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1. INTRODUCTION

The fundamental inverse problem for vowel articulation is concerned [1-5] with the

determination of the geometry of the human vocal tract from some data. In this paper, we

consider various types of frequency-domain scattering data acquired at the lips resulting

from a unit-amplitude, monochromatic, sinusoidal volume velocity sent from the glottis,

and we analyze whether each data set uniquely determines the shape of the vocal tract, or

else, what additional information may be used for the unique recovery.

Let us use x to denote the distance from the glottis and l for the length of the vocal

tract. Hence, the lips are located at a distance l from the glottis. Typically, l varies

between 14 cm and 20 cm, usually smaller for children than for adults and smaller for

females than for males [1,2,5]. Even though the vocal tract is not a right cylinder, to a

good approximation it can be treated as one [3,4].

We will let A(x) denote the cross sectional area as a function of the distance from

the glottis, and we suppose that A(x) is positive on (0, l). Assuming that the propagation

is lossless and planar (these assumptions are known [3,4] to be reasonable), the acoustics

in the vocal tract is governed [1-5] by the first-order linear system of partial differential

equations {
A(x) px(x, t) + µ vt(x, t) = 0,

A(x) pt(x, t) + c2µ vx(x, t) = 0,
(1.1)

where t is the time variable, the subscripts x and t denote the respective partial derivatives,

µ is the air density, c is the speed of sound, v(x, t) is the volume velocity of the air flow,

and p(x, t) is the pressure at location x and at time t.

The pressure is the force per unit cross sectional area and is exerted by the moving

air molecules. The volume velocity is equal to the product of the cross sectional area

with the average velocity of the air molecules crossing that area. The air density at

room temperature is µ = 1.2 × 10−3 gm/cm3. The speed of sound varies slightly with

temperature, and c = 3.43 × 104 cm/sec in air at room temperature. In our analysis of

the inverse problem, we assume that the values of µ and c are already known. There is no
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loss of generality to start the time at t = 0.

By using vxt = vtx, we can eliminate v in (1.1) and obtain Webster’s horn equation

1
A(x)

[A(x) px(x, t)]x − 1
c2

ptt(x, t) = 0, x ∈ (0, l), t > 0.

Letting

Φ(x, t) :=
√

A(x) p(x, t), (1.2)

we find that Φ satisfies the plasma-wave equation

Φxx(x, t)− 1
c2

Φtt(x, t) = Q(x)Φ(x, t), x ∈ (0, l), t > 0, (1.3)

where we have defined

Q(x) :=
[
√

A(x)]′′√
A(x)

, (1.4)

with the prime denoting the x-derivative. The quantity Q is called the relative concavity

of the vocal tract or the potential. Separating the variables as

Φ(x, t) := ψ(k, x) eickt, (1.5)

we find that ψ(k, x) satisfies the Schrödinger equation

ψ′′(k, x) + k2ψ(k, x) = Q(x)ψ(k, x), x ∈ (0, l). (1.6)

The frequency ν is measured in Hertz and related to k as ν =
ck

2π
. Informally, we can

refer to k as the frequency even though the proper term for k is the angular wavenumber.

In order to recover A, we will consider various types of data for k ∈ R+ resulting

from the glottal volume velocity v(0, t) given in (4.1). As our data sets we consider the

absolute value of the impedance at the lips, the absolute value of the pressure at the lips,

the absolute value of the transfer function from the glottis to the lips, and the absolute

value of a Green’s function for (1.3) measured at the lips.

The inverse problem of recovery of A can be analyzed either as an inverse spectral

problem or as an inverse scattering problem. In the inverse-spectral formulation, in ad-

dition to a boundary condition at the glottis such as (2.1), a boundary condition is also
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imposed at the lips. The imposition of the boundary conditions at both ends of the vocal

tract results in standing waves that are related to an infinite sequence of discrete frequen-

cies. It was established by Borg [6] that Q can be recovered by using two such infinite

sequences of discrete frequencies corresponding to two sets of boundary conditions. It

then follows [3,4,7-11] that A can be recovered from two infinite sequences. For example,

such sequences can be chosen as the zeros and poles [7,8] of the input impedance or the

poles and residues [9] of the input impedance, where the input impedance is defined as

p(0, t)/v(0, t).

In the inverse-scattering formulation, a boundary condition is imposed at only one

end of the vocal tract—either at the glottis or at the lips. Then, the measurement of the

acoustic data used in the recovery of A is performed at the same end or at the opposite

end. If the boundary condition and the measurement occur at the same end of the vocal

tract, the corresponding inverse problem is usually known as a reflection problem. On the

other hand, if the boundary condition and the measurement occur at different ends, then

we have a transmission problem. The methods based on the inverse scattering formulation

may be applied either in the time domain or in the frequency domain, where the data set is

a function of t in the former case and of k in the latter. We refer the reader to [3,4,12-15]

for some approaches as time-domain reflection problems and to [16] for an approach as

a time-domain transmission problem. Our approach in this paper is a frequency-domain

approach with the data coming from a transmission problem.

