic
idea behind the Lax method is the following. Given a lin-
ear differential operator L appearing in the spectral prob-
lem L D � ; find an operator A (the operators A and
L are said to form a Lax pair) such that:

(i) The spectral parameter� does not change in time, i. e.
�t D 0:

(ii) The quantity t�A remains a solution to the same
linear problem L D � :

(iii) The quantity Lt C LA �AL is a multiplication op-
erator, i. e. it is not a differential operator.

From condition (ii) we get

L ( t �A ) D � ( t �A ) ; (7)
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and with the help of L D � and �t D 0; from (7) we
obtain

L t � LA D � t �A (� ) D @t (� ) �AL 
D @t (L ) �AL D Lt C L t �AL ; (8)

where @t denotes the partial differential operator with re-
spect to t: After canceling the term L t on the left and
right hand sides of (8), we get

(Lt C LA �AL) D 0 ;

which, because of (iii), yields

Lt C LA �AL D 0 : (9)

Note that (9) is an evolution equation containing a first-
order time derivative, and it is the desired integrable
NPDE. The equation in (9) is often called a compatibility
condition.

Having outlined the Lax method, let us now illustrate
it to derive the KdV equation in (1) from the Schrödinger
equation in (2). For this purpose, we write the Schrödinger
equation as L D � with � :D k2 and

L :D �@2
x C u(x; t) ; (10)

where the notation :D is used to indicate a definition so
that the quantity on the left should be understood as the
quantity on the right hand side. Given the linear differen-
tial operatorL defined as in (10), let us try to determine the
associated operator A by assuming that it has the form

A D ˛3@
3
x C ˛2@

2
x C ˛1@x C ˛0 ; (11)

where the coefficients ˛ j with j D 0; 1; 2; 3 may depend
on x and t; but not on the spectral parameter �: Note that
Lt D ut : Using (10) and (11) in (9), we obtain

( )@5
x C ( )@4

x C ( )@3
x C ( )@2

x C ( )@x C ( ) D 0 ; (12)

where, because of (iii), each coefficient denoted by () must
vanish. The coefficient of @5

x vanishes automatically. Set-
ting the coefficients of @ j

x to zero for j D 4; 3; 2; 1; we ob-
tain

˛3 D c1; ˛2 D c2; ˛1 D c3 �
3
2

c1u;

˛0 D c4 �
3
4

c1ux � c2u ;

with c1; c2; c3; and c4 denoting arbitrary constants. Choos-
ing c1 D �4 and c3 D 0 in the last coefficient in (12) and
setting that coefficient to zero, we get the KdV equation

in (1). Moreover, by letting c2 D c4 D 0; we obtain the
operator A as

A D �4@3
x C 6u@x C 3ux : (13)

For the Zakharov–Shabat system in (4), we proceed in
a similar way. Let us write it asL D � ;where the linear
differential operator L is defined via

L :D i

"
1 0

0 �1

#
@x � i

"
0 u(x; t)

u(x; t) 0

#
:

Then, the operator A is obtained as

A D 2i

"
1 0

0 �1

#
@2

x�2i

"
0 u

u 0

#
@x� i

"
�juj2 ux

ux juj2

#
;

(14)

and the compatibility condition (9) gives us the NLS equa-
tion in (3).

For the first-order system (6), by writing it as L D
� ; where the linear operator L is defined by

L :D i

"
1 0

0 �1

#
@x � i

"
0 u(x; t)

u(x; t) 0

#
;

we obtain the corresponding operatorA as

A D �4

"
1 0

0 1

#
@3

x�6

"
u2 �ux

ux u2

#
@x�

"
6uux �3ux x

3ux x 6uux

#
;

and the compatibility condition (9) yields the mKdV equa-
tion in (5).

