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SUMMARY

The one-dimensional Schr;odinger equation is considered when the potential is real valued, integrable,
has a (nite (rst moment, and contains no bound states. From either of the two re@ection coeAcients
of such a potential the right and left re@ection coeAcients are extracted corresponding to the left and
right halves of the potential, respectively, and such half-line potentials are readily constructed from the
extracted re@ection coeAcients. A computational procedure is described for such extractions and the
construction of the two halves of the potential, and some applications are considered such as a numerical
solution of the initial value problem for the Korteweg–de Vries equation. The theory is illustrated with
some explicit examples. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Consider the one-dimensional Schr;odinger equation

 ′′(k; x) + k2 (k; x)=V (x) (k; x); x∈R (1)

where the prime denotes the derivative with respect to the spatial coordinate x, and the
potential V is real valued and belongs to L11(R), with L11(J ) denoting the measurable potentials
on an interval J such that

∫
J dx(1 + |x|)|V (x)| is (nite.

The Jost solutions fl and fr , from the left and right, respectively, are the solutions of (1)
satisfying the boundary conditions

fl(k; x) = eikx[1 + o(1)]; f′
l (k; x)= ikeikx[1 + o(1)]; x→ +∞

fr(k; x) = e−ikx[1 + o(1)]; f′
r (k; x)=−ike−ikx[1 + o(1)]; x→−∞
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348 T. AKTOSUN AND P. E. SACKS

The transmission coeAcient T and the re@ection coeAcients from the left L and from the
right R are related to the asymptotics of the Jost solutions as

fl(k; x) =
1

T (k)
eikx +

L(k)
T (k)

e−ikx + o(1); x→−∞

fr(k; x) =
1

T (k)
e−ikx +

R(k)
T (k)

eikx + o(1); x→ +∞

A bound state of (1) is a solution belonging to L2(R), and it can occur only when k is on
the positive imaginary axis in C+, the upper-half complex plane. We assume that no bound
states exist; this is guaranteed, for example, if V (x)¿0. Under these circumstances it is well
known [1–4] that the potential V is uniquely determined by either re@ection coeAcient R
or L.
Our major interest in this paper is the numerical computation of the potential from one

of the re@ection coeAcients. In principle, this can always be done by using the Faddeev–
Marchenko theory via

V (x)=−2dBl(x; 0+)
dx

=2
dBr(x; 0+)

dx

where Bl and Br are, respectively, the unique solutions of the Marchenko integral equations

Bl(x; y) + R̂(2x + y) +
∫ ∞

0
dz R̂(2x + y + z)Bl(x; z) = 0; y¿0 (2)

Br(x; y) + L̂(−2x + y) +
∫ ∞

0
dz L̂(−2x + y + z)Br(x; z) = 0; y¿0 (3)

with

R̂(y) :=
1
2�

∫ ∞

−∞
dk R(k)eiky; L̂(y) :=

1
2�

∫ ∞

−∞
dk L(k)eiky (4)

This approach is not so convenient from a computational point of view because it involves
solving a Fredholm-type integral equation on the semi-in(nite interval R+ for each value of the
parameter x. Furthermore, the linear system obtained when either of the Marchenko equations
is discretized in a straightforward way has no obvious property such as band structure to
reduce the operation count. If we represent the unknown function Bl or Br on a grid with N
points in each of the x and y directions, then the operation count for the recovery of V in
this way is O(N 4).
On the other hand if the potential V is supported in a half line, then computing solutions

of the Marchenko equations becomes much easier. If, for example, V vanishes for x¿x0,
then it can be shown that R̂(y)=0 for y¿2x0 and in the integral term in (2) the upper
limit +∞ is replaced by 2(x0 − x) − y. Similarly, if V (x)=0 for x¡x0, then L̂(y)=0 for
y¿−2x0 and the upper limit +∞ in the integral term of (3) becomes 2(x−x0)−y. An even
more signi(cant advantage in this situation is that time-domain layer-stripping methods can be
used to recover the potential. These techniques do not make any direct use of the Marchenko
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integral equations but instead obtain V directly from R̂ or L̂ in O(N 2) operations, making
use [5–7] of the hyperbolic partial diPerential equation satis(ed by Bl or Br . Other fast
computational techniques well suited to deal with half-line potentials have been developed in
References [8–10].
We are thus motivated to ask the question whether there is any way to develop a compu-

tational method for inverse scattering on the whole line which is of comparable speed to the
above-mentioned methods which are available when the potential is supported in a half line.
One possible approach, which is the subject of this paper, is to somehow obtain from either
of the re@ection coeAcients of the full-line potential the right and left re@ection coeAcients
for the left and right halves of the potential, respectively. In Section 2 we describe an explicit
method that involves solving the Marchenko equation (2) or (3) for one x value, say x=0,
and in Section 3 we describe a computational algorithm based on that method. The operation
count is thus O(N 3) for this one solution of (2) or (3) and then O(N 2) to compute the left
and right halves of V . Thus, the net result is the reduction of the computational cost from
O(N 4) to O(N 3). Section 3 also contains two numerical examples, including an application
of the method to the solution of the initial-value problem for the Korteweg–de Vries equation
by the inverse scattering transform. Finally, in Section 4 we brie@y discuss the state of aPairs
when bound states are present.