Our paper is organized as follows. In Section 2 we review some preliminary material

related to the Schrödinger equation by introducing the selfadjoint boundary condition

involving cot α given in (2.1) and presenting the Jost solution f, the Jost function Fα, and

the scattering coefficients T, L, and R. In Section 3 we briefly review the recovery of Q,

cot α, Fα, f, T, L, and R from the data {|Fα(k)| : k ∈ R+}. In Section 4 we obtain some

explicit expressions for the pressure and the volume velocity in the vocal tract in terms

of A, f, and Fα; we also show in (4.8) that cot α appearing in (2.1) is directly related

to the physical parameters A(0) and A′(0). In Section 5 we introduce the relative area
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[η(x)]2 and express it in terms of the Jost solution, cot α, and the scattering coefficients.

In Sections 6-9 we examine the recovery of Q, η, and A from various data sets acquired

at the lips. The data set used in Section 6 is the absolute value of the impedance at the

lips. In Section 7 it is the absolute value of the pressure measured at the lips. In Section 8

the data set includes the absolute value of the transfer function from the glottis to the

lips. In Section 9 it is the absolute value of an analog of the Green’s function at the lips

introduced in [17] for (1.3). Finally, in Section 10 we present some examples to illustrate

the theoretical results presented in the earlier sections.

2. PRELIMINARIES

In this section we review the scattering data related to the potential Q appearing

in the Schrödinger equation on the half line R+ with the selfadjoint boundary condition

[18-21]

sin α · ϕ′(k, 0) + cos α · ϕ(k, 0) = 0, (2.1)

where α is a number in the interval (0, π) identifying the boundary condition at x = 0. We

can relate the half-line Schrödinger equation to (1.6) by assuming that Q(x) ≡ 0 for x > l.

Note that the mapping α 7→ cot α is one-to-one and from (0, π) onto R.

The Jost solution f to the half-line Schrödinger equation [18-23] is uniquely determined

by the asymptotic conditions

f(k, x) = eikx[1 + o(1)], f ′(k, x) = ik eikx[1 + o(1)], x → +∞.

Since Q vanishes when x > l, we have

f(k, l) = eikl, f ′(k, l) = ik eikl. (2.2)

The Jost function Fα associated with the half-line Schrödinger equation with the

boundary condition (2.1) is defined [18-21] as

Fα(k) := −i[f ′(k, 0) + cot α · f(k, 0)]. (2.3)
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Let us emphasize that the subscript in Fα identifies the boundary condition at x = 0 and

it does not indicate any partial derivative. It is known [18-21] that

Fα(−k) = −Fα(k)∗, k ∈ R, (2.4)

where the asterisk denotes complex conjugation.

We assume that Q is real valued and integrable on (0, l) and that there are no bound

states for the half-line Schrödinger equation with the boundary condition (2.1). The ab-

sence of bound states for the corresponding problem is equivalent [18-21] to assuming that

Fα(k) has no zeros on I+, where I+ := i(0, +∞) is the positive imaginary axis in the

complex plane. It is known [19-21] that either Fα(0) 6= 0 or Fα(k) has a simple zero at

k = 0; the former is known as the generic case and the latter as the exceptional case. The

exceptional case corresponds to the threshold where the number of bound states can be

changed by one under a small perturbation of the potential.

By using the extension Q(x) ≡ 0 for x < 0, we can relate f(k, 0) and f ′(k, 0) to

the scattering coefficients associated with the full-line Schrödinger equation. We have

[19,20,22,24]

f(k, 0) =
1 + L(k)

T (k)
, f ′(k, 0) = ik

1− L(k)
T (k)

, (2.5)

where T and L denote the transmission coefficient and the left reflection coefficient, re-

spectively, associated with Q. The right reflection coefficient R is given by

R(k) = −L(−k)T (k)
T (−k)

.

It is known [19,20,22,24] that

T (−k) = T (k)∗, R(−k) = R(k)∗, L(−k) = L(k)∗, k ∈ R. (2.6)

The absence of bound states for the full-line Schrödinger equation is equivalent [19,20,22,24]

for T (k) not to have any poles on I+; when Q(x) ≡ 0 for x < 0, this is also equivalent [25]

for f ′(k, 0) not to have any zeros on I+.
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3. RECOVERY OF Q FROM |Fα|

In the absence of bound states, the fundamental inverse scattering problem for the

half-line Schrödinger equation with the selfadjoint boundary condition (2.1) consists of

determining Q and cot α from various types of scattering data. Recall that the absence of

bound states in this case is equivalent for Fα(k) to be nonzero when k ∈ I+. In this section

we review the solution to this inverse problem when the data set is {|Fα(k)| : k ∈ R+}.

