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For a selfadjoint Schrödinger operator on the half line with a real-valued, integrable,
and compactly supported potential, it is investigated whether the boundary parameter
at the origin and the potential can uniquely be determined by the scattering matrix
or by the absolute value of the Jost function known at positive energies, without
having the bound-state information. It is proved that, except in one special case
where the scattering matrix has no bound states and its value is +1 at zero energy, the
determination by the scattering matrix is unique. In the special case, it is shown that
there are exactly two distinct sets consisting of a potential and a boundary parameter
yielding the same scattering matrix, and a characterization of the nonuniqueness is
provided. A reconstruction from the scattering matrix is outlined yielding all the cor-
responding potentials and boundary parameters. The concept of “eligible resonances”
is introduced, and such resonances correspond to real-energy resonances that can
be converted into bound states via a Darboux transformation without changing the
compact support of the potential. It is proved that the determination of the boundary
parameter and the potential by the absolute value of the Jost function is unique up to
the inclusion of eligible resonances. Several equivalent characterizations are provided
to determine whether a resonance is eligible or ineligible. A reconstruction from the
absolute value of the Jost function is given, yielding all the corresponding potentials
and boundary parameters. The results obtained are illustrated with various explicit
examples. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907558]

I. INTRODUCTION

In this paper, we consider the half-line Schrödinger operator with the general selfadjoint bound-
ary condition at the origin when the potential is real valued, integrable, and compactly supported.
We examine the inverse problem of recovery of the potential and boundary condition from two
distinct types of input data, investigate whether the determination from each input data set is unique,
present the characterization of the nonuniqueness if the unique determination is not possible, and
provide a procedure to reconstruct all the corresponding potentials and boundary conditions from
each input data set.

The first set of input data we use is the scattering matrix known at all positive energies, but without
any explicit information on the bound states. The second input data set we use is the absolute value
of the so-called Jost function given at all positive energies, but again without any explicit information
on the bound states. Assuming that the existence problem is solved, i.e., by assuming that there exists
at least one set consisting of a potential and a boundary condition corresponding to our input data, we
investigate whether we have two or more distinct sets containing a potential and a boundary condition
corresponding to our input data, and we provide a reconstruction of all such sets.
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Recall that the parameter k2 appearing in Schrödinger equation (2.1) corresponds to the energy
and the parameter k corresponds to the momentum variable. As stated in Theorem 2.1(k), the
knowledge of the scattering matrix at all positive energies is equivalent to knowing the scattering
matrix for all real momentum values. Hence, as our first input data set, we equivalently use the
scattering matrix known for all real k-values. Similarly, as stated in Theorem 2.1(k), the knowledge
of the absolute value of the Jost function at positive energies is equivalent to knowing that absolute
value for all real k-values, and hence we use the latter quantity as our second input data set.

Our inverse scattering problem can be paraphrased as follows: To what extent, can the lack
of bound-state information in our input data set be compensated for by the knowledge that the
potential is compactly supported? We certainly need to restrict our study to a specific class of
potentials so that the problem under study is mathematically well stated. Real-valued, integrable
potentials naturally arise1,7,8,15–17 in the theory of inverse problems for Schrödinger operators on the
half line. The potentials of compact support appear in our analysis because for such potentials, the
corresponding Jost function has an analytic extension from the real k-axis to the entire complex
k-plane. Such an analytic extension is crucial in our analysis in order to compensate for the lack of
bound-state information in our data.

A motivation to study our inverse problems comes from the inverse problem of determining
the radius of the human vocal tract from sound pressure measurements at the lips.4 The vocal tract
radius as a function of the distance from the glottis is related to the potential of the Schrödinger
equation, the length of the vocal tract corresponds to the length of the support interval of the
potential, the behavior of the vocal tract at the glottis is accounted for by the selfadjoint boundary
condition for the Schrödinger operator, and the sound pressure at the lips as a function of the sound
frequency is related to the absolute value of the Jost function as a function of k. The human speech
consists of phonemes, and during the utterance of a phoneme, if the upper lip opens downward
(i.e., when the slope of the radius of the vocal tract at the upper lip is negative) as in the utter-
ance of the vowel /o/, then the corresponding Schrödinger operator has one bound state, and the
Schrödinger operator has no bound states if the slope of the radius function at the upper lip is
positive or zero as in the utterance of /a/ or /u/, respectively.

There are two main methods to solve the inverse problem for a selfadjoint Schrödinger oper-
ator on the half line. The first is the Marchenko method,1,7–10,15,16 and it uses the input data set
consisting of the scattering matrix and the bound-state information. In the Marchenko method, the
bound-state information consists of the bound-state energies and the so-called bound-state norming
constants. The second method is the Gel’fand-Levitan method,7,8,12,15,16 and that method uses the
input data set consisting of the absolute value of the Jost function and the bound-state information.
In the Gel’fand-Levitan method, the bound-state information consists of the bound-state energies
(such energies are the same as the bound-state energies used in the Marchenko method) and the
bound-state norming constants (the Marchenko norming constants and the Gel’fand-Levitan norm-
ing constants differ from each other even though they are related to each other). In this paper,
we consider the Marchenko recovery method when the bound-state information is absent from the
standard Marchenko input data but instead we know that the corresponding potential is compactly
supported. Similarly, we consider the Gel’fand-Levitan method when the Gel’fand-Levitan input
data set does not contain the bound-state information but instead we know that the corresponding
potential is compactly supported.

The results proved in our paper are analogous to some results related to the full-line Schrödinger
equation where the bound-state information is missing from the input data. For example, a real-valued,
integrable potential with a finite first moment is uniquely determined2,18 from the corresponding left
(right) reflection coefficient alone if the support of the potential is confined to the right (left) half
line , or such a potential is uniquely determined3,14 by the data consisting of the left (right) reflection
coefficient and knowledge of the potential on the left (right) half line.

The analysis of the two inverse problems under study in our paper turns out to have an impact
on other related problems. One contribution of our study is in the area of resonances for selfadjoint
Schrödinger operators on the half line. The nonzero zeros of the analytic extension of the Jost
function to the complex k-plane correspond to either bound states or resonances. If such zeros are
located in the open upper-half complex plane, they correspond to bound states. It is known1,7,8,15,16
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that each such bound-state zero is simple and that the number of such zeros is either zero or a
positive integer. It is also known8,15,16 that the bound states can be added or removed by using the
mathematical procedure known as the Darboux transformation.

If the zeros of the Jost function are located in the open lower-half complex k-plane, then those
zeros correspond to resonances. Equivalently, the poles of the meromorphic extension of the scat-
tering matrix correspond to bound states if such poles occur in the open upper-half complex plane,
and those poles of the scattering matrix occurring in the open lower-half complex plane correspond
to resonances. The number of resonances can be zero, one, or countably infinite. A zero of the Jost
function corresponding to a resonance may or may not be simple. The only real zero of the Jost
function can occur at zero, and such a zero must be simple.

In our paper, we specifically deal with resonances corresponding to the zeros of the Jost func-
tion on the negative imaginary axis in the complex k-plane, i.e., with real-energy resonances. In
our analysis, in a natural way, we are prompted to classify such resonances into two mutually
exclusive groups. The first group consists of “eligible” resonances because such resonances can be
converted into bound states through a Darboux transformation8,9,16 without changing the compact
support of the potential. The remaining resonances occurring on the negative imaginary axis consist
of “ineligible” resonances because such resonances cannot be converted into bound states under
a Darboux transformation without changing the compact support of the potential. It is remarkable
that ineligible resonances still remain ineligible if we add or remove any number of bound states
via a Darboux transformation without changing the compact support of the potential. On the other
hand, an eligible resonance either remains eligible or is converted into a bound state if we add any
number of bound states via a Darboux transformation without changing the compact support of
the potential. Similarly, a bound state removed via a Darboux transformation is converted into an
eligible resonance.

Consider the sequence where each element in the sequence consists of a potential and a bound-
ary parameter in such a way that one element in the sequence is connected to another element
through a number of Darboux transformations related to removing or adding bound states without
changing the compact support of the potentials. For such a sequence, we define the “maximal
number of eligible resonances” as the number of eligible resonances corresponding to a pair with
no bound states. Without causing any ambiguity, for any term in the sequence, we can define the
maximal number of eligible resonances as the maximal number of eligible resonances associated
with the sequence itself. Hence, for any term in the sequence, the sum of the number of eligible
resonances and the number of bound states must be equal to the maximal number of eligible reso-
nances. It turns out that each eligible resonance is simple in the sense that the corresponding zero
of the related Jost function is a simple zero. Hence, we do not need to be concerned about the
multiplicity of an eligible resonance. On the other hand, an ineligible resonance does not need be
simple, i.e., the corresponding zero of the related Jost function may not necessarily be a simple zero.

It is remarkable that the identification of each resonance on the negative imaginary axis either
as eligible or ineligible arises in a natural way and is motivated by physics, and the identification
can be unambiguously given mathematically. One could certainly insist on converting an ineligible
resonance into a bound state, but in that case the resulting potential would no longer be in the
original class; either the compact support property would be lost or the resulting potential would
no longer be integrable. We illustrate the concepts of eligible and ineligible resonances with some
explicit examples in Sec. VI.