The AKNS Method

In 1973 Ablowitz, Kaup, Newell, and Segur intro-
duced [2,3] another method to determine an integrable
NPDE corresponding to a LODE. This method is now
known as the AKNS method, and the basic idea behind
it is the following. Given a linear operator X associated
with the first-order system vx D Xv; we are interested in
finding an operator T (the operators T andX are said to
form an AKNS pair) such that:

(i) The spectral parameter� does not change in time, i. e.
�t D 0:

(ii) The quantity vt � T v is also a solution to vx D Xv;
i. e. we have (vt � T v)x D X(vt � T v):

(iii) The quantity Xt � Tx C XT � TX is a (matrix)
multiplication operator, i. e. it is not a differential op-
erator.
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From condition (ii) we get

vtx � Tx v � T vx D Xvt �XT v
D (Xv)t �Xtv �XT v
D (vx )t �Xtv �XT v
D vx t �Xtv �XT v : (15)

Using vtx D vx t and replacing T vx by TXv on the left
side and equating the left and right hand sides in (15), we
obtain

(Xt � Tx CXT � TX)v D 0 ;

which in turn, because of (iii), implies

Xt � Tx CXT � TX D 0 : (16)

We can view (16) as an integrable NPDE solvable with
the help of the solutions to the direct and inverse scatter-
ing problems for the linear system vx D Xv: Like (9),
the compatibility condition (16) yields a nonlinear evo-
lution equation containing a first-order time derivative.
Note thatX contains the spectral parameter �; and hence
T also depends on � as well. This is in contrast with the
Lax method in the sense that the operatorA does not con-
tain �:

Let us illustrate the AKNS method by deriving the KdV
equation in (1) from the Schrödinger equation in (2). For
this purpose we write the Schrödinger equation, by replac-
ing the spectral parameter k2 with �; as a first-order linear
system vx D Xv; where we have defined

v :D

"
 x

 

#
; X :D

"
0 u(x; t) � �

1 0

#
:

Let us look for T in the form

T D
"
˛ ˇ


 �

#
;

where the entries ˛; ˇ; 
; and � may depend on x; t; and
�: The compatibility condition (16) yields



�˛x � ˇ C 
(u � �) ut � ˇx C �(u � �) � ˛(u � �)
�
x C ˛ � � ��x C ˇ � 
(u � �)

�

D

"
0 0

0 0

#
:

(17)

The (1; 1); (2; 1); and (2; 2)-entries in the matrix equation
in (17) imply

ˇ D �˛xC (u��)
; � D ˛�
x ; �x D �˛x : (18)

Then from the (1; 2)-entry in (17) we obtain

ut C
1
2
xxx � ux
 � 2
x (u � �) D 0 : (19)

Assuming a linear dependence of 
 on the spectral param-
eter and hence letting 
 D �� C � in (19), we get

2�x�
2 C

� 1
2�xxx � 2�x uC 2�x � ux�

�
�

C
�
ut C

1
2�xxx � 2�x u � ux�

�
D 0 :

Equating the coefficients of each power of � to zero, we
have

� D c1; � D 1
2 c1u C c2;

ut �
3
2 c1uux � c2ux C

1
4 c1uxxx D 0 ; (20)

with c1 and c2 denoting arbitrary constants. Choosing
c1 D 4 and c2 D 0; from (20) we obtain the KdV equa-
tion given in (1). Moreover, with the help of (18) we get

˛ D ux C c3 ;

ˇ D �4�2 C 2�u C 2u2 � uxx ;


 D 4�C 2u; � D c3 � ux ;

where c3 is an arbitrary constant. Choosing c3 D 0; we
find

T D
"

ux �4�2 C 2�u C 2u2 � uxx

4�C 2u �ux

#
:

As for the Zakharov–Shabat system in (4), writing it as
vx D Xv; where we have defined

X :D

"
�i� u(x; t)

�u(x; t) i�

#
;

we obtain the matrix operator T as

T D
"
�2i�2 C ijuj2 2�u C iux

�2�u C iux 2i�2 � ijuj2

#
;

and the compatibility condition (16) yields the NLS equa-
tion in (3).