Theorem 3.1 Assume that Q is real valued, measurable, and integrable for x ∈ (0, l), van-

ishes for x > l, and that the corresponding half-line Schrödinger equation with the boundary

condition (2.1) has no bound states. Then, the data set {|Fα(k)| : k ∈ R+} uniquely de-

termines Q(x) for x ∈ (0, l) and cot α. The same data set also uniquely determines the

corresponding Jost solution f(k, x) and the scattering coefficients T (k), R(k), and L(k).

Below we outline some steps involved in the solution to the inverse problem stated

in Theorem 3.1. As seen from (2.4), |Fα(k)| is an even function of k ∈ R, and hence the

data sets {|Fα(k)| : k ∈ R+} and {|Fα(k)| : k ∈ R} are equivalent. By using the data

{|Fα(k)| : k ∈ R} as input in the Gel’fand-Levitan method [18-21], we can form the kernel

function

Gα(x, y) :=
1
π

∫ ∞

−∞
dk

[
k2

|Fα(k)|2 − 1
]

(cos kx) (cos ky) ,

and then solve the Gel’fand-Levitan integral equation

hα(x, y) + Gα(x, y) +
∫ x

0

dz Gα(y, z)hα(x, z) = 0, 0 ≤ y < x < l. (3.1)

The solution to (3.1) is known [18-20] to exist and to be unique. Once hα(x, y) is obtained,

we recover the potential as

Q(x) = 2
d

dx
hα(x, x−), x ∈ (0, l),

where x− indicates that the limit from the left must be used in the evaluation. We also

recover the boundary condition as

cot α = −hα(0, 0).
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Alternatively, we can proceed [21] as follows. Let

Λα(k) :=
k f(k, 0)
Fα(k)

− 1, k ∈ C+, (3.2)

where we use C+ for the upper half complex plane and C+ for C+ ∪R. The real part of

Λα(k) is given by

Re[Λα(k)] =
k2

|Fα(k)|2 − 1, k ∈ R. (3.3)

From the data {|Fα(k)| : k ∈ R} we first construct the function Λα(k) via the Schwarz

integral formula as

Λα(k) =
1
πi

∫ ∞

−∞

ds

s− k − i0+

[
s2

|Fα(s)|2 − 1
]

, k ∈ C+, (3.4)

where the quantity i0+ indicates that the values for real k should be obtained as a limit

from C+. Next, Fα(k) is obtained from |Fα(k)| by using

Fα(k) = k exp
(−1

πi

∫ ∞

−∞
ds

log |s/Fα(s)|
s− k − i0+

)
, k ∈ C+. (3.5)

Then, we have

f(k, 0) =
1
k

Fα(k) [1 + Λα(k)], k ∈ C+, (3.6)

f ′(k, 0) = i Fα(k)
[
1 +

1 + Λα(k)
k

lim
k→∞

[k Λα(k)]
]

, k ∈ C+, (3.7)

cot α = −i lim
k→∞

[k Λα(k)] , (3.8)

where the limit in (3.8) can be evaluated in any manner in C+. Having both f(k, 0) and

f ′(k, 0) in hand, we can construct all the quantities that are relevant in the scattering

theory for the Schrödinger equation. For example, the scattering coefficients for the cor-

responding full-line Schrödinger equation can be obtained as

T (k) =
2ik

ik f(k, 0) + f ′(k, 0)
, L(k) =

ik f(k, 0)− f ′(k, 0)
ik f(k, 0) + f ′(k, 0)

, (3.9)

R(k) =
−ik f(−k, 0)− f ′(−k, 0)

ik f(k, 0) + f ′(k, 0)
. (3.10)
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Having obtained such quantities, we can construct the potential by using any one of the

various inversion methods available [19,20,22,24]. For example, we can use the Faddeev-

Marchenko method [19,20,22,24] and get

Q(x) = −2
d

dx
K(x, x+), x ∈ R,

where K(x, y) is obtained by solving the (left) Faddeev-Marchenko integral equation

K(x, y) + R̂(x + y) +
∫ ∞

x

dz R̂(y + z)K(x, z) = 0, −∞ < x < y, (3.11)

with the kernel

R̂(y) :=
1
2π

∫ ∞

−∞
dk R(k) eiky.

The Jost solution f(k, x) can directly be obtained from K(x, y) as

f(k, x) = eikx +
∫ ∞

x

dy K(x, y) eiky. (3.12)

Let us remark that, in order to obtain {Λα(k) : k ∈ R} from {|Fα(k)| : k ∈ R},
instead of using (3.4) we can equivalently construct the real and imaginary parts of Λα(k)

via (3.3) and

Im[Λα(k)] = − 1
π

CPV
∫ ∞

−∞

ds

s− k

[
s2

|Fα(s)|2 − 1
]

, k ∈ R,

where CPV indicates that the integral must be evaluated as a Cauchy principal-value

integral. Consequently, cot α can be recovered [cf. (3.8)] by using

cot α = lim
k→+∞

(k Im[Λα(k)]) .