2. EXTRACTION OF HALF-LINE REFLECTION COEFFICIENTS

Let us de(ne

V1(x) :=
{
V (x); x¡0;
0; x¿0; V2(x) :=

{
0; x¡0
V (x); x¿0

Thus V (x)=V1(x) + V2(x), and V1 and V2 are supported in R− and R+, respectively. We use
R1; L1, and T1, to denote the re@ection coeAcient from the right, the re@ection coeAcient
from the left, and the transmission coeAcient for V1. Similarly, by replacing the subscript 1
by 2, we denote the corresponding quantities for V2.
For de(niteness we assume that the given scattering data is the right re@ection coeAcient

R(k). We will show that we can then uniquely determine the two half-line re@ection coeA-
cients R1 and L2, from which we may subsequently obtain V1 and V2, respectively. The method
to recover R1 and L2 is quite explicit; essentially, it is necessary to solve the Marchenko equa-
tion (2) or (3) for one x value, namely x=0 since the potential has been split at x=0. In
a completely parallel way, or by making the change of variables x �→ − x, we may obtain L1

and R2 when our scattering data consists of L instead of R.
De(ne the linear integral operator L on L1(R+) as

Lh(y) := h(y) +
∫ ∞

0
dz R̂(y + z)h(z); y¿0

and set

h(y) := Bl(0; y); g(y) :=
9Bl(0; y)
9x

H (k) :=
∫ ∞

0
dy h(y)eiky; G(k) :=

∫ ∞

0
dy g(y)eiky
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D(k) := 2ik[1 +H (k)] +G(k)

�(y) := 2R̂′(y) + 2
∫ ∞

0
dz R̂′(y + z)h(z); y¿0

In the next theorem we indicate how to extract L2 and R1 from R. We use an asterisk to
denote complex conjugation.

Theorem 1. Let R be the re@ection coeAcient from the right corresponding to a real-valued
potential with no bound states belonging to L11(R). Then we have

L2(k)= − G(k)
D(k)

; R1(k)= − G(k)∗ + R(k)D(k)
D(k)∗ + R(k)G(k)

(5)

in which G and D are de(ned in terms of h and g as above, and where h and g are uniquely
determined from

h= −L−1R̂; g= −L−1� (6)

with R̂ given in (4) and � given above.

Proof. Let fl;2 denote the Jost solution from the left for V2 and fr;1 the Jost solution from
the right for V1. Since V1 =V for x¡0 and V2 =V for x¿0, we have

fr;1(k; x) =fr(k; x); f′
r;1(k; x)=f′

r (k; x); x60 (7)

fl;2(k; x) =fl(k; x); f′
l;2(k; x)=f′

l (k; x); x¿0 (8)

Also, V1 = 0 for x¿0 implies that

fr;1(k; x)=
1

T1(k)
e−ikx +

R1(k)
T1(k)

eikx; x¿0

and in particular

fr;1(k; 0)=
1 + R1(k)

T1(k)
; f′

r;1(k; 0)= − ik
1− R1(k)

T1(k)
(9)

Similarly

fl;2(k; 0)=
1 + L2(k)

T2(k)
; f′

l;2(k; 0)= ik
1− L2(k)

T2(k)
(10)

Combining (7)–(10) we obtain

R1(k) =
ikfr(k; 0) + f′

r (k; 0)
ikfr(k; 0)− f′

r (k; 0)

L2(k) =
ikfl(k; 0)− f′

l (k; 0)
ikfl(k; 0) + f′

l (k; 0)
(11)
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On the other hand, we have [1; 11]

fl(k; x)= eikx
[
1 +

∫ ∞

0
dy eikyBl(x; y)

]

and hence

fl(k; 0)=1 +H (k); f′
l (k; 0)= ik[1 +H (k)] +G(k) (12)

Using (12) in (11) we get the (rst equation of (5). Evaluating (2) and its derivative with
respect to x at x=0, we get (6), where the existence and uniqueness of L−1 are assured
[4; 12] by the Faddeev–Marchenko theory.
To obtain the second equation of (5) we use the identities, see e.g. Reference [13]:

1
T (k)

=
1− R1(k)L2(k)