We use θ appearing in (2.3) to describe the selfadjoint boundary condition at the origin. Let
Sθ(k) be the scattering matrix corresponding to the boundary parameter θ and the momentum vari-
able k when the potential V is real valued, integrable, and compactly supported. In the recovery of
the potential and the selfadjoint boundary condition from the scattering matrix Sθ(k), we summarize
our main findings as follows. We have the unique recovery, except in one special case. That special
case occurs when there are precisely two simultaneous constraints on Sθ(k), namely, Sθ(0) = +1
and at the same time there are no bound-state poles associated with Sθ(k). The latter restriction is
equivalent to the statement that Sθ(k) has no poles on the positive imaginary axis in the complex
k-plane. In the special case, it turns out that the scattering matrix corresponds to exactly two distinct
sets, each consisting of a potential and a selfadjoint boundary condition. Interestingly, when such
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a nonuniqueness occurs, the boundary condition in one set must be the Dirichlet boundary condi-
tion and the boundary condition in the other set must be a Neumann boundary condition. In Sec.
IV, we further explore the nonuniqueness in the special case and provide an interpretation of the
nonuniqueness by viewing the compactly supported potential in the context of the corresponding
full-line Schrödinger operator. We then find that one of the nonunique potentials corresponds to
the reflection coefficient R(k) and the other corresponds to −R(k), and this occurs when the corre-
sponding full-line Schrödinger operator has no bound states and is exceptional, i.e., R(0) , −1. In
Sec. VI, we illustrate the nonuniqueness with an explicit example.

Concerning the recovery of the potential and the selfadjoint boundary condition from the
absolute value of the Jost function, we have the unique recovery up to the inclusion of eligible
resonances. From our input data set, we are able to uniquely determine all eligible resonances. Let
us use M to denote the maximal number of eligible resonances corresponding to our input data set.
We find that there are precisely 2M distinct sets, each consisting of a potential and a selfadjoint
boundary condition, corresponding to the same input data. We note19,20 that M can be infinite for
our selfadjoint Schrödinger operator on the half line when the potential is real valued, integrable,
and compactly supported. A further minimal assumption20 on the potential guarantees that M is
finite. In Sec. V, we present the details of the recovery from the absolute value of the Jost function
and elaborate on the 2M-fold nonuniqueness.

Our paper is organized as follows. In Sec. II, we provide the preliminary mathematical tools
needed to analyze the two inverse problems under study. This is done by introducing the half-line
Schrödinger operator, the selfadjoint boundary condition at the origin, the Jost solution and the
regular solution to the half-line Schrödinger equation, the associated Jost function, the scattering
matrix, the bound states, the norming constants, the resonances, and the relevant properties of all
such quantities. In Sec. III, we introduce the Darboux transformations to add or remove bound
states, obtain a few results related to the Darboux transformations for potentials of compact support,
and provide several equivalent characterizations of eligible resonances. In Sec. IV, we analyze the
recovery of the potential and the boundary condition from the scattering matrix alone. We show that
the recovery of the corresponding potential and the boundary parameter is unique except in one spe-
cial case, and we characterize the double nonuniqueness in that special case. In Sec. V, we study the
recovery problem from the absolute value of the Jost function. We show that the recovery is unique
up to the inclusion of eligible resonances, which is equivalent to having a 2M-fold nonuniqueness.
Finally, in Sec. VI, we provide some explicit examples to illustrate the theoretical results presented
in Secs. III-V.

II. PRELIMINARIES

In this section, we present the preliminaries needed to prove the main results given in Secs.
III-V. We use R to denote the real axis, let R+ B (0,+∞), use C for the complex plane, C+ for
the open upper-half complex plane, C− for the open lower-half complex plane, C+ B C+ ∪ R, and
C− B C− ∪ R.

Consider the half-line Schrödinger equation

− ψ ′′ + V (x)ψ = k2ψ, x ∈ R+, (2.1)

where the prime denotes the x-derivative and the potential V is assumed to belong to class A
defined as

A B


V : V (x) ∈ R, V (x) = 0 for x > b,
 b

0
dx |V (x)| < +∞


, (2.2)

i.e., V is real valued and integrable, and it vanishes when x > b for some nonnegative b. We obtain
a selfadjoint Schrödinger operator on the half line by supplementing (2.1) and (2.2) with the general
selfadjoint boundary condition at x = 0 given by7,12,15,16

(sin θ)ψ ′(0) + (cos θ)ψ(0) = 0, (2.3)
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where the boundary parameter θ is a fixed real constant in the interval (0, π]. The case θ = π in (2.3)
corresponds to the Dirichlet boundary condition ψ(0) = 0 and a case with θ ∈ (0, π) corresponds
to a non-Dirichlet boundary condition ψ(0) , 0. The non-Dirichlet case with θ = π/2 in (2.3),
i.e., ψ ′(0) = 0, is known as the Neumann boundary condition. The Dirichlet case arises especially
when (2.1) is related to the three-dimensional Schrödinger equation with a spherically symmetric
potential. On the other hand, there are various vibration problems13 where a non-Dirichlet boundary
condition is more appropriate to use. The non-Dirichlet case also arises in the inverse problem of
determining the shape of a human vocal tract from sound pressure measurements at the lips.4

The so-called Jost solution associated with (2.1) and (2.2) is usually denoted by f (k, x), and it
satisfies

f (k, x) = eik x, x ≥ b. (2.4)

For each fixed x ∈ R+ ∪ {0}, the quantities f (k, x) and f ′(k, x) have analytic extensions7–9,15,16

from k ∈ R to k ∈ C as a consequence of V belonging to class A. Thus, for each fixed x, the Jost
function f (k, x) has a Taylor series expansion around any k-value in C.

The so-called regular solution associated with (2.1)-(2.3), denoted by ϕθ(k, x), satisfies the
initial conditions




ϕθ(k,0) = 1, ϕ′θ(k,0) = − cot θ, θ ∈ (0, π),
ϕθ(k,0) = 0, ϕ′θ(k,0) = 1, θ = π.

(2.5)

The subscript θ in ϕθ(k, x) indicates the dependence on the particular value of θ used in (2.3). We
also use the subscript θ with certain other quantities to emphasize their dependence on θ.

We recall7,11,15–17 that the bound states for the Schrödinger operator associated with (2.1)-(2.3)
correspond to square-integrable solutions to (2.1) satisfying the boundary condition (2.3). There-
fore, the bound-state energies, i.e., the k2-values at which bound states occur, depend on the bound-
ary parameter θ. When V belongs to class A given in (2.2), it is known7,12,15–17 that there can be
at most a finite number of bound states and that the number of bound states is also affected by
the parameter θ. Because of the selfadjointness of the corresponding Schrödinger operator, each
bound-state energy must be real. It is already known7,12,15–17 that for each positive k2-value in
(2.1), there correspond two linearly independent solutions, e.g., f (k, x) and f (−k, x), neither of
which is square integrable in x ∈ R+ as a result of (2.4). Each bound state is known7,12,15–17 to be
simple in the sense that there exists only one linearly independent square-integrable solution to (2.1)
satisfying (2.3) at a bound-state energy. The bound states, if there are any, can only occur at certain
negative values of k2, and we will assume that they occur at k = iγs for s = 1, . . . , N for some
nonnegative integer N and distinct positive values γs. Note that the γs-values are not assumed to be
in an increasing or decreasing order. Note also that even though the value of N and the values of γs
all depend on the choice of θ, for notational simplicity we usually suppress the dependence on θ for
those quantities.

The so-called Jost function associated with (2.1)-(2.3), usually denoted by Fθ(k), is
defined7,12,15,16 as

Fθ(k) B



−i[ f ′(k,0) + cot θ f (k,0)], θ ∈ (0, π),
f (k,0), θ = π,

(2.6)

and it helps us to identify the bound states and to define the scattering matrix. It is known8–10,15–17

that f (k, x) and f (−k, x) are linearly independent for each fixed k ∈ C \ {0}. Thus, we can express
the regular solution ϕθ(k, x) appearing in (2.5) as a linear combination of f (k, x) and f (−k, x). In
fact, with the help of (2.5) and (2.6) we get

ϕθ(k, x) =



1
2k

[Fθ(k) f (−k, x) − Fθ(−k) f (k, x)] , θ ∈ (0, π),
i

2k
[Fθ(k) f (−k, x) − Fθ(−k) f (k, x)] , θ = π.

(2.7)

From (2.3), (2.4), and (2.7), we see that a bound state can only occur at a zero of Fθ(k), which
is equivalent to the linear dependence of the two solutions ϕθ(k, x) and f (k, x) at that particular
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k-value. This is because the linear dependence on ϕθ(k, x) assures the satisfaction of the boundary
condition (2.3), and the linear dependence on f (k, x) guarantees an exponential decay as x → +∞
and in turn the square integrability in x ∈ R+.

We have seen that there are at most a finite number of zeros of the Jost function Fθ(k) in C+ and
such zeros can only occur on the positive imaginary axis, and those zeros correspond to bound states
of the Schrödinger operator given in (2.1)-(2.3). Let us now consider the zeros of Fθ(k) in C−,which
are called resonances. When V (x) ≡ 0, from (2.4) and (2.6) it follows that

Fθ(k) =



k − i cot θ, θ ∈ (0, π),
1, θ = π.