4. PRESSURE AND VOLUME VELOCITY

When the vocal-tract area function A is known, via (1.4) we can evaluate the potential

Q, solve the corresponding Schrödinger equation, and obtain the Jost solution f(k, x). In
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this section, with the help f(k, x), we express the pressure p(x, t) and volume velocity

v(x, t) in the vocal tract corresponding to the input glottal volume velocity

v(0, t) = eickt, t > 0. (4.1)

It is known [19,20,22] that f(k, ·) and f(−k, ·) are linearly independent for each k ∈
C+ \ {0}. Hence, the general solution to (1.6) can be written as a linear combination of

f(k, ·) and f(−k, ·). From (1.2), (1.5), and (1.6), we see that the pressure has the form

p(x, t) = P (k, x) eickt, (4.2)

with

P (k, x) =
1√
A(x)

[a(k) f(−k, x) + b(k) f(k, x)] , (4.3)

where a(k) and b(k) are coefficients to be determined. When x > l, the pressure p(x, t)

should be a wave traveling outward from the lips and should not contain the part propor-

tional to eik(ct+x) traveling into the mouth. Thus, with the help of (2.2) we see that we

must have b(k) ≡ 0 in (4.3). Hence, (4.3) is reduced to

P (k, x) =
1√
A(x)

a(k) f(−k, x), x ∈ (0, l). (4.4)

Next, we need to determine the value of a(k) in terms of some quantities relevant to

the acoustics in vocal tract. From (4.1), (4.2), and the first line of (1.1), for the x-derivative

of the pressure at the glottis we get

P ′(k, 0) = − icµk

A(0)
. (4.5)

Note that from (4.4) through differentiation we obtain

P ′(k, 0) =
1√
A(0)

a(k)
[
f ′(−k, 0)− A′(0)

2 A(0)
f(−k, 0)

]
, (4.6)

where we have used
[
√

A(x)]′√
A(x)

=
A′(x)
2 A(x)

. (4.7)
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A comparison of (4.6)-(4.7) with (2.3) shows that, by choosing

cot α = − A′(0)
2 A(0)

= − [
√

A(x)]′
∣∣
x=0√

A(0)
, (4.8)

we can write (4.6) as

P ′(k, 0) =
i√

A(0)
a(k) Fα(−k). (4.9)

Comparing (4.5) and (4.9) we get

a(k) = − cµk√
A(0)Fα(−k)

,

and hence we can write (4.4) in the equivalent form

P (k, x) = − cµk f(−k, x)√
A(x)

√
A(0) Fα(−k)

, x ∈ (0, l), (4.10)

and obtain p(x, t) by using (4.10) in (4.2).

Having determined the pressure p(x, t) in the vocal tract, from the first line of (1.1),

we get

vt(x, t) =
ck A(x) eickt

√
A(0) Fα(−k)

d

dx

[
f(−k, x)√

A(x)

]
, x ∈ (0, l), t > 0, (4.11)

and, finally, with the help of (4.1) and (4.11), we obtain the volume velocity as

v(x, t) = − i
√

A(x) eickt

√
A(0) Fα(−k)

[
f ′(−k, x)− A′(x)

2 A(x)
f(−k, x)

]
, x ∈ (0, l), t > 0. (4.12)

5. AREA AND RELATIVE AREA

In this section we relate the vocal-tract area function A(x) to various particular solu-

tions of the Schrödinger equation.

Let us view (1.4) as the zero-energy Schrödinger equation, and consider the initial-

value problem

y′′ = Q(x) y, x ∈ (0, l), (5.1)

with the initial conditions

y(0) =
√

A(0), y′(0) = −
√

A(0) cotα, (5.2)
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where cot α is the quantity in (4.8). It is easy to verify that
√

A is the unique solution to

the system (5.1)-(5.2). Let y1(x) and y2(x) be any two linearly independent solutions to

(5.1) on the interval (0, l). Then, the solution to the initial-value problem (5.1)-(5.2) can

be written with the help of a determinant as

y(x) =

√
A(0)

[y1(x); y2(x)]

∣∣∣∣∣∣∣

0 y1(x) y2(x)

−1 y1(0) y2(0)

cot α y′1(0) y′2(0)

∣∣∣∣∣∣∣
, (5.3)

where [F ;G] := FG′ − F ′G denotes the Wronskian. Define

η(x) :=

√
A(x)√
A(0)

. (5.4)

We see that η satisfies (5.1) with the initial conditions

η(0) = 1, η′(0) = − cot α, (5.5)

and it is closely related to the regular solution ϕα(k, x) to the half-line Schrödinger equation

satisfying the initial conditions

ϕα(k, 0) = 1, ϕ′α(k, 0) = − cot α. (5.6)

In fact, we have

η(x) = ϕα(0, x), x ∈ [0, l]. (5.7)

We can write (5.4) in the equivalent form

A(x) = A(0) [η(x)]2, x ∈ (0, l). (5.8)

We will refer to [η(x)]2 as the relative area of the vocal tract.