T1(k)T2(k)
;

L(k)
T (k)

=
L2(k)− R1(k)∗

T1(k)∗T2(k)
(13)

Combining (13) with R= − L∗T=T ∗, we get

R(k)=
[
T2(k)
T2(k)∗

]
R1(k)− L2(k)∗

1− R1(k)L2(k)
(14)

and solving (14) for R1 we obtain

R1(k)=
L2(k)∗T2(k) + R(k)T2(k)∗

T2(k) + R(k)L2(k)T2(k)∗
(15)

From (10) and (12) we get

T2(k)=
2ik

2ik[1 +H (k)] +G(k)
=

2ik
D(k)

(16)

Finally, using (16) and the (rst equation of (5) in (15), we get the second equation
of (5).

With the help of Theorem 1, starting from R we obtain successively R̂; h; �; g; H; G; D; L2,
and R1. As mentioned earlier, V1 and V2 are then readily constructed from R1 and L2, respec-
tively.

3. COMPUTATIONAL PROCEDURE AND EXAMPLES

Let us now illustrate the solution method of Theorem 1 with some numerical examples. First,
we brie@y elaborate on the steps involved. Recall that we assume that we are given R(k)
and hence we suppose that R(k) is known at the grid values ks := sRk for s=0; 1; : : : ; N , for
some chosen N and Rk.

(i) From the given data we must compute R̂(y) de(ned in (4). Since R(−k)=R(k)∗ for
real k values, we can use the equivalent formula

R̂(y)=Re
{
1
�

∫ ∞

0
dk R(k)eiky

}
(17)
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Furthermore, since R̂(y) is needed only for y¿0, the integral in (17) may be approxi-
mated by using a standard inverse discrete Fourier transform, yielding R̂(y) at the grid
points ys = sRy for s=0; 1; : : : ; N , where Ry is determined from RkRy=2�=N . In
practice we may wish to replace N by a larger value, say N0, and use RkRy=2�=N0

so that a suAciently small Ry may be achieved, and for the sake of eAciency in the
discrete Fourier transform we may also wish to have N0 equal to a power of 2. In
such a case we pad with zeros for N¡s6N0.

(ii) Next, we solve the second-kind integral equation Lh + R̂=0 for h. To do this we
discretize the equation as an (M + 1)× (M + 1) linear system

h(yp) + R̂(yp) +
M∑
q=0

wqR̂(yp + zq)h(zq)=0; p=0; 1; : : : ; M

where M is an integer not exceeding N0; yp = zp =pRy with Ry as in step (i), and the
wq are some weight factors depending on the quadrature rule chosen. In the examples
below we always use Simpson’s rule. Recall that L is invertible, and this is re@ected
nicely in the discretization. A condition number !≈ 2 is typical.

(iii) To obtain � we (rst perform a numerical diPerentiation of R̂ by means of centered
diPerences (and the usual one-side, three-point rule for R̂′(0)). Now discretizing the
integral operator

h(y) �→ 2R̂′(y) + 2
∫ ∞

0
dz R̂′(y + z)h(z)

exactly as in step (ii), we get approximate values of �(yp) for p=0; 1; : : : ; M .
(iv) Next, the approximation of g may be obtained from � in exactly the same way as h

from R̂.
(v) Approximations of the Fourier transforms H and G are computed from the vectors

h(yp) and g(yp) for p=0; 1; : : : ; M by means of the standard inverse discrete Fourier
transform, padded with zeros for M¡p6N0 so that they are de(ned on a grid with
the same step size Rk as the original data R(k).

(vi) The formulas (5) now immediately give us approximate values of L2(ks) and R1(ks)
for s=0; 1; : : : ; N .

(vii) To conclude, we use the numerical method of Reference [6] to compute the two half-
line potentials V1 and V2, respectively, from R1 and L2. If h and g are computed on
an interval [0; ymax], with ymax:=MRy, features of the potential for |x|¿ymax=2 should
not be expected to be detectable—heuristically we may think of g as the derivative of
the Fourier transform of L2, and it is well known that the Fourier transform of L2 on
an interval 06y6ymax only determines the potential on [0; ymax=2].