As for the first-order linear system (6), by writing it as
vx D Xv; where

X :D

"
�i� u(x; t)

�u(x; t) i�

#
;

we obtain the matrix operator T as

T D



�4i�3 C 2i�u2 4�2uC 2i�ux � ux x � 2u3

�4�2uC 2i�ux C ux x C 2u3 4i�3 � 2i�u2

�
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and the compatibility condition (16) yields the mKdV
equation in (5).

As for the first-order system vx D Xv; where

X :D

2

664
�i� �

1
2

ux (x; t)

1
2

ux (x; t) i�

3

775 ;

we obtain the matrix operator T as

T D i
4�

"
cos u sin u

sin u � cos u

#
:

Then, the compatibility condition (16) gives us the sine-
Gordon equation

ux t D sin u :

Direct Scattering Problem

The direct scattering problem consists of determining the
scattering data when the potential is known. This prob-
lem is usually solved by obtaining certain specific solu-
tions, known as the Jost solutions, to the relevant LODE.
The appropriate scattering data can be constructed with
the help of spatial asymptotics of the Jost solutions at in-
finity or from certain Wronskian relations among the Jost
solutions. In this section we review the scattering data cor-
responding to the Schrödinger equation in (2) and to the
Zakharov–Shabat system in (4). The scattering data sets
for other LODEs can similarly be obtained.

Consider (2) at fixed t by assuming that the poten-
tial u(x, t) belongs to the Faddeev class, i. e. u(x, t) is
real valued and

R1
�1 dx (1 C jxj) ju(x; t)j is finite. The

Schrödinger equation has two types of solutions; namely,
scattering solutions and bound-state solutions. The scat-
tering solutions are those that consist of linear combina-
tions of eikx and e�ikx as x ! ˙1; and they occur for
k 2 R n f0g; i. e. for real nonzero values of k: Two linearly
independent scattering solutions fl and fr; known as the
Jost solution from the left and from the right, respectively,
are those solutions to (2) satisfying the respective asymp-
totic conditions

fl(k; x; t) D ei kx C o(1) ;

f 0l (k; x; t) D ikei kx C o(1) ; x !C1 ; (21)

fr(k; x; t) D e�i kx C o(1) ;

f 0r (k; x; t) D �ike�i kx C o(1) ; x ! �1 ;

where the notation o(1) indicates the quantities that van-
ish. Writing their remaining spatial asymptotics in the

form

fl(k; x; t) D
ei kx

T(k; t)
C

L(k; t) e�i kx

T(k; t)
C o(1) ;

x ! �1 ; (22)

fr(k; x; t) D
e�i kx

T(k; t)
C

R(k; t) ei kx

T(k; t)
C o(1) ;

x ! C1 ;

we obtain the scattering coefficients; namely, the transmis-
sion coefficient T and the reflection coefficients L and R;
from the left and right, respectively.

LetCC denote the upper half complex plane. A bound-
state solution to (2) is a solution that belongs to L2(R) in
the x variable. Note that L2(R) denotes the set of complex-
valued functions whose absolute squares are integrable on
the real line R: When u(x, t) is in the Faddeev class, it
is known [5,7,8,9,16,17,18,19] that the number of bound
states is finite, the multiplicity of each bound state is one,
and the bound-state solutions can occur only at certain
k-values on the imaginary axis in CC: Let us use N to
denote the number of bound states, and suppose that the
bound states occur at k D i� j with the ordering 0 < �1 <

� � � < �N : Each bound state corresponds to a pole of T
in CC: Any bound-state solution at k D i� j is a con-
stant multiple of fl(i� j; x; t): The left and right bound-
state norming constants cl j(t) and cr j(t); respectively, can
be defined as

cl j(t) :D

Z 1

�1

dx fl(i� j; x; t)2
��1/2

;

cr j(t) :D

Z 1

�1

dx fr(i� j; x; t)2
��1/2

;

and they are related to each other through the residues of
T via

Res (T; i� j) D i cl j(t)2 
 j(t) D i
cr j(t)2


 j(t)
; (23)

where the 
 j(t) are the dependency constants defined as


 j(t) :D
fl(i� j; x; t)
fr(i� j; x; t)