Recall that the Wronskian of any two solutions to the Schrödinger equation is in-

dependent of x, and [y1(x); y2(x)] 6= 0 if and only if y1 and y2 are linearly independent

on (0, l). For example, we can choose y1 and y2 as the zero-energy Jost solutions gl(0, x)

and gr(0, x), respectively, to the full-line Schrödinger equation where the potential agrees
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with Q(x) on the interval (0, l), is zero when x < 0, and is some chosen real-valued,

measurable, integrable function with a finite first moment when x > l. Let τ(k), `(k),

and ρ(k) be the corresponding transmission coefficient, the left reflection coefficient, and

the right reflection coefficient, respectively. Generically, we have τ(0) = 0 or equiva-

lently [gl(0, x); gr(0, x)] 6= 0. In the exceptional case, we have τ(0) 6= 0 or equivalently

[gl(0, x); gr(0, x)] = 0.

In the generic case, using [19,20,22,24]

[gr(k, x); gl(k, x)] =
2ik

τ(k)
, (5.9)

gr(k, x) =
gl(−k, x) + ρ(k) gl(k, x)

τ(k)
,

gr(0, 0) = 1, g′r(0, 0) = 0,

with the help of (5.3) and (5.4) we obtain

η(x) =

∣∣∣∣∣∣∣∣∣

0 − i

2
τ̇(0) gl(0, x) i ġl(0, x)− i

2
ρ̇(0) gl(0, x)

1 gl(0, 0) 1

− cot α g′l(0, 0) 0

∣∣∣∣∣∣∣∣∣
, x ∈ [0, l], (5.10)

where the overdot denotes the k-derivative.

In the exceptional case, we can choose

y1(x) = gl(0, x), y2(x) = gl(0, x)
∫ x

0

dz

[gl(0, z)]2
.

In this case, we have

y1(0) =
1 + `(0)

τ(0)
, y′1(0) = 0, y2(0) = 0, y′2(0) =

1
y1(0)

=
τ(0)

1 + `(0)
,

with y1(0) 6= 0 because [19,20,22,24] we have −1 < `(0) < 1 and τ(0) > 0. Hence, with the

help of (5.3) and (5.4) we get

η(x) = gl(0, x)

∣∣∣∣∣∣∣∣∣∣∣

0 1
∫ x

0

dz

[gl(0, z)]2

−1 gl(0, 0) 0

cot α 0
1

gl(0, 0)

∣∣∣∣∣∣∣∣∣∣∣

, x ∈ [0, l]. (5.11)
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Theorem 5.1 The relative area [η(x)]2 for x ∈ (0, l) is uniquely determined by the data

{|Fα(k)| : k ∈ R+}. Equivalently, η(x) for x ∈ (0, l) is uniquely determined from {Q(x) :

x ∈ (0, l), cot α}, where cot α is the constant in (4.8).

PROOF: From Theorem 3.1 we know that {|Fα(k)| : k ∈ R+} uniquely determines the

potential Q(x) for x ∈ (0, l) and the constant cot α. From (5.5)-(5.7) we see that η(x) is

uniquely determined by the regular solution ϕα(k, x), which in turn is uniquely determined

by {Q(x) : x ∈ (0, l), cot α}.

It is possible to construct η(x) from {|Fα(k)| : k ∈ R+} as follows. With the help

of (3.4)-(3.12), we can construct the corresponding right reflection coefficient R(k), the

transmission coefficient T (k), and the Jost solution f(k, x). Hence, in the generic case

every term appearing on the right hand side of (5.10) can be constructed from {|Fα(k)| :
k ∈ R+}, and we get

η(x) =

∣∣∣∣∣∣∣∣∣

0 − i

2
Ṫ (0) f(0, x) i ḟ(0, x)− i

2
Ṙ(0) f(0, x)

1 f(0, 0) 1

− cot α f ′(0, 0) 0

∣∣∣∣∣∣∣∣∣
, x ∈ [0, l].

In the exceptional case, from (5.11) we get

η(x) = f(0, x)

∣∣∣∣∣∣∣∣∣∣∣

0 1
∫ x

0

dz

[f(0, z)]2

−1 f(0, 0) 0

cot α 0
1

f(0, 0)

∣∣∣∣∣∣∣∣∣∣∣

, x ∈ [0, l].