Example 1. Let

R(k)=
(k + i)(k + 2i)(101k2 − 3ik − 400)

(k − i)(k − 2i)(50k4 + 280ik3 − 609k2 − 653ik + 400)
; k ∈R

The corresponding potential V (i.e. the unique potential without bound states for this re@ection
coeAcient) may be computed in closed form by using one of the standard techniques [1] for
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rational scattering coeAcients. We get

V1(x) =
16(

√
2 + 1)2e−2

√
2x

[(
√
2 + 1)2e−2

√
2x − 1]2

; x¡0

V2(x) =
96e2x(81e8x − 144e6x + 54e4x − 9e2x + 1)

(36e6x − 27e4x + 12e2x − 1)2
; x¿0

We carry out the above computational procedure with Rk=0:005; N =4000; N0 = 217, and
M =800, yielding Ry≈ 0:01 and ymax ≈ 8. The relative errors in L2 and R1 are about 11 and
6 percent, respectively, in L2(0; 20). These errors are largely attributable to the relatively low
band limit kmax =NRk=20 and the fact that R does not decay to zero very rapidly as k →±∞
in this case. If we replace N =4000 by N =20000, and hence kmax =100, then the resulting
relative errors in L2 and R1 are reduced to about 0:4 and 1:3 percent, respectively. The fact
that the recovery of L2 is signi(cantly more accurate than that of R1, once the ePects of band
limitation are removed, seems to be typical, and perhaps it can be heuristically explained
by the circumstance that the use of data R amounts to a measurement at x= +∞, so that
the right-half potential V2 may be expected to be found with smaller relative error than the
left-half V1.

Example 2. Consider the Cauchy problem for the KdV (Korteweg–de Vries) equation

ut − 6uux + uxxx =0; x∈R; t¿0

As is well known [14; 15], if the initial state u(x; 0) is given, then u(x; t) may be computed
by the inverse scattering transform; namely, if R(k) is the re@ection coeAcient corresponding
to the ‘time-independent potential’ u(x; 0), then the ‘time-evolved’ scattering data R(k)e8ik

3t

corresponds to the ‘time-evolved potential’ u(x; t), which also becomes the solution of the
Cauchy problem for the KdV equation at time t. Even if the initial state is itself supported
in a half line, the same will not be true for t¿0, so that the special computational methods
for half-line potentials cited in Section 1 cannot be used, but the technique described above
may still be applied. In other words, for each positive t, from the data R(k)e8ik

3t we construct
the left re@ection coeAcient corresponding to $(x)u(x; t) and the right re@ection coeAcient
corresponding to $(−x)u(x; t), where $(x) denotes the Heaviside function. Then, from those
time-dependent, half-line re@ection coeAcients we construct each of the half-line potentials
$(x)u(x; t) and $(−x)u(x; t), and thus u(x; t) is obtained for all x∈R.
In Figure 1 we show an initial state

u(x; 0)=



exp

(
8

(2x − 5)(2x − 1)

)
; |x − 1:5|¡1

0; |x − 1:5|¿1

and the corresponding solution pro(le of the KdV equation at several later times. It is possible
to create an animation of such a solution, and in fact one animation may be found at the web
site http:==www.msstate.edu/∼aktosun/publications.html

We should note that it is not our primary purpose here to develop an eAcient numerical
method to solve the initial-value problem for the KdV equation, and a detailed analysis of
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Figure 1. Some snapshots of the solution u(x; t) of the KdV equation of Example 2.

the solution method described in Example 2 is beyond the scope of this paper. There are
various other numerical techniques for this purpose, e.g. see References [14; 16–18], most of
which are of (nite-diPerence or (nite-element type; such methods are especially used to study
solitary-wave (soliton) solutions of the KdV equation. It is well known that soliton solutions
of the KdV equation are obtained when the initial value u(x; 0) is a re@ectionless potential
of (1) with one or more bound states. In contrast, the method described in Example 2 deals
with potentials having no bound states and hence non-soliton solutions of the KdV equation.

4. CONCLUSION

Recall that a bound state of V is a solution of (1) which belongs to L2(R) and such states
may only occur at a (nite number of values k= i!j with j=1; 2; : : : ;N, where the !j are
positive and distinct. To uniquely recover the potential V in the presence of bound states,
the re@ection coeAcient R in the scattering data must be supplemented by its corresponding
bound-state data, which consists of the set of 2N constants {!j; cj}Nj=1 in which the cj are
positive constants known as bound-state norming constants.
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Given this scattering data, replacing R̂(y) by R̂(y) +
∑N

j=1 c
2
j e

−!jy in Theorem 1, that
theorem remains valid as stated, i.e. R1 and L2 are determined in an unambiguous way from
the data {R; {!j; cj}}. In that case, the bound-state energies and norming constants for V1 are
uniquely determined by the poles and residues of the meromorphic extension of R1 from k ∈R
to k ∈C+. The situation is analogous for the bound-state data of V2. Thus, both V1 and V2
are uniquely determined by R1 and L2, respectively, whether or not they have bound states,
see e.g. References [19; 20]. On the other hand, this does not help with the computational
recovery of V1 and V2 when there are bound states. In order to numerically recover half-line
potentials with bound states, to our best knowledge, no computational techniques have been
developed that use only a re@ection coeAcient without the bound-state data.
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