: (24)

The sign of 
 j(t) is the same as that of (�1)N� j; and hence
cr j(t) D (�1)N� j
 j(t) cl j(t) :

The scattering matrix associated with (2) consists of
the transmission coefficient T and the two reflection co-
efficients R and L; and it can be constructed from f� jg

N
jD1

and one of the reflection coefficients. For example, if we
start with the right reflection coefficient R(k, t) for k 2 R;
we get
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T(k; t) D

0

@
NY

jD1

k C i� j

k � i� j

1

A

� exp
�

1
2� i

Z 1

�1

ds
log(1 � jR(s; t)j2)

s � k � i0C

�
;

k 2 CC [ R ;

where the quantity i0+ indicates that the value for k 2 R
must be obtained as a limit from CC: Then, the left reflec-
tion coefficient L(k, t) can be constructed via

L(k; t) D �
R(k; t) T(k; t)

T(k; t)
; k 2 R :

We will see in the next section that T(k; t) D T(k; 0);
jR(k; t)j D jR(k; 0)j, and jL(k; t)j D jL(k; 0)j.

For a detailed study of the direct scattering problem for
the 1-D Schrödinger equation, we refer the reader to [5,7,
8,9,16,17,18,19]. It is important to remember that u(x, t)
for x 2 R at each fixed t is uniquely determined [5,7,8,9,
16,17,18] by the scattering data fR; f� jg; fcl j(t)gg or one of
its equivalents. Letting c j(t) :D cl j(t)2; we will work with
one such data set, namely fR; f� jg; fc j(t)gg, in Sect. “Time
Evolution of the Scattering Data” and Sect. “Inverse Scat-
tering Problem”.

Having described the scattering data associated with
the Schrödinger equation, let us briefly describe the scat-
tering data associated with the Zakharov–Shabat system
in (4). Assuming that u(x, t) for each t is integrable in x on
R; the two Jost solutions  (�; x; t) and �(�; x; t); from
the left and from the right, respectively, are those unique
solutions to (4) satisfying the respective asymptotic condi-
tions

 (�; x; t) D

"
0

ei�x

#
C o(1); x !C1 ;

�(�; x; t) D



e�i�x

0

�
C o(1) ; x ! �1 :

(25)

The transmission coefficient T; the left reflection coeffi-
cient L; and the right reflection coefficient R are obtained
via the asymptotics

 (�; x; t) D

2
6664

L(�; t) e�i�x

T(�; t)

ei�x

T(�; t)

3
7775C o(1) ; x ! �1 ;

�(�; x; t) D

2
6664

e�i�x

T(�; t)

R(�; t) ei�x

T(�; t)

3
7775C o(1) ; x !C1 :

(26)

The bound-state solutions to (4) occur at those � values
corresponding to the poles of T in CC: Let us use f� jg

N
jD1

to denote the set of such poles. It should be noted that
such poles are not necessarily located on the positive imag-
inary axis. Furthermore, unlike the Schrödinger equation,
the multiplicities of such poles may be greater than one.
Let us assume that the pole � j has multiplicity n j : Corre-
sponding to the pole � j; one associates [4,20] nj bound-
state norming constants c js (t) for s D 0; 1; : : : ; n j �1:We
assume that, for each fixed t; the potential u(x, t) in the
Zakharov–Shabat system is uniquely determined by the
scattering data fR; f� jg; fc js (t)gg and vice versa.

Time Evolution of the ScatteringData

As the initial profile u(x; 0) evolves to u(x, t) while satis-
fying the NPDE, the corresponding initial scattering data
S(�; 0) evolves to S(�; t): Since the scattering data can be
obtained from the Jost solutions to the associated LODE,
in order to determine the time evolution of the scatter-
ing data, we can analyze the time evolution of the Jost
solutions with the help of the Lax method or the AKNS
method.