Note that we can write the Jost solution f(k, x) as a linear combination of gl(k, x)

and gl(−k, x), where gl(k, x) is the quantity appearing in (5.9). With the help of (2.2) we

obtain

f(k, x) =
eikl

2ik

∣∣∣∣∣∣∣

0 gl(k, x) gl(−k, x)

1 gl(k, l) gl(−k, l)

ik g′l(k, l) g′l(−k, l)

∣∣∣∣∣∣∣
, x ∈ [0, l]. (5.12)

We can also express Fα(k) with the help of gl(k, x). To do so, we can obtain f(k, 0) and

f ′(k, 0) from (5.12) and use (2.3) to get Fα(k). Alternatively, by using [cf. (2.5)]

gl(k, 0) =
1 + `(k)

τ(k)
, g′l(k, 0) = ik

1− `(k)
τ(k)

,

14



we can write Fα(k) with the help of the transmission and left reflection coefficients asso-

ciated with gl(k, x).

6. RECOVERY FROM THE IMPEDANCE AT THE LIPS

The impedance at the lips is defined as

Z(k, l) :=
p(l, t)
v(l, t)

, (6.1)

where p(l, t) and v(l, t) are the pressure and the volume velocity at the lips. From (4.2)

and (4.12) we see that Z(k, l) does not depend on t, which justifies our notation for Z

not containing t as one of the arguments. In this section we analyze whether or not

{|Z(k, l)| : k ∈ R+} determines the vocal-tract area A(x) for x ∈ (0, l).

Using (4.2), (4.10), and (4.12) in (6.1), we get

Z(k, l) =
2icµk

2ik A(l) + A′(l)
. (6.2)

Thus, we can only hope to get A(l) and A′(l) from Z(k, l). We can refer to Z(k, l) also as

the output impedance by visualizing the input occurring at the glottis and the output at

the lips.

Note that from (6.2) we get

|Z(k, l)|2 =
4c2µ2k2

4k2[A(l)]2 + [A′(l)]2
, k ∈ R. (6.3)

By using (6.2) at two distinct real k values, say k1 and k2, we can recover A(l) and A′(l)

by solving a linear algebraic system and get

A(l) =
cµ

k1 − k2

[
k1

Z(k1, l)
− k2

Z(k2, l)

]
,

A′(l) =
2icµk1k2

k1 − k2

[
1

Z(k2, l)
− 1

Z(k1, l)

]
.

On the other hand, if we only know |Z(k1, l)| and |Z(k2, l)| without knowing their phases,

then from (6.3) we get A(l) and |A′(l)| as

A(l) =

√
c2µ2

k2
1 − k2

2

[
k2
1

|Z(k1, l)|2 −
k2
2

|Z(k2, l)|2
]
, (6.4)

15



[A′(l)]2 =
4c2µ2k2

1k
2
2

k2
1 − k2

2

[
1

|Z(k2, l)|2 −
1

|Z(k1, l)|2
]

. (6.5)

As seen from (6.3), {|Z(k, l)| : k ∈ R+} by itself contains no other information related to

Q, η, or A.

7. RECOVERY FROM THE PRESSURE AT THE LIPS

Let us consider the recovery of A(x) for x ∈ (0, l) from the absolute value of the

pressure at the lips resulting from the glottal volume velocity in (4.1). From (4.2) we see

that our data set is equivalent to {|P (k, l)| : k ∈ R+}. With the help of (2.4)-(2.6) and

(4.10), we notice that |P (k, l)| is an even function of k ∈ R, and hence we have our data

actually available for k ∈ R. In this section we show that this data set uniquely determines

each of Q(x), η(x), and A(x) for x ∈ (0, l), and we outline an explicit procedure to recover

these quantities.

Theorem 7.1 The data set {|P (k, l)| : k ∈ R+} uniquely determines each of Q(x), η(x),

and A(x) for x ∈ (0, l).

PROOF: From (2.2), (2.4), and (4.10) we get

|P (k, l)| = cµ |k|√
A(l)

√
A(0) |Fα(k)| , k ∈ R. (7.1)

It is known (cf. (3.9) of [21]) that for any fixed α ∈ (0, π) we have

Fα(k) = k + O(1), k →∞ in C+. (7.2)

Using (7.2) in (7.1), we obtain

√
A(0) A(l) =

cµ

lim
k→+∞

|P (k, l)| , (7.3)

and hence

|Fα(k)| = |k|
|P (k, l)|

(
lim

k→+∞
|P (k, l)|

)
, k ∈ R. (7.4)

As seen from (7.4) and the evenness of |P (k, l)| in k ∈ R, by measuring the absolute value

of the pressure at the lips for k ∈ R+, we get |Fα(k)| for k ∈ R. Then, by proceeding as

16



in Section 3, we can recover Q(x) for x ∈ (0, l) and the constant cot α appearing in (4.8).

Next, by proceeding as in Section 5, we determine η(x) for x ∈ (0, l). Note that
√

A(0) A(l)

is uniquely determined from our data set via (7.3). Furthermore, as seen from (5.4), we

have η(l) =
√

A(l)/A(0). Thus, we obtain

A(0) =
1

η(l)
cµ

lim
k→+∞

|P (k, l)| .