(2.8)

Thus, the number of resonances is at most one when V (x) ≡ 0. As stated in Theorem 2.1(g) later, if
V (x) . 0 then there must be a countably infinite number of resonances, and each resonance occurs
either on the negative imaginary axis or a pair of resonances are symmetrically located with respect
to the negative imaginary axis.

In our paper, we are primarily interested in imaginary resonances (real-energy resonances),
i.e., those resonances with the corresponding k-values located on the negative imaginary axis.
Through a pathological example,20 it is known that the number of imaginary resonances can be
countably infinite even when the potential V is in class A. On the other hand, the number of
imaginary resonances is guaranteed to be finite under some minimal further assumptions, e.g., see
Proposition 7 of Ref. 20, such as V (x) ≥ 0, or V (x) ≤ 0, in some neighborhood of x = b, where b
is the parameter appearing in (2.2) and related to the compact support of V. In Sec. III, we develop
various equivalent criteria to identify each imaginary resonance either as an eligible resonance or
an ineligible resonance and explore the connection between bound states and eligible resonances. In
other words, in Sec. III, we analyze whether or not an imaginary resonance can be converted to a
bound state without changing the compact support of the potential.

Having seen that the zeros of Fθ(k) in C+ correspond to bound states and the zeros in C−
correspond to resonances, let us now consider zeros of Fθ(k) occurring on the real axis. It is
known7,15,16 that the only real zero of Fθ(k) can occur at k = 0 and such a zero, if it exists, must
be a simple zero. The case Fθ(0) = 0 corresponds to the exceptional case, and the case Fθ(0) , 0
corresponds to the generic case. In the exceptional case, the number of bound states may change by
one under a small perturbation of the potential. Let us also consider the Jost solution f (k, x) and
the regular solution ϕθ(k, x) appearing in (2.4) and (2.5), respectively, at k = 0. Generically ϕθ(0, x)
becomes unbounded as x → +∞, whereas in the exceptional case it remains bounded as x → +∞.
The behavior of ϕθ(0, x) as x → +∞ is obtained by letting k → 0 in (2.7), using (2.4) and exploiting
the known behaviors of f (0, x) and ḟ (0, x) as x → +∞, where we use an overdot to indicate the
k-derivative. As seen from (2.4), we have f (0, x) = 1 and ḟ (0, x) = ix for x ≥ b. From (2.7) at k = 0
we get

ϕθ(0, x) =



Ḟθ(0) f (0, x) − Fθ(0) ḟ (0, x), θ ∈ (0, π),
i
�
Ḟθ(0) f (0, x) − Fθ(0) ḟ (0, x)� , θ = π,

which shows that ϕθ(0, x) is proportional to f (0, x) and hence remains bounded in the exceptional
case and that ϕθ(0, x) contains ḟ (0, x) and hence becomes unbounded in the generic case.

Recall that we assume the bound states occur at the zeros k = iγs of Fθ(k) appearing in (2.6)
for s = 1, . . . ,N . It is known6,15,16 that ϕθ(iγs, x) is real valued and square integrable. The positive
quantity gs defined as

gs B
1 ∞

0
dx ϕθ(iγs, x)2

, s = 1, . . . ,N, (2.9)

is known as the Gel’fand-Levitan norming constant for the bound state at k = iγs. Let us use G to
denote the Gel’fand-Levitan spectral data set7,8,15,16 given by

G B
�|Fθ(k)| : k ∈ R; {γs, gs}Ns=1

	
. (2.10)
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We refer to the information consisting of |Fθ(k)| for k ∈ R as the continuous part of the Gel’fand-
Levitan spectral data and refer to the portion {γs, gs}Ns=1 as the discrete part of the Gel’fand-Levitan
spectral data. For the construction of V and θ from G via the Gel’fand-Levitan method, we outline
the recovery procedure below and refer the reader to Refs. 7, 12, 15, and 16 for the details.

(a) From the large-k asymptotics7

|Fθ(k)| =



|k | +O(1), k → ±∞, θ ∈ (0, π),
1 +O

(
1
k

)
, k → ±∞, θ = π,

(2.11)

we can tell whether θ ∈ (0, π) or θ = π.
(b) We form7,12,15,16 the Gel’fand-Levitan kernel Gθ(x, y),where for θ ∈ (0, π) we have

Gθ(x, y) B 1
π

 ∞

−∞
dk


k2

|Fθ(k)|2 − 1

(cos k x)(cos k y) +

N
s=1

g2
s (cosh γsx)(cosh γsy), (2.12)

and for θ = π we have

Gθ(x, y) B 1
π

 ∞

−∞
dk


1

|Fθ(k)|2 − 1

(sin k x)(sin k y) +

N
s=1

g2
s

γ2
s

(sinh γsx)(sinh γsy). (2.13)

(c) Using Gθ(x, y) as input to the Gel’fand-Levitan integral equation

Aθ(x, y) + Gθ(x, y) +
 x

0
dz Aθ(x, z)Gθ(z, y), 0 < y < x,

we obtain Aθ(x, y). The unique solvability of (2.14) is known12,15,16 for the spectral data set
corresponding to a potential in classA and a boundary condition as in (2.3).

(d) We obtain the potential V (x) and the boundary parameter θ via7,12,15,16

V (x) = 2
d
dx

Aθ(x, x), θ ∈ (0, π], (2.14)

cot θ = −Aθ(0,0), θ ∈ (0, π).
(e) The regular solution ϕθ(k, x) is recovered from Aθ(x, y) via7,12,15,16

ϕθ(k, x) =



cos k x +
 x

0
dy Aθ(x, y) cos k y, θ ∈ (0, π),

sin k x
k
+

 x

0
dy Aθ(x, y) sin k y

k
, θ = π.

An alternative to the Gel’fand-Levitan procedure is the Marchenko method,7,15,16 which uses
the input data setM given by

M B {Sθ(k) : k ∈ R; {γs,ms}Ns=1}, (2.15)

where the scattering matrix Sθ(k) is defined in terms of the Jost function Fθ(k) as7,15,16

Sθ(k) B



−Fθ(−k)
Fθ(k) , θ ∈ (0, π),

Fθ(−k)
Fθ(k) , θ = π,

(2.16)

and the Marchenko bound-state norming constants ms are given by7,15,16

ms B
1 ∞

0
dx f (iγs, x)2

, s = 1, . . . ,N. (2.17)

We refer to the information consisting of Sθ(k) for k ∈ R as the continuous part of the Marchenko
scattering data and the portion {γs,ms}Ns=1 as the discrete part of the Marchenko scattering data.
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For the construction of V and θ fromM given in (2.15), we outline the steps of the Marchenko
recovery method below and refer the reader to Refs. 7, 15, and 16 for further details.

(a) Using the dataM, we construct the Marchenko kernel Mθ(y) for y > 0 as

Mθ(y) B




1
2π

 ∞

−∞
dk [Sθ(k) − 1] eik y +

N
s=1

m2
s e−γsy, θ ∈ (0, π),

1
2π

 ∞

−∞
dk [1 − Sθ(k)] eik y +

N
s=1

m2
s e−γsy, θ = π.

(2.18)

(b) Using Mθ(y) given in (2.18) as input to the Marchenko integral equation

K(x, y) + Mθ(x + y) +
 ∞

x

dz K(x, z) Mθ(z + y) = 0, y > x, (2.19)

we obtain K(x, y). The unique solvability of (2.19) is guaranteed8–10,15,16 if the scattering data
set corresponds to a potential in classA given in (2.2).

(c) The potential V (x) and the Jost solution f (k, x) are obtained from K(x, y) via

V (x) = −2
dK(x, x)

dx
, f (k, x) = eik x +

 ∞

x

dy K(x, y) eik y. (2.20)

(d) Having K(x, y) and Sθ(k) at hand, we can recover cot θ as well. For this purpose, we can
proceed as follows. From the second equation in (2.20), we get

f (k,0) = 1 +
 ∞

0
dy K(0, y) eik y, (2.21)

f ′(k,0) = ik − K(0,0) +
 ∞

0
dy Kx(0, y) eik y, (2.22)

where Kx(0, y) denotes the x-derivative of K(x, y) evaluated at x = 0. In light of the second
line of (2.16) we then check if we have

Sθ(k) =
1 +

 ∞

0
dy K(0, y) e−ik y

1 +
 ∞

0
dy K(0, y) eik y

, (2.23)

which is obtained by using (2.21) and (2.22) in the second line of (2.16). We conclude that
θ = π if (2.23) is satisfied. If (2.23) is not satisfied, we conclude that θ ∈ (0, π) and uniquely
determine cot θ as

cot θ =
− f ′(−k,0) − Sθ(k) f ′(k,0)

f (−k,0) + Sθ(k) f (k,0) , (2.24)

which is obtained with the help of (2.6), (2.16), (2.21), and (2.22).

For easy citation later on, we summarize the results presented above and several additional
known facts1,7–10,15–17 in the following theorem.