Let us illustrate how to determine the time evolution
of the scattering data in the Schrödinger equation with the
help of the Lax method. As indicated in Sect. “The Lax
Method”, the spectral parameter k and hence also the val-
ues � j related to the bound states remain unchanged in
time. Let us obtain the time evolution of fl(k; x; t); the Jost
solution from the left. From condition (ii) in Sect. “The
Lax Method”, we see that the quantity @t fl �A fl remains
a solution to (2) and hence we can write it as a linear com-
bination of the two linearly independent Jost solutions fl
and fr as

@t fl(k; x; t)�
�
�4@3

x C 6u@x C 3ux
�

fl(k; x; t)
D p(k; t) fl(k; x; t)C q(k; t) fr(k; x; t) ;

(27)

where the coefficients p(k, t) and q(k, t) are yet to be de-
termined and A is the operator in (13). For each fixed t;
assuming u(x; t) D o(1) and ux (x; t) D o(1) as x !C1
and using (21) and (22) in (27) as x !C1; we get

@tei kx C 4@3
x ei kx D p(k; t) ei kx

C q(k; t)



1
T(k; t)

e�i kx C
R(k; t)
T(k; t)

ei kx
�
C o(1) :

(28)

Comparing the coefficients of eikx and e�ikx on the two
sides of (28), we obtain

q(k; t) D 0 ; p(k; t) D �4ik3 :
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Thus, fl(k; x; t) evolves in time by obeying the linear third-
order PDE

@t fl �A fl D �4ik3 fl : (29)

Proceeding in a similar manner, we find that fr(k; x; t)
evolves in time according to

@t fr �A fr D 4ik3 fr : (30)

Notice that the time evolution of each Jost solution is fairly
complicated. We will see, however, that the time evolution
of the scattering data is very simple. Letting x ! �1 in
(29), using (22) and u(x; t) D o(1) and ux (x; t) D o(1) as
x ! �1; and comparing the coefficients of eikx and e�ikx

on both sides, we obtain

@t T(k; t) D 0 ; @t L(k; t) D �8ik3L(k; t);

yielding

T(k; t) D T(k; 0) ; L(k; t) D L(k; 0) e�8i k3 t :

In a similar way, from (30) as x !C1; we get

R(k; t) D R(k; 0) e8i k3 t : (31)

Thus, the transmission coefficient remains unchanged and
only the phases of the reflection coefficients change as time
progresses.

Let us also evaluate the time evolution of the depen-
dency constants 
 j(t) defined in (24). Evaluating (29) at
k D i� j and replacing fl(i� j; x; t) by 
 j(t) fr(i� j; x; t); we
get

fr(i� j; x; t) @t
 j(t)C 
 j(t) @t fr(i� j; x; t)

� 
 j(t)A fr(i� j; x; t) D �4�3
j 
 j(t) fr(i� j; x; t) : (32)

On the other hand, evaluating (30) at k D i� j; we obtain


 j(t) @t fr(i� j; x; t) � 
 j(t)A fr(i� j; x; t)

D 4�3
j 
 j(t) fr(i� j; x; t) : (33)

Comparing (32) and (33) we see that @t
 j(t) D �8�3
j 
 j(t);

or equivalently


 j(t) D 
 j(0) e�8�3
j t
: (34)

Then, with the help of (23) and (34), we determine the time
evolutions of the norming constants as

cl j(t) D cl j(0) e4�3
j t
; cr j(t) D cr j(0) e�4�3

j t
:

The norming constants cj(t) appearing in the Marchenko
kernel (38) are related to cl j(t) as c j(t) :D cl j(t)2; and
hence their time evolution is described as

c j(t) D c j(0) e8�3
j t
: (35)