Hence, having A(0) and η(x) for x ∈ (0, l) in hand, we get the area function uniquely via

(5.8).

8. RECOVERY FROM THE TRANSFER FUNCTION

The transfer function T(k, l) from the glottis to the lips is defined as

T(k, l) :=
v(l, t)
v(0, t)

, (8.1)

where we recall that v(x, t) is the volume velocity in the vocal tract. In this section we

show that the data set {|T(k, l)| : k ∈ R+} by itself does not uniquely determine any

of Q(x), η(x), or A(x), and we show how additional data may be used for the unique

determination.

From (4.1), (4.12), and (8.1), we have

T(k, l) =

√
A(l) e−ikl

√
A(0) Fα(−k)

[
−k +

i

2
A′(l)
A(l)

]
, k ∈ C+. (8.2)

Hence, using (2.4) we get

|T(k, l)|2 =
A(l)

A(0) |Fα(k)|2
[
k2 +

[A′(l)]2

4[A(l)]2

]
, k ∈ R. (8.3)

With the help of (2.4) and (8.3) we see that |T(k, l)| is an even function of k ∈ R, and

hence the data sets {|T(k, l)| : k ∈ R+} and {|T(k, l)| : k ∈ R} are equivalent.

Theorem 8.1 The data set {|T(k, l)| : k ∈ R+, A(l), |A′(l)|} uniquely determines each of

Q(x), η(x), and A(x) for x ∈ (0, l).

17



PROOF: Using (7.2) in (8.2) we obtain

|T(k, l)| =
√

A(l)√
A(0)

[1 + O(1/k)] , k → +∞,

and as a result we can recover A(0) as

A(0) =
A(l)

lim
k→+∞

|T(k, l)|2 . (8.4)

Thus, from (8.2) and (8.4), with the help of (2.4), we have

|Fα(k)|2 =
lim

k→+∞
|T(k, l)|2

|T(k, l)|2
[
k2 +

1
4

[A′(l)]2

[A(l)]2

]
, k ∈ R. (8.5)

Since |T(k, l)| is even in k ∈ R, from (8.5) we see that our data set uniquely determines

|Fα(k)| for k ∈ R, and hence, as indicated in Theorem 3.1, Q(x) is uniquely determined

for x ∈ (0, l). Next, from Theorem 5.1 it follows that η(x) is also uniquely determined for

x ∈ (0, l). Finally, from (8.4) we see that A(0) is also determined by our data set, and thus

we recover A(x) for x ∈ (0, l) uniquely by using (5.8).

Note that we assume that A(l) and |A′(l)| do not change with k, and hence they are

constants. As indicated in Section 6 they can be obtained via (6.4) and (6.5) by measuring

the absolute value of the impedance at the lips at two different frequencies.

Theorem 8.2 The data set {|T(k, l)| : k ∈ R+, |A′(l)|/A(l)} uniquely determines each of

Q(x) and η(x) for x ∈ (0, l), and it determines A(x) for x ∈ (0, l) up to a multiplicative

constant.

PROOF: From (8.4) and the evenness of |T(k, l)| in k ∈ R, we see that |Fα(k)| for k ∈ R

is uniquely determined by our data set. Hence Q(x) and η(x) are uniquely determined

for x ∈ (0, l) with the help of Theorem 3.1 and Theorem 5.1, respectively. Furthermore,

from (3.5), (8.2), and (8.3) we see that if we multiply each of A(0), A(l), and |A′(l)| by the

same constant, we do not change |T(k, l)| for k ∈ R. Thus, our data set corresponds to

the one-parameter family for A(x), where the parameter A(0) appears as a multiplicative

parameter in (5.8).
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With the help of (8.5) and Theorem 8.2 we have the following conclusions.

Corollary 8.3 Corresponding to the data set {|T(k, l)| : k ∈ R+, A(l)}, in general there

exists a one-parameter family for each of Q(x), η(x), and A(x), where |A′(l)| can be chosen

as the parameter.

Corollary 8.4 Corresponding to the data set {|T(k, l)| : k ∈ R+}, in general there exists

a two-parameter family for each of Q(x), η(x), and A(x), where A(l) and |A′(l)| can be

chosen as the parameters.

9. RECOVERY FROM THE GREEN’S FUNCTION AT THE LIPS

In this section we show that the absolute value of a Green’s function for (1.3) at the

lips measured for k ∈ R+ enables us to uniquely construct each of Q(x), η(x), and A(x)

for x ∈ (0, l).

The Green’s function at the lips can be defined [17] as the solution Φ(l, t) given in

(1.2) when the glottal volume velocity is as in (4.1). Thus, from (1.2), (4.2), and (4.10),

we get the Green’s function at the lips as

G(k, l; t) =
−cµk eik(ct−l)

√
A(0) Fα(−k)

.