Theorem 2.1. Consider the Schrödinger operator given in (2.1)-(2.3) with the potential V in
class A, a fixed boundary parameter θ ∈ (0, π] and b being the constant appearing in (2.2) related
to the compact support of the potential. Let Fθ(k) be the corresponding Jost function given in (2.6)
and Sθ(k) be the corresponding scattering matrix appearing in (2.16). Then:

(a) The Jost function Fθ(k) has an analytic extension from k ∈ R to the entire complex plane
k ∈ C. There are at most a finite number of zeros of Fθ(k) in C+, such zeros occur on the posi-
tive imaginary axis, say at k = iγs for s = 1, . . . ,N, they are all simple, and they correspond to
the bound states of (2.1) with the selfadjoint boundary condition (2.3). A real zero of Fθ(k) can
only occur at k = 0, and such a zero, if it exists, must be simple.
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(b) As k → ∞ in C+ we have

Fθ(k) =



k − i cot θ +
i
2

 b

0
dx V (x) + o(1), θ ∈ (0, π),

1 − 1
2ik

 b

0
dx V (x) + o

(
1
k

)
, θ = π.

(2.25)

(c) As k → ∞ in C− we have

Fθ(k) =



k − i cot θ +
i
2

 b

0
dx V (x) + e2ikbo(1), θ ∈ (0, π),

1 − 1
2ik

 b

0
dx V (x) + e2ikbo

(
1
k

)
, θ = π.

(d) As k → ±∞ in R, the large-|k | asymptotics of the scattering matrix Sθ(k) is given by

Sθ(k) =



1 − i
k

 b

0
dx V (x) + 2i

k
cot θ + o

(
1
k

)
, θ ∈ (0, π),

1 − i
k

 b

0
dx V (x) + o

(
1
k

)
, θ = π.

(e) The scattering matrix Sθ(k) defined in (2.16) has a meromorphic extension from k ∈ R to
k ∈ C. The poles of Sθ(k) in C+ are all simple and occur at k = iγs for s = 1, . . . ,N. The
Marchenko norming constants ms defined in (2.17) are related to the residues of the scattering
matrix at those poles as

Res(Sθ, iγs) =



i m2
s, θ ∈ (0, π),

−i m2
s, θ = π,

(2.26)

where Res(Sθ, iγs) denotes the residue of Sθ(k) at k = iγs.
(f) For each θ ∈ (0, π], the scattering matrix Sθ(k) is analytic at k = 0 in C. The value of Sθ(0) is

either +1 or −1. Specifically, for θ = π, we have

Sπ(0) =



+1, f (0,0) , 0,
−1, f (0,0) = 0,

(2.27)

and for any θ ∈ (0, π), we have

Sθ(0) =



−1, Fθ(0) , 0,

+1, Fθ(0) = 0.
(2.28)

(g) Unless V (x) ≡ 0, there are infinitely many zeros of Fθ(k) in C−, and such zeros are known as
resonances. The resonances need not be simple, and they are located either on the negative
imaginary axis or occur as pairs located symmetrically with respect to the negative imaginary
axis.

(h) The Gel’fand-Levitan norming constants gs appearing in (2.9) and the Marchenko norming
constants ms appearing in (2.17) are related to each other as

gs =
2γs ms

|Fθ(−iγs)| , θ ∈ (0, π]. (2.29)

(i) The potential V and the boundary parameter θ are uniquely determined from the Gel’fand-
Levitan spectral data G given in (2.10).

(j) The potential V and the boundary parameter θ are uniquely determined from the Marchenko
scattering dataM given in (2.15).

(k) The knowledge of Sθ(k) for k > 0 is equivalent to the knowledge of Sθ(k) for k ∈ R, and we
have for k ∈ R

Sθ(−k) = Sθ(k)∗, θ ∈ (0, π],
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where the asterisk denotes complex conjugation. Similarly, the knowledge of |Fθ(k)| for k > 0
is equivalent to the knowledge of |Fθ(k)| for k ∈ R, and we have for k ∈ R

Fθ(−k) =



−Fθ(k)∗, θ ∈ (0, π),
Fθ(k)∗, θ = π.

Proof. For (a), (i), (j), we refer the reader to Refs. 7, 15, and 16. For (b), (c), (d), (e), the
reader is referred to Refs. 6–8, 11, and 16. The result in (f) is obtained by using (2.6) and (2.16)
with the help of a series expansion around k = 0. The proof of (g) is as follows. From (2.8), we
already know that the number of resonances corresponding to V (x) ≡ 0 is either zero or one. For
V (x) . 0 with b > 0 in (2.2), we conclude, from (a)-(c), that e2ikbFθ(k) is entire in k and behaves
as O(k) as k → ∞ in C. If Fθ(k) had no zeros or had only a finite number of zeros in C, then the
Hadamard factorization of e2ikbFθ(k) and the use of Liouville’s theorem would force Fθ(k) to be
equal to e−2ikb multiplied with either a constant or a polynomial in k. However, such a behavior
would contradict (2.25). Thus, the number of resonances must be countably infinite. Since k appears
as ik in f (k,0) and f ′(k,0), it follows from (2.6), that the zeros of Fθ(k) in C− either occur on
the negative imaginary axis or a pair of resonances are symmetrically located with respect to the
negative imaginary axis. From Example 6.2(c) later in our paper, we know that a resonance need
not be simple. Thus, the proof of (g) is complete. Note that (2.29) holds for θ = π as well as for
θ ∈ (0, π). The result in (2.29) is obtained by evaluating (2.7) at the bound state k = iγs, using
Fθ(iγs) = 0 in that equation, taking the square of both sides of the resulting equation, followed by an
integration on x ∈ R+, and by using (2.9) and (2.17) in the resulting equation. Finally, the results in
(j) follow from the use of the identities1,7,8,15–17 for k ∈ R

f (−k,0) = f (k,0)∗, f ′(−k,0) = f ′(k,0)∗,
in (2.8) and (2.16) and the fact that f (k,0) and f ′(k,0) are continuous at k = 0. ■

Next, we elaborate on the exceptional case for the half-line Schrödinger operator and present
the behavior of the corresponding scattering coefficients for the full-line Schrödinger operator at
k = 0. Such results are needed in Secs. III and IV in the elaboration of the nonuniqueness arising in
the special case, i.e., case (iii) of Sec. IV.

Recall that the exceptional case for the half-line Schrödinger operator occurs when Fθ(0) = 0,
where Fθ(k) is the Jost function defined in (2.6). Since we can view the potential V appearing in
(2.1) as the potential on the full line with V (x) = 0 for x < 0, we can uniquely7,8 associate with
V the scattering coefficients T,L,and R, where T is the transmission coefficient, L is the reflection
coefficient from the left, and R is the reflection coefficient from the right. This is done via7,8

f (k,0) = 1 + L(k)
T(k) , f ′(k,0) = ik

1 − L(k)
T(k) , R(k) = −L(−k)T(k)

T(−k) . (2.30)

The exceptional case for the full-line Schrödinger operator occurs when T(0) , 0, and the full-line
generic case occurs when T(0) = 0.

Theorem 2.2. Consider the half-line Schrödinger operator given in (2.1)-(2.3) with the poten-
tial V in class A and with a fixed boundary parameter θ ∈ (0, π]. Let f (k, x) and Fθ(k) be the
corresponding Jost solution and the Jost function appearing in (2.4) and (2.6), respectively. Further,
let T(k),L(k),and R(k) be the corresponding scattering coefficients appearing in (2.30). Then:

(a) The half-line exceptional case with the Dirichlet boundary condition, i.e., f (0,0) = 0, corre-
sponds to the following zero-energy behavior of the scattering coefficients:

T(0) = 0, Ṫ(0) , 0, L(0) = −1, L̇(0) = 0, L̈(0) , 0, (2.31)

R(0) = −1, Ṙ(0) = − T̈(0)
Ṫ(0) , R̈(0) = −Ṫ(0)2 − T̈(0)2

Ṫ(0)2 , (2.32)

where we recall that an overdot denotes the k-derivative.
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(b) The half-line exceptional case with the Neumann boundary condition, i.e., f ′(0,0) = 0, corre-
sponds to the following zero-energy behavior of the scattering coefficients:

T(0) , 0, L(0) , −1, R(0) , −1. (2.33)

(c) The half-line exceptional case with the non-Dirichlet and non-Neumann boundary conditions,
i.e., the case Fθ(0) = 0 with θ ∈ (0, π/2) ∪ (π/2, π), corresponds to the following zero-energy
behavior of the scattering coefficients:

T(0) = 0, Ṫ(0) , 0, L(0) = −1, R(0) = −1,

L̇(0) = − 2i
cot θ

, Ṙ(0) = 2i
cot θ

− T̈(0)
Ṫ(0) . (2.34)

Proof. The behavior of the scattering coefficients around k = 0 is already known.5,8 In the
full-line generic case, we have

T(0) = 0, Ṫ(0) , 0, L(0) = −1, R(0) = −1, (2.35)

and in the full-line exceptional case, we have

T(0) , 0, L(0) ∈ (−1,1), R(0) ∈ (−1,1). (2.36)

From Theorem 2.1(a), when V ∈ A we know that f (k,0) and f ′(k,0) are entire, and hence with the
help of (2.30) we see that T(k),R(k), and L(k) are analytic at k = 0. Expanding around k = 0 the
first identity in (2.30), we see that (2.36) is incompatible with f (0,0) = 0 and hence in case of (a) in
our theorem, we must have (2.35). Then, the expansion of the first identity in (2.30) yields

f (0,0) + k ḟ (0,0) +O(k2) = L̇(0)
Ṫ(0) +

k
2


L̈(0)
Ṫ(0) −

L̇(0) T̈(0)
Ṫ(0)2


+O(k2), k → 0 in C. (2.37)