As for the NLS equation and other integrable NPDEs, the
time evolution of the related scattering data sets can be
obtained in a similar way. For the former, in terms of
the operator A in (14), the Jost solutions  (�; x; t) and
�(�; x; t) appearing in (25) evolve according to the respec-
tive linear PDEs

 t �A D �2i�2 ; �t �A� D 2i�2� :

The scattering coefficients appearing in (26) evolve ac-
cording to

T(�; t) D T(�; 0) ;

R(�; t) D R(�; 0) e4i�2 t ;

L(�; t) D L(�; 0) e�4i�2 t :

(36)

Associated with the bound-state pole � j of T; we have
the bound-state norming constants c js (t) appearing in the
Marchenko kernel˝(y; t) given in (41). Their time evolu-
tion is governed [4] by

�
c j(n j�1)(t) c j(n j�2)(t) : : : c j0(t)

	

D
�
c j(n j�1)(0) c j(n j�2)(0) : : : c j0(0)

	
e�4i A2

j t
;

(37)

where the n j � n j matrix Aj appearing in the exponent is
defined as

A j :D

2

66666664

�i� j �1 0 : : : 0 0
0 �i� j �1 : : : 0 0
0 0 �i� j : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : �i� j �1
0 0 0 : : : 0 �i� j

3

77777775

:

Inverse Scattering Problem

In Sect. “Direct Scattering Problem” we have seen how
the initial scattering data S(�; 0) can be constructed from
the initial profile u(x; 0) of the potential by solving the
direct scattering problem for the relevant LODE. Then,
in Sect. “Time Evolution of the Scattering Data” we have
seen how to obtain the time-evolved scattering data S(�; t)
from the initial scattering data S(�; 0): As the final step
in the IST, in this section we outline how to obtain
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u(x, t) from S(�; t) by solving the relevant inverse scat-
tering problem. Such an inverse scattering problem may
be solved by the Marchenko method [5,7,8,9,16,17,18,
19]. Unfortunately, in the literature many researchers re-
fer to this method as the Gel’fand–Levitan method or
the Gel’fand–Levitan–Marchenko method, both of which
are misnomers. The Gel’fand–Levitan method [5,7,16,17,
19] is a different method to solve the inverse scattering
problem, and the corresponding Gel’fand–Levitan inte-
gral equation involves an integration on the finite inter-
val (0; x) and its kernel is related to the Fourier transform
of the spectral measure associated with the LODE. On the
other hand, the Marchenko integral equation involves an
integration on the semi-infinite interval (x;C1); and its
kernel is related to the Fourier transform of the scattering
data.

In this section we first outline the recovery of the so-
lution u(x, t) to the KdV equation from the correspond-
ing time-evolved scattering data fR; f� jg; fc j(t)gg appear-
ing in (31) and (35). Later, we will also outline the recovery
of the solution u(x, t) to the NLS equation from the cor-
responding time-evolved scattering data fR; f� jg; fc js (t)gg
appearing in (36) and (37).

The solution u(x, t) to the KdV equation in (1) can be
obtained from the time-evolved scattering data by using
the Marchenko method as follows:

(a) From the scattering data fR(k; t); f� jg; fc j(t)gg ap-
pearing in (31) and (35), form the Marchenko kernel
˝ defined via

˝(y; t) :D
1

2�

Z 1

�1

dk R(k; t) ei k yC

NX

jD1

c j(t) e�� j y :

(38)

(b) Solve the corresponding Marchenko integral equation

K(x; y; t)C˝(x C y; t)

C

Z 1

x
dz K(x; z; t)˝(z C y; t) D 0 ;

x < y < C1 ; (39)

and obtain its solution K(x; y; t):
(c) Recover u(x, t) by using

u(x; t) D �2
@K(x; x; t)

@x
: (40)

The solution u(x, t) to the NLS equation in (3) can be
obtained from the time-evolved scattering data by using
the Marchenko method as follows:

(i) From the scattering data fR(�; t); f� jg; fc js (t)gg ap-
pearing in (36) and (37), form the Marchenko kernel