Hence, with the help of (2.4) we obtain

|G(k, l; t)| = cµ |k|√
A(0) |Fα(k)| , k ∈ R. (9.1)

Note that the expression in (9.1) is closely related to that in (7.1). The two data sets differ

from each other by the yet unknown multiplicative factor
√

A(l).

Theorem 9.1 The data set {|G(k, l; t)| : k ∈ R+} uniquely determines each of Q(x),

η(x), and A(x) for x ∈ (0, l).

PROOF: From (2.4) and (9.1) it follows that |G(k, l; t)| is independent of t and is an even

function of k on R, and hence our data can be extended from k ∈ R+ to k ∈ R. Using
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(7.2) in (9.1) we get
√

A(0) =
cµ

lim
k→+∞

|G(k, l; t)| , (9.2)

and hence
|k|

|Fα(k)| =
|G(k, l; t)|

lim
k→+∞

|G(k, l; t)| , k ∈ R.

Thus, we get |Fα(k)| for k ∈ R when |G(k, l; t)| is available for k ∈ R+. Then, as in

Section 3 we construct Q(x) for x ∈ (0, l) and cot α. Next, as in Section 5, we construct

η(x) for x ∈ (0, l). Finally, with the help of (5.8) and (9.2) we obtain

A(x) =
c2µ2 [η(x)]2(

lim
k→+∞

|G(k, l; t)|
)2 .

Thus, the proof is complete.

10. EXAMPLES

In this section we illustrate the theoretical results presented in the previous sections

with some examples.

Let us use l = 17.5 cm, c = 3.43×104 cm/sec, µ = 1.2×10−3 gm/cm3, A(0) = 5 cm2,

A′(0) = −0.52 cm, and

Q(x) =
80(7 + 3

√
5) e2

√
5x

[
(7 + 3

√
5) e2

√
5x − 2

]2 .

When Q is viewed as a potential of the full-line Schrödinger equation with support on R+,

the corresponding scattering coefficients τ(k), ρ(k), `(k) and the left Jost solution gl(k, x)

introduced in Section 5 are rational functions of k, and it can be verified that

gl(k, x) = eikx

[
1 +

i

k + i
√

5
4
√

5
(7 + 3

√
5) e2

√
5x − 2

]
, x ≥ 0,

τ(k) =
k(k + i

√
5)

(k + i)(k + 2i)
, `(k) =

2
(k + i)(k + 2i)

,

ρ(k) =
−2(k + i

√
5)

(k + i)(k + 2i)(k − i
√

5)
.
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All the quantities related to (1.1), (1.3), and (1.6) can now be explicitly evaluated. For

example, the left Jost solution gl(k, x) for x ≤ 0 for the full-line Schrödinger equation can

be obtained as

gl(k, x) =
eikx

τ(k)
+

`(k) e−ikx

τ(k)
, x ≤ 0.

Via (4.8) we get cotα = 0.052, η(x) can be obtained via (5.10), A(x) via (5.8), f(k, x)

via (5.12), Fα(k) via (2.3), the scattering coefficients T (k), R(k), and L(k) via (3.9) and

(3.10), P (k, x) via (4.10), p(x, t) via (4.2) and (4.10), v(x, t) via (4.12), |P (k, l)| via (7.1),

|Z(k, l)| via (6.3), |T(k, l)| via (8.3), |G(k, l; t)| via (9.1), Λα(k) via (3.2). Having obtained

A(x), we also compute A(l) = 11.596 cm2 and A′(l) = 0.681 cm. Even though all these

quantities can be explicitly written in terms of elementary functions in closed forms, the

corresponding expressions are too long to display here, and instead we only show some of

their graphs. In Figs. 10.3-10.6, notice that the asymptotics as k → +∞ are all constants

that can be read from the corresponding graphs.
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Fig. 10.1 Q(x). Fig. 10.2 A(x). Fig. 10.3 |P (k, l)|.
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Fig. 10.4 |Z(k, l)|. Fig. 10.5 |T(k, l)|. Fig. 10.6 |G(k, l; t)|.

As far as the inverse problem is concerned, it is known from Section 6 that the graph

in Fig. 10.4 cannot determine either of the graphs of Figs. 10.1 and 10.2. We know from
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Section 7 that the graph in Fig 10.3 uniquely determines the graphs of Figs. 10.1 and 10.2.

From Section 9 we know that the graph in Fig 10.6 also uniquely determines the graphs of

Figs. 10.1 and 10.2. We know from Section 8 that the information contained in the graph

of Fig. 10.5 is not sufficient to determine uniquely either of the graphs in Figs. 10.1 and

10.2; however, the graphs in Figs. 10.4 and 10.5 together uniquely determine the graphs

of Figs. 10.1 and 10.2.
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