From Theorem 2.1(a) we already know that k = 0 must be a simple zero of f (k,0) and hence
ḟ (0,0) , 0. Thus from (2.37), we get L̇(0) = 0 and L̈(0) , 0. Hence, we have proved (2.31). In fact,
the expansion around k = 0 of the identity8–10

L(k) L(−k) + T(k)T(−k) = 1, k ∈ C,

indicates that in the full-line generic case we have

L̈(0) + L̇(0)2 + Ṫ(0)2 = 0, (2.38)

and hence (2.38) shows that in case of (a) we have

L̈(0) = −Ṫ(0)2, (2.39)

which also confirms that L̈(0) , 0 in (2.31). We establish (2.32) by expanding around k = 0 the
third identity in (2.30) and using (2.31) and (2.39). Let us now turn to the proof of (b). Expanding
around k = 0 the second identity in (2.30), we see that (2.35) is incompatible with f ′(0,0) = 0.
Thus, we must have (2.36) in case of (b), which establishes (2.33). Finally, let us prove (c). Using
the first two identities in (2.6), we get

Fθ(k) = k
1 − L(k)

T(k) − i cot θ
1 + L(k)

T(k) . (2.40)

Note that (2.36) is not compatible with cot θ , 0 and Fθ(0) = 0. Thus, we must have (2.35) in case
of (c). Then, expanding around k = 0 both sides of (2.40) we get

Fθ(0) = 2 − i cot θ L̇(0)
Ṫ(0) , (2.41)

Ḟθ(0) = − T̈(0)
2 Ṫ(0)

2 − i cot θ L̇(0)
Ṫ(0) − 2 L̇(0) + i cot θ L̈(0)

2 Ṫ(0) .

Since Fθ(0) = 0, from (2.41) we get L̇(0) = −2i/ cot θ. Finally, with the help of (2.30), we obtain
Ṙ(0) given in (2.34). ■
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The next theorem shows that if the half-line Schrödinger operator with the Neumann boundary
condition and with a potential V belonging to class A has no bound states, then the full-line
Schrödinger operator with the same potential V cannot have any bound states either. The result is
needed for the proof of Theorem 2.4 and later in the analysis in Sec. IV.

Theorem 2.3. Consider the half-line Schrödinger operator given in (2.1)-(2.3) with the poten-
tial V in class A and with a fixed boundary parameter θ ∈ (0, π], and let f (k, x) and Fθ(k) be the
corresponding Jost solution and the Jost function appearing in (2.4) and (2.6), respectively. Let
Nθ denote the number of bound states, i.e., the number of zeros of Fθ(i β) when β ∈ (0,+∞). Let
T(k),L(k),and R(k) be the corresponding scattering coefficients appearing in (2.30). Let Ñ denote
the number of bound states for the corresponding full-line Schrödinger operator, i.e., let Ñ denote
the number of zeros of 1/T(i β) in the interval β ∈ (0,+∞). If Nπ/2 = 0, then we must have Ñ = 0.

Proof. It is already known7 that Nθ1 ≤ Nθ2 if θ1 ≥ θ2. Thus, in particular, we have Nπ ≤ Nπ/2.
Since we assume Nπ/2 = 0, we then also have Nπ = 0. Thus, neither f ′(i β,0) nor f (i β,0) vanishes
for β > 0. From (2.25), we then conclude that − f ′(i β,0) > 0 and f (i β,0) > 0 for all β > 0. The
first two identities in (2.30) yield

2ik
T(k) = f ′(k,0) + ik f (k,0), k ∈ C. (2.42)

From (2.42), using k = i β, we obtain

2β
T(i β) = − f ′(i β,0) + β f (i β,0). (2.43)

Since the right-hand side of (2.43) is positive for all β > 0, we conclude that T(i β) does not have
any poles for β > 0 and hence Ñ = 0. ■

The following theorem shows that in the absence of any bound states, the Marchenko equation
given in (2.19) is equivalent to the full-line Marchenko equation given by

K(x, y) + R̂(x + y) +
 ∞

x

dz K(x, z) R̂(z + y) = 0, y > x, (2.44)

where R̂(y) denotes the Fourier transform of the reflection coefficient R(k) appearing in (2.30),
namely,

R̂(y) B 1
2π

 ∞

−∞
dk R(k) eik y. (2.45)

The result in Theorem 2.4 is needed in the characterization of the double nonuniqueness in the
special case in Sec. IV, i.e., case (iii) there.

Theorem 2.4. Consider the half-line Schrödinger operator given in (2.1)-(2.3) with the poten-
tial V in class A and with a fixed boundary parameter θ ∈ (0, π]. Let Fθ(k),Sθ(k), and Mθ(y) be
the corresponding Jost function, the scattering matrix, and the Marchenko kernel defined in (2.6),
(2.16), and (2.18), respectively. Let T(k),L(k), and R(k) be the corresponding scattering coeffi-
cients appearing in (2.30). Assume that neither the half-line Schrödinger operator nor the full-line
Schrödinger operator has any bound states, i.e., Fθ(k) has no zeros on the positive imaginary axis
and T(k) has no poles on the positive imaginary axis. Then, we have

Mθ(y) = R̂(y), y > 0, θ ∈ (0, π], (2.46)

where R̂(y) is the quantity given in (2.45).

Proof. From (2.30), we get

2ik L(k)
T(k) = ik f (k,0) − f ′(k,0), (2.47)
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and hence from (2.42) and (2.47) we have

T(k) = 2ik
f ′(k,0) + ik f (k,0) ,

L(−k)
T(−k) =

f ′(−k,0) + ik f (−k,0)
2ik

. (2.48)

Using (2.48) in the third equation in (2.30) we obtain

R(k) = − f ′(−k,0) + ik f (−k,0)
f ′(k,0) + ik f (k,0) . (2.49)

Thus, from (2.49) and the second line of (2.16), we get

1 − Sπ(k) − R(k) = 1 − f (−k,0)
f (k,0) +

f ′(−k,0) + ik f (−k,0)
f ′(k,0) + ik f (k,0) . (2.50)

Using the Wronskian relation8–10

f (−k,0) f ′(k,0) − f ′(−k,0) f (k,0) = 2ik,

and the first equality in (2.48), we can rewrite (2.50) as

1 − Sπ(k) − R(k) = 1 − T(k)
f (k,0) . (2.51)

In the absence of bound states for the full-line Schrödinger equation, it is known8–10 that T(k) is
analytic in C+ and continuous in C+ and T(k) = 1 +O(1/k) as k → ∞ in C+. In the absence of
bound states for the half-line Schrödinger equation, f (k,0) and hence also 1/ f (k,0) are analytic
in C+ and continuous in C+ \ {0} and behave as 1 +O(1/k) as k → ∞ in C+. Furthermore, from
Theorem 2.2(a), the continuity of T(k)/ f (k,0) at k = 0 is assured. Thus, the right-hand side of
(2.51) is analytic in C+ and continuous in C+ and behaves as O(1/k) as k → ∞ in C+. Hence, its
Fourier transform vanishes for y > 0, i.e.,

1
2π

 ∞

−∞
dk [1 − Sπ(k) − R(k)] eik y = 0, y > 0. (2.52)

Comparing (2.52) with (2.45) and the second line of (2.18) without the summation term there, we
see that Mπ(y) = R̂(y) for y > 0, establishing (2.46) for θ = π. In a similar way, we can show that,
for θ ∈ (0, π), we have

R(k) − Sθ(k) + 1 = 1 − (k + i cot θ)T(k)
Fθ(k) . (2.53)

In the absence of bound states for the half-line Schrödinger operator, from Theorem 2.1 we know
that 1/Fθ(k) is analytic in C+, continuous in C+ \ {0}, and behaves like O(1/k) as k → ∞ in C+.
In the absence of bound states for the full-line Schrödinger operator, we already know that T(k) is
analytic in C+, continuous in C+, and behaves as 1 +O(1/k) as k → ∞ in C+. Furthermore, from (b)
and (c) of Theorem 2.2 it follows that the second term on the right-hand side in (2.53) is continuous
at k = 0. Thus, the right-hand side in (2.53) is analytic in k ∈ C+ and continuous in k ∈ C+ and
behaves as O(1/k) as k → ∞ in C+. Hence, its Fourier transform for y > 0 vanishes, i.e., we have

1
2π

 ∞

−∞
dk [R(k) − Sθ(k) + 1] eik y = 0, y > 0,

yielding Mθ(y) = R̂(y) for y > 0. Therefore, (2.46) holds also when θ ∈ (0, π). ■

III. DARBOUX TRANSFORMATIONS AND ELIGIBLE RESONANCES

Recall that a Darboux transformation8,9,16 allows us to change the discrete spectrum of a differ-
ential operator by adding or removing a finite number of discrete eigenvalues without changing
the continuous spectrum and without affecting the remainder of the discrete spectrum. In prepa-
ration for the analysis in Sec. V, in this section we provide the Darboux transformation formulas
when a bound state is added or removed from the spectrum of the Schrödinger operator on the
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half line. We also provide various results related to the Darboux transformation with compactly
supported potentials. In particular, we provide the necessary and sufficient conditions for retaining
the compact-support property of the potential when we add a bound state. We show that such a
bound state can only come from an eligible resonance, which is a zero of the Jost function Fθ(k)
occurring on the negative imaginary axis and can be converted to a bound state via a Darboux trans-
formation without changing the compact support of the potential. We provide various equivalent
characterizations of eligible resonances, such as (3.19), (3.38), and (3.53).

For clarity, we use the notation θ j,V (x; j), ϕ(k, x; j), and F(k; j) to denote the relevant quan-
tities corresponding to the Schrödinger operator with bound states at k = iγ1, . . . , iγj,where the case
j = 0 refers to the quantities without bound states. Note that θ j is the boundary parameter appearing
in (2.3), ϕ(k, x; j) is the regular solution in (2.5), F(k; j) is the Jost function in (2.6), and gj is the
Gel’fand-Levitan bound-state norming constant in (2.9).

We recall that the γs-values are not necessarily in an increasing or decreasing order, and the
ordering only refers to the order in which the bound states are added. We suppose that the bound
states are added in succession by starting with the potential V (x; 0) containing no bound states and
by first adding the bound state at k = iγ1 with the Gel’fand-Levitan norming constant g1, then by
adding the bound state at k = iγ2 with the norming constant g2, and so on. In the presence of N
bound states, when the bound states are removed in succession, we start with the potential V (x; N)
and first remove the bound state at k = iγN with the norming constant gN , then remove the bound
state at k = iγN−1 with the norming constant gN−1, and so on.

The following theorem summarizes the Darboux transformation when a bound state at k =
iγj+1 with the Gel’fand-Levitan norming constant gj+1 is added to the half-line Schrödinger operator
with the potential V (·; j) and the boundary parameter θ j. In the Dirichlet case, i.e., when θ j = π,we
refer the reader to Ref. 8 for the Darboux transformation formulas provided in the theorem. In the
non-Dirichlet case, i.e., when θ j ∈ (0, π),we refer the reader to (2.3.23) of Ref. 16 for the Darboux
transformation formulas when a bound state is added. The formulas in the non-Dirichlet case look
similar to those in the Dirichlet case except that the boundary parameter θ j has to be allowed to
change so that the two conditions given in the first line of (2.5) are satisfied. We invite the interested
reader to directly verify the results by showing that (2.1) and (2.5) are satisfied after the bound state
is added.

Theorem 3.1. Let V (·; j) for some fixed j ≥ 0 be the potential of the Schrödinger operator
specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for s =
1, . . . , j, where we assume that there are no bound states in case j = 0. Assume that one bound state
at k = iγj+1 is added to the spectrum with the Gel’fand-Levitan norming constant gj+1, but other-
wise the relevant spectral data set is unchanged. The resulting boundary parameter θ j+1, potential
V (x; j + 1), regular solution ϕ(k, x; j + 1), and Jost function F(k; j + 1) are related to the original
quantities θ j,V (x; j), ϕ(k, x; j), and F(k; j) as




cot θ j+1 = cot θ j + g2
j+1, θ j ∈ (0, π),

θ j+1 = θ j, θ j = π,
(3.1)

V (x; j + 1) = V (x; j) − d
dx



2g2
j+1 ϕ(iγj+1, x; j)2

1 + g2
j+1

 x

0
dy ϕ(iγj+1, y; j)2



, (3.2)

F(k; j + 1) = k − iγj+1

k + iγj+1
F(k; j), (3.3)

ϕ(k, x; j + 1) = ϕ(k, x; j) −
g2
j+1 ϕ(iγj+1, x; j)

 x

0
dy ϕ(k, y; j) ϕ(iγj+1, y; j)

1 + g2
j+1

 x

0
dy ϕ(iγj+1, y; j)2

. (3.4)
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The following theorem summarizes the Darboux transformation when the bound state at
k = iγj with the Gel’fand-Levitan norming constant gj is removed from the half-line Schrödinger
operator with the potential V (·; j) and the boundary parameter θ j . The formulas in the non-Dirichlet
case resemble the corresponding formulas in the Dirichlet case except that the boundary parameter
changes in a way compatible with the first line of (3.1). We omit the proof of the theorem and invite
the interested reader to directly verify the formulas by showing that (2.1) and (2.5) are satisfied after
the bound state is removed.

Theorem 3.2. Let V (·; j) for some fixed j ≥ 1 be the potential of the Schrödinger operator
specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for s =
1, . . . , j. Assume that the bound state at k = iγj is removed from the spectrum with the Gel’fand-
Levitan norming constant gj, but otherwise the relevant spectral data set is unchanged. The result-
ing boundary parameter θ j−1, potential V (x; j − 1), regular solution ϕ(k, x; j − 1), and Jost function
F(k; j − 1) are related to θ j,V (x; j), ϕ(k, x; j), and F(k; j) as




cot θ j−1 = cot θ j − g2
j , θ j ∈ (0, π),

θ j−1 = θ j, θ j = π,

V (x; j − 1) = V (x; j) + d
dx



2g2
j ϕ(iγj, x; j)2

1 − g2
j

 x

0
dy ϕ(iγj, y; j)2



, (3.5)

F(k; j − 1) = k + iγj
k − iγj

F(k; j), (3.6)

ϕ(k, x; j − 1) = ϕ(k, x; j) +
g2
j ϕ(iγj, x; j)

 x

0
dy ϕ(k, y; j) ϕ(iγj, y; j)

1 − g2
j

 x

0
dy ϕ(iγj, y; j)2

, (3.7)

where θ0,V (x; 0),F(k; 0), and ϕ(k, x; 0) correspond to the relevant quantities with no bound states.

Let us remark that (2.11), (3.3), and (3.6) imply that the boundary conditions cannot switch
from a Dirichlet condition to a non-Dirichlet condition or vice versa when bound states are added or
removed via a Darboux transformation. This is because (3.3) and (3.6) show that the leading term in
(2.11) for the large-k asymptotics of the Jost function Fθ(k) cannot change from 1 to k or vice versa
as k → +∞.

The next theorem indicates that the compact-support property of the potential is retained if a
bound state is removed.

Theorem 3.3. Let V (·; j) ∈ A for some fixed j ≥ 1 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j, the constant b in (2.2) related to
the compact support of V (·; j), and the bound states at k = iγs for s = 1, . . . , j. Assume that the
bound state at k = iγj is removed from the spectrum with the Gel’fand-Levitan norming constant
gj, but otherwise the relevant spectral data set is unchanged. If the compact support of V (·; j) is
confined to the interval [0,b], then the support of V (·; j − 1) is also confined to [0,b] and we have
V (·; j − 1) ∈ A.

Proof. We know that (3.5) holds because V (·; j) has a bound state at k = iγj with the norming
constant gj given in (2.9). It is enough to show that the quantity inside the brackets in (3.5) is
a constant for x ≥ b and hence its x-derivative vanishes. Because ϕ(iγj, x; j) is a bound state, it
decays exponentially as x → +∞. Thus, from (2.7), by using (2.4) and F(iγj; j) = 0 we get

ϕ(iγj, x; j)2 = ∓ 1
4γ2

j

F(−iγj; j)2 e−2γjx, x ≥ b, (3.8)

where the upper sign refers to the non-Dirichlet case θ j ∈ (0, π) and the lower sign to the Dirichlet
case θ j = π. For x ≥ b, we can evaluate the denominator inside the brackets in (3.5) by using
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 x

0 =
 ∞

0 −
 ∞
x there. Because of (2.9), we have

g2
j

 ∞

0
dy ϕ(iγj, y; j)2 = 1, (3.9)

and with the help of (3.8), we get

g2
j

 ∞

x

dy ϕ(iγj, y; j)2 = ∓ 1
8γ3

j

F(−iγj; j)2 e−2γjx, x ≥ b. (3.10)

Using (3.8)-(3.10) in the quantity inside the brackets in (3.5), we get

2g2
j ϕ(iγj, x; j)2

1 − g2
j

 x

0
dy ϕ(iγj, y; j)2

= 4γj, x ≥ b, (3.11)

and hence from (3.5) we see that V (x; j) = V (x; j − 1) for x > b and thus the support of V (·; j − 1)
is contained within the support as V (·; j). The property V (·; j − 1) ∈ A then follows from the fact
that the quantity inside the brackets in the second term on the right-hand side of (3.5) is real valued
and continuous in x when x ∈ [0,b]. ■

In the notation used in this section, we can express the definition of the Gel’fand-Levitan
norming constant gs given in (2.9) as

gs B
1 ∞

0
dx ϕ(iγs, x; N)2

, s = 1, . . . ,N, (3.12)

where ϕ(k, x; N) is the regular solution appearing in (2.7). The following result shows that we can
obtain gj by normalizing not only ϕ(iγj, x; N) but any one of ϕ(iγj, x; s) for s = j, j + 1, . . . ,N.

Theorem 3.4. Let V (·; N) ∈ A for some fixed N ≥ 2 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θN , the bound states at k = iγs for
s = 1, . . . ,N, and the corresponding Gel’fand-Levitan norming constants gs defined as in (2.9). For
any j with 1 ≤ j < N, we then have ∞

0
dx ϕ(iγj, x; j)2 =

 ∞

0
dx ϕ(iγj, x; j + 1)2 = · · · =

 ∞

0
dx ϕ(iγj, x; N)2. (3.13)

Proof. From (3.4), for any positive integer s with j + 1 ≤ s ≤ N , we obtain

ϕ(iγj, x; s) = ϕ(iγj, x; j) −
g2
s ϕ(iγs, x; j)

 x

0
dy ϕ(iγj, y; j) ϕ(iγs, y; j)

1 + g2
s

 x

0
dy ϕ(iγs, y; j)2

. (3.14)

Squaring both sides of (3.14) and with some simplification, we observe that

ϕ(iγj, x; s)2 = ϕ(iγj, x; j)2 − d
dx



g2
s

 x

0
dy ϕ(iγj, y; j) ϕ(iγs, y; j)

2

1 + g2
s

 x

0
dy ϕ(iγs, y; j)2



. (3.15)

Integrating both sides of (3.15) over x ∈ (0,+∞), we see that the equalities in (3.13) all hold pro-
vided the quantity inside the brackets in (3.15) vanishes as x → +∞ because that quantity already
vanishes at x = 0. Let us use

 x

0 =
 b

0 +
 x

b when x ≥ b and estimate the integrals in the numerator
and in the denominator in (3.15). By Theorem 3.3, we know that V (·; j) ∈ A because V (·; N) ∈ A.
Thus, V (x; j) = 0 for x > b and f (k, x; j) = eik x for x ≥ b as a result of (2.4). We also have
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F(iγj; j) = 0 and thus via (3.3) we have F(iγs; j) , 0 for j + 1 ≤ s ≤ N. Therefore, from (2.7) we
obtain

ϕ(iγj, x; j)2 = ∓ 1
4γ2

j

F(−iγj; j)2 e−2γjx, x ≥ b, (3.16)

and for j + 1 ≤ s ≤ N , we have

ϕ(iγs, x; j)2 = ∓ 1
4γ2

s

�
F(iγs; j) eγsx − F(−iγs; j) e−γsx

�2
, x ≥ b, (3.17)

where the upper sign refers to the non-Dirichlet case θ j ∈ (0, π) and the lower sign refers to the
Dirichlet case θ j = π. With the help of (3.16) and (3.17) we get x

0
dy ϕ(iγj, y; j) ϕ(iγs, y; j) = O

(
e(γs−γj)x

)
, x → +∞, x

0
dy ϕ(iγs, y; j)2 = O

�
e2γsx

�
, x → +∞.

Thus, the quantity inside the brackets in (3.15) has the behavior O(e−2γjx) as x → +∞. Hence, our
proof is complete. ■

Using the result in Theorem 3.4, we can comment on the denominator in (3.5). As seen
from (3.12) and (3.13), the Gel’fand-Levitan norming constant gj can be obtained by normalizing
ϕ(iγj, x; s) for any integer s with j ≤ s ≤ N , i.e., via

gj =
1 ∞

0
dx ϕ(iγj, x; s)2

, s = j, j + 1, . . . ,N. (3.18)

Using (3.5) and the positivity of ϕ(iγj, y; j)2, we conclude that function defined by the integral x

0 dy ϕ(iγj, y; j)2 is an increasing function of x. With the help of (3.18), we see that it increases
from the value of zero at x = 0 to the value of 1/g2

j as x increases from x = 0 to x = +∞. Thus, the
denominator in (3.5) remains positive for x ∈ R+.

The following theorem is one of the key results needed for the characterization of eligible and
ineligible resonances. Recall that an eligible resonance corresponds to a zero of the Jost function
defined in (2.6) in such a way that such a zero occurs on the negative imaginary axis and can be con-
verted into a bound state through a Darboux transformation without changing the compact support
of the potential. If a zero of the Jost function occurring on the negative imaginary axis cannot be
converted into a bound state under a Darboux transformation without changing the compact support
of the potential, then we refer to such an imaginary resonance as an ineligible resonance.

Theorem 3.5. Let V (·; j) ∈ A for some fixed j ≥ 0 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for
s = 1, . . . , j, where j = 0 corresponds to the absence of bound states. Assume that a bound state at
k = iγj+1 is added to the spectrum with the Gel’fand-Levitan norming constant gj+1, but otherwise
the relevant spectral data set is unchanged. Let b be the constant appearing in (2.2) related to the
compact support of V (·; j). The support of V (·; j + 1) is also confined to [0,b] if and only if

F(−iγj+1; j) = 0, g2
j+1 =

2γj+1

ϕ(iγj+1,b; j)2 − 2γj+1

 b

0
dy ϕ(iγj+1, y; j)2

. (3.19)

Note that the second condition in (3.19) implies that we must have

2γj+1

ϕ(iγj+1,b; j)2 − 2γj+1

 b

0
dy ϕ(iγj+1, y; j)2

> 0. (3.20)

When (3.19) is satisfied, the resulting potential V (·; j + 1) belongs to classA.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.107.75.191 On: Sun, 15 Feb 2015 19:34:30



022106-18 Aktosun, Sacks, and Unlu J. Math. Phys. 56, 022106 (2015)

Proof. In order to prove our theorem, from (3.2) we see that it is enough to prove that (3.19) is
equivalent to F(iγj+1; j + 1) = 0 and that

2g2
j+1 ϕ(iγj+1, x; j)2

1 + g2
j+1

 x

0
dy ϕ(iγj+1, y; j)2

= c1, x ≥ b, (3.21)

for some constant c1. In fact, from (3.11) we know that the value of c1 must be 4γj+1. We first
show that (3.19) holds with c1 = 4γj+1 there. For this, we proceed as follows. Because k = iγj+1
corresponds to a bound state, we have F(iγj+1; j + 1) = 0. By Theorem 2.1, we know that F(k; j)
is entire in k, and hence from (3.3) we see that we must have F(−iγj+1; j) = 0. Since V (x; j) = 0
for x > b, by (2.4) the corresponding Jost solution is given by f (k, x; j) = eik x for x ≥ b. Using
F(−iγj+1; j) = 0 in (2.7) we get

ϕ(iγj+1, x; j)2 = ∓ 1
4γ2

j+1

F(iγj+1; j)2 e−2γj+1x, x ≥ b,

where the upper sign refers to the non-Dirichlet case θ j ∈ (0, π) and the lower sign to the Dirichlet
case θ j = π. Thus, (3.21) is satisfied provided we have

4γj+1 =

∓
g2
j+1

2γ2
j+1

F(iγj+1; j)2 e−2γj+1x

1 + g2
j+1

 b

0
dy ϕ(iγj+1, y; j)2 − g2

j+1

2γj+1
ϕ(iγj+1,b; j)2 ∓ g2

j+1

8γ3
j+1

F(iγj+1; j)2 e−2γj+1x

. (3.22)

After cross multiplying and simplifying, we see that (3.22) is equivalent to

1 + g2
j+1

 b

0
dy ϕ(iγj+1, y; j)2 − g2

j+1

2γj+1
ϕ(iγj+1,b; j)2 = 0,

which is satisfied because of the second equality in (3.19). Let us now prove the converse, namely,
prove that V (x; j + 1) = 0 for x > b implies (3.19). From (3.2) and the fact that V (·; j) ∈ A we
know that V (x; j + 1) = 0 for x > b if and only if (3.21) holds with c1 = 4γj+1 there, i.e.,

2g2
j+1 ϕ(iγj+1, x; j)2

1 + g2
j+1

 x

0
dy ϕ(iγj+1, y; j)2

= 4γj+1, x ≥ b. (3.23)

Evaluating (3.23) at x = b, we get the second equality in (3.19). Let us cross multiply in (3.23) and
then take the x-derivative of both sides of the resulting equation. We get

4g2
j+1 ϕ

′(iγj+1, x; j) ϕ(iγj+1, x; j) = 4g2
j+1 γj+1 ϕ(iγj+1, x; j)2, x ≥ b,

or equivalently

ϕ′(iγj+1, x; j) = γj+1 ϕ(iγj+1, x; j), x ≥ b. (3.24)

From (3.24), we see that

ϕ′(iγj+1, x; j) = c2 eγj+1x, x ≥ b, (3.25)

for some constant c2. On the other hand, with the help of (2.4) and (2.7) we get for x ≥ b

ϕ(iγj+1, x; j) =



1
2iγj+1

�
F(iγj+1; j) eγj+1x − F(−iγj+1; j) e−γj+1x

�
, θ ∈ (0, π),

1
2γj+1

�
F(iγj+1; j) eγj+1x − F(−iγj+1; j) e−γj+1x

�
, θ = π.

(3.26)

Comparing (3.25) and (3.26), we see that we must have F(−iγj+1; j) = 0. When (3.22) is satisfied,
the potential V (·; j + 1) belongs toA because the quantity inside the brackets in the second term on
the right-hand side of (3.2) is real valued and continuous in x when x ∈ [0,b]. ■
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The result in the preceding theorem is fascinating in the sense that if we add a bound state to the
compactly supported potential V (·; j) in class A at k = iγj+1 with some arbitrary Gel’fand-Levitan
norming constant gj+1, in general the resulting potential V (·; j + 1) cannot be compactly supported.
Theorem 3.5 states that the potential V (·; j + 1) is compactly supported if and only if k = −iγj+1

happens to be a zero of F(k; j) and the norming constant gj+1 happens to be equal to the square root
of the quantity on the right-hand side of the second equality in (3.19). Thus, if the left-hand side
in (3.20) does not yield a positive number, then it is impossible for V (·; j + 1) to have the support
in [0,b] because there cannot be a corresponding positive norming constant gj+1 guaranteeing the
compact support for the potential. Let us clarify that, if the left-hand side in (3.20) is not positive,
one can find a potential with support in [0,b], but such a potential must have a singularity and it
cannot belong to classA.

The result of Theorem 3.5 is analogous to the result9 from the full-line Schrödinger equation
when a bound state is added to a compactly supported potential: Start with a compactly supported
potential V associated with the transmission coefficient T and add a bound state to it at k = iκ to
obtain the potential Ṽ with the transmission coefficient T̃ given by

T̃(k) = k + iκ
k − iκ

T(k).

Then, Ṽ is also compactly supported if and only if the transmission coefficient T(k) has a pole at
k = −iκ. The analysis in the full-line case is less complicated due to the fact that in the full-line case
there is no boundary condition at x = 0 such as (2.3).

In Theorem 3.5, in terms of F(k; j) and ϕ(k, x; j), we have expressed the necessary and
sufficient conditions for the support of the potential V (·; j + 1) to be confined within the compact
support of V (·; j). In the next theorem, the two conditions stated in (3.19) are expressed in terms of
F(k; j + 1) and ϕ(k, x; j + 1).

Theorem 3.6. Let V (·; j) ∈ A for some fixed j ≥ 0 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for
s = 1, . . . , j, where j = 0 corresponds to the absence of bound states. Assume that a bound state at
k = iγj+1 is added to the spectrum with the Gel’fand-Levitan norming constant gj+1, but otherwise
the relevant spectral data set is unchanged. Let b be the constant appearing in (2.2) related to the
compact support of V (·; j). The support of V (·; j + 1) is also confined to [0,b] if and only if

F(iγj+1; j + 1) = 0, g2
j+1 =

2γj+1

ϕ(iγj+1,b; j + 1)2 + 2γj+1

 b

0
dt ϕ(iγj+1, t; j + 1)2

. (3.27)

Proof. The equivalence of F(iγj+1; j + 1) = 0 and F(−iγj+1; j) = 0 is already shown in the
proof of Theorem 3.5. Let us now prove that the second equality in (3.19) is equivalent to the second
equality in (3.27). From (3.5), we see that

V (x; j + 1) = V (x; j) − d
dx



2g2
j+1 ϕ(iγj+1, x; j + 1)2

1 − g2
j+1

 x

0
dy ϕ(iγj+1, y; j + 1)2



. (3.28)

A comparison with (3.2) shows that the right-hand sides of (3.2) and of (3.28) are equal to each
other for x > b, and we have

2g2
j+1 ϕ(iγj+1, x; j + 1)2

1 − g2
j+1

 x

0
dy ϕ(iγj+1, y; j + 1)2

=
2g2

j+1 ϕ(iγj+1, x; j)2

1 + g2
j+1

 x

0
dy ϕ(iγj+1, y; j)2

+ c3, x ≥ b, (3.29)
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for some constant c3. Using (3.23) on the right-hand side of (3.29), we get

2g2
j+1 ϕ(iγj+1, x; j + 1)2

1 − g2
j+1

 x

0
dy ϕ(iγj+1, y; j + 1)2

= 4γj+1 + c3, x ≥ b. (3.30)

Cross multiplying in (3.30) and then taking the x-derivative of the resulting equation, for x ≥ b we
obtain

4 g2
j+1 ϕ

′(iγj+1, x; j + 1) ϕ(iγj+1, x; j + 1) = −(4γj+1 + c3) g2
j+1 ϕ(iγj+1, x; j + 1)2,

which simplifies to

ϕ′(iγj+1, x; j + 1) = −
(
γj+1 +

c3

4

)
ϕ′(iγj+1, x; j + 1), x ≥ b. (3.31)

On the other hand, since V (x; j + 1) = 0 for x > b,we have the analog of (3.16) given by

ϕ(iγj+1, x; j + 1)2 = ∓ 1
4γ2

j+1

F(−iγj+1; j)2 e−2γj+1x, x ≥ b, (3.32)

where the upper sign refers to the non-Dirichlet case θ j+1 ∈ (0, π) and the lower sign to the Dirichlet
case θ j+1 = π. Comparing (3.31) and (3.32), we get c3 = 0, and hence (3.30) yields

2g2
j+1 ϕ(iγj+1,b; j + 1)2

1 − g2
j+1

 b

0
dy ϕ(iγj+1, y; j + 1)2

= 4γj+1. (3.33)

By isolating g2
j+1 to one side of the equation in (3.33), we observe from (3.29) and (3.33) that the

second equality in (3.19) is equivalent to the second equality in (3.27). ■

We can ask whether we can predict if (3.20) is satisfied without actually evaluating the left-
hand side in (3.20). For this purpose, we will exploit the signs of ϕ(iγj+1, x; j) and ϕ(iγj+1, x; j + 1)
as x → +∞. It is convenient to define

H(β; j) B



−i F(i β; j), θ j ∈ (0, π),
F(i β; j), θ j = π,

(3.34)

where F(k; j) is the Jost function corresponding to the potential V (·; j) and the boundary parameter
θ j . The advantage of using H(β; j) rather than F(i β; j) is that the former is real valued and hence its
sign can be examined graphically. Note that

H ′(β; j) B dH(β; j)
dβ

=




dF(k; j)
dk

����k=iβ
, θ j ∈ (0, π),

i
dF(k; j)

dk
����k=iβ

, θ j = π.

(3.35)

Note also that, as seen from (2.25), as β → +∞ we have

H(β; j) =



β +O(1), θ j ∈ (0, π),
1 +O

(
1
β

)
, θ j = π,

(3.36)

and hence H(β; j) is positive for large positive β-values.
The result in the following theorem can be used as a test to determine whether the inequality in

(3.20) is satisfied or not.

Theorem 3.7. Let V (·; j) ∈ A for some fixed j ≥ 0 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for
s = 1, . . . , j, where j = 0 corresponds to the absence of bound states. Let F(k; j) be the corre-
sponding Jost function defined in (2.6), H(β; j) be the quantity defined in (3.34), and b be the
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constant appearing in (2.2). Assume that a bound state at k = iγj+1 is added to the spectrum, but
otherwise the relevant spectral data set is unchanged. The support of V (·; j + 1) is also confined to
the interval [0,b] if and only if

F(−iγj+1; j) = 0,
i Ḟ(−iγj+1; j)

F(iγj+1; j) > 0, (3.37)

or equivalently, if and only if

H(−γj+1; j) = 0,
H ′(−γj+1; j)
H(γj+1; j) > 0. (3.38)

Proof. The equivalence of (3.37) and (3.38) is obtained directly by using (3.34) and (3.35).
Thus, we only need to show that (3.37) is equivalent to the first condition given in (3.19) and the
condition in (3.20). In other words, we need to prove that (3.37) is equivalent to

F(−iγj+1; j) = 0, (3.39)

and to the positivity of the right-hand side in the equality involving g2
j+1 in (3.19). Note that (3.39)

appears also in (3.19) and hence we only need to show the equivalence of the inequality in (3.37)
and the positivity of the relevant quantity. Using (3.39) in (3.26) we see that, for x ≥ b, we have

ϕ(iγj+1, x; j) =



1
2iγj+1

F(iγj+1; j) eγj+1x, θ j ∈ (0, π),
1

2γj+1
F(iγj+1; j) eγj+1x, θ j = π.

(3.40)

Using (3.39) we can write (3.3) as

F(k, j + 1) = (k − iγj+1) F(k; j) − F(−iγj+1; j)
k + iγj+1

. (3.41)

Letting k → −iγj+1, from (3.41), as a result of the analyticity of F(k; j) in C we obtain

F(−iγj+1, j + 1) = −2iγj+1 Ḟ(−iγj+1; j), (3.42)

where we recall that an overdot indicates the k-derivative. With the help of (2.7), let us now evaluate
ϕ(iγj+1, x; j + 1). Using (2.4) in (2.7), for x ≥ b we obtain

ϕ(iγj+1, x; j + 1) =



1
2iγj+1

�
F(iγj+1; j + 1) eγj+1x − F(−iγj+1; j + 1) e−γj+1x

�
,

1
2γj+1

�
F(iγj+1; j) eγj+1x − F(−iγj+1; j + 1) e−γj+1x

�
,

(3.43)

where the first line holds if θ j+1 ∈ (0, π) and the second line holds if θ j+1 = π. From Theorem 3.6,
we know that F(iγj+1, j + 1) = 0 and hence (3.43), for x ≥ b, is equivalent to

ϕ(iγj+1, x; j + 1) =



− 1
2iγj+1

F(−iγj+1; j + 1) e−γj+1x, θ j ∈ (0, π),

− 1
2γj+1

F(−iγj+1; j + 1) e−γj+1x, θ j = π.
(3.44)

Using (3.42) in (3.44) we see that, for x ≥ b, we have

ϕ(iγj+1, x; j + 1) =



Ḟ(−iγj+1; j) e−γj+1x, θ j ∈ (0, π),
i Ḟ(−iγj+1; j) e−γj+1x, θ j = π.

(3.45)

With the help of (3.1), we observe that θ j+1 ∈ (0, π) if and only if θ j ∈ (0, π). Hence, from (3.40) and
(3.45) we obtain

ϕ(iγj+1, x; j + 1)
ϕ(iγj+1, x; j) = 2iγj+1

Ḟ(−iγj+1; j)
F(iγj+1; j) e