˝ as

˝(y; t) :D
1

2�

Z 1

�1

d� R(�; t) ei�y

C

NX

jD1

n j�1X

sD0

c js (t)
ys

s!
ei� j y : (41)

(ii) Solve the Marchenko integral equation

K(x; y; t) �˝(x C y; t)C
Z 1

x
dz

�

Z 1

x
ds K(x; s; t)˝(s C z; t)˝(z C y; t) D 0 ;

x < y < C1 ;

and obtain its solution K(x; y; t):
(iii) Recover u(x, t) from the solution K(x; y; t) to the

Marchenko equation via

u(x; t) D �2K(x; x; t) :

(iv) Having determined K(x; y; t); one can alternatively
get ju(x; t)j2 from

ju(x; t)j2 D 2
@G(x; x; t)

@x
;

where we have defined

G(x; y; t) :D �
Z 1

x
dz K(x; z; t)˝(z C y; t) :

Solitons

A soliton solution to an integrable NPDE is a solution
u(x, t) for which the reflection coefficient in the corre-
sponding scattering data is zero. In other words, a soli-
ton solution u(x, t) to an integrable NPDE is nothing but
a reflectionless potential in the associated LODE. When
the reflection coefficient is zero, the kernel of the relevant
Marchenko integral equation becomes separable. An inte-
gral equation with a separable kernel can be solved explic-
itly by transforming that linear equation into a system of
linear algebraic equations. In that case, we get exact solu-
tions to the integrable NPDE, which are known as soliton
solutions.

For the KdV equation the N-soliton solution is ob-
tained by using R(k; t) D 0 in (38). In that case, letting

X(x) :D
�
e��1 x e��2 x : : : e��N x	 ;

Y(y; t) :D

2
6664

c1(t) e��1 y

c2(t) e��2 y

:::

cN (t) e��N y

3
7775 ;
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we get˝(x C y; t) D X(x) Y(y; t). As a result of this sep-
arability the Marchenko integral equation can be solved
algebraically and the solution has the form K(x; y; t) D
H(x; t) Y(y; t), where H(x, t) is a row vector with N en-
tries that are functions of x and t. A substitution in (39)
yields

K(x; y; t) D �X(x)� (x; t)�1Y(y; t); (42)

where the N � N matrix � (x; t) is given by

� (x; t) :D I C
Z 1

x
dz Y(z; t) X(z); (43)

with I denoting the or N�N identity matrix. Equivalently,
the (j, l)-entry of � is given by

� j l D ı j l C
c j(0) e�2� j xC8�3

j t

� j C �l
;

with ı j l denoting the Kronecker delta. Using (42) in (40)
we obtain

u(x; t) D 2
@

@x
�
X(x)� (x; t)�1Y(x; t)

	

D 2 tr
@

@x
�
Y(x; t) X(x)� (x; t)�1	 ;

where tr denotes the matrix trace (the sum of diago-
nal entries in a square matrix). From (43) we see that
�Y(x; t) X(x) is equal to the x-derivative of � (x; t) and
hence the N-soliton solution can also be written as

u(x; t) D �2 tr
@

@x



@� (x; t)
@x

� (x; t)�1
�

D �2
@

@x

"
@
@x det� (x; t)

det� (x; t)

#
; (44)

where det denotes the matrix determinant. When N D 1;
we can express the one-soliton solution u(x, t) to the KdV
equation in the equivalent form

u(x; t) D �2 �2
1 sech2 ��1x � 4�3

1 t C 	
�
;

with 	 :D log
p

2�1/c1(0) :
Let us mention that, using matrix exponentials, we can

express [6] the N-soliton solution appearing in (44) in var-
ious other equivalent forms such as

u(x; t) D �4Ce�AxC8A3 t� (x; t)�1A� (x; t)�1e�Ax B ;

where

A :D diagf�1; �2; : : : ; �Ng ;

B� :D
�
1 1 : : : 1

	
;

C :D
�
c1(0) c2(0) : : : cN (0)

	
:

(45)

Note that a dagger is used for the matrix adjoint (trans-
pose and complex conjugate), and B has N entries. In this
notation we can express (43) as

� (x; t) D I C
Z 1

x
dz e�zABCe�zAe8tA3

:

As for the NLS equation, the well-known N-soliton
solution (with simple bound-state poles) is obtained by
choosing R(�; t) D 0 and n j D 1 in (41). Proceeding as in
the KdV case, we obtain the N-soliton solution in terms of
the triplet A; B;C with

A :D diagf�i�1;�i�2; : : : ;�i�Ng; (46)

where the complex constants � j are the distinct poles of
the transmission coefficient in CC; B and C are as in (45)
except for the fact that the constants c j(0) are now allowed
to be nonzero complex numbers. In terms of the matrices
P(x; t);M; and Q defined as

P(x; t) :D

diagfe2i�1xC4i�2
1 t ; e2i�2 xC4i�2

2 t ; : : : ; e2i�N xC4i�2
N tg;

M jl :D
i

� j � �l
; Q jl :D

�ic j cl

� j � �l
:

we construct the N-soliton solution u(x, t) to the NLS
equation as

u(x; t) D �2B�[IC P(x; t)�QP(x; t) M]�1P(x; t)�C� ;
(47)

or equivalently as

u(x; t) D �2B�e�A�x� (x; t)�1e�A�xC4i(A�)2 t C� ; (48)

where we have defined

� (x; t) :D I C

Z 1

x
ds (Ce�As�4i A2 t)�(Ce�As�4i A2 t)

�

�


Z 1

x
dz (e�Az B)(e�Az B)�

�
: (49)

Using (45) and (46) in (49), we get the (j, l)-entry of� (x; t)
as

� j l D ı j l �

NX

mD1

c j cl ei(2�m�� j��l )xC4i(�2
m��

2
j )t

(�m � � j)(�m � �l )
:

Note that the absolute square of u(x, t) is given by

ju(x; t)j2 D tr


@

@x

�
� (x; t)�1 @� (x; t)

@x

��

D
@

@x

"
@
@x det� (x; t)

det� (x; t)

#
:
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For the NLS equation, when N D 1; from (47) or (48) we
obtain the single-soliton solution

u(x; t) D
�8c1(Im[�1])2 e�2i�1 x�4i(�1)2 t

4(Im[�1])2 C jc1j2 e�4x(Im[�1])�8t(Im[�2
1])
;

where Im denotes the imaginary part.

Future Directions

There are many issues related to the IST and solitons that
cannot be discussed in such a short review. We will briefly
mention only a few.

Can we characterize integrable NPDEs? In other
words, can we find a set of necessary and sufficient con-
ditions that guarantee that an IVP for a NPDE is solvable
via an IST? Integrable NPDEs seem to have some common
characteristic features [1] such as possessing Lax pairs,
AKNS pairs, soliton solutions, infinite number of con-
served quantities, a Hamiltonian formalism, the Painlevé
property, and the Bäcklund transformation. Yet, there
does not seem to be a satisfactory solution to their char-
acterization problem.

Another interesting question is the determination of
the LODE associated with an IST. In other words, given
an integrable NPDE, can we determine the corresponding
LODE? There does not yet seem to be a completely satis-
factory answer to this question.

When the initial scattering coefficients are rational
functions of the spectral parameter, representing the time-
evolved scattering data in terms of matrix exponentials re-
sults in the separability of the kernel of the Marchenko in-
tegral equation. In that case, one obtains explicit formu-
las [4,6] for exact solutions to some integrable NPDEs and
such solutions are constructed in terms of a triplet of con-
stant matrices A; B;C whose sizes are p�p; p�1; and 1�p;
respectively, for any positive integer p: Some special cases
of such solutions have been mentioned in Sect. “Solitons”,
and it would be interesting to determine if such exact so-
lutions can be constructed also when p becomes infinite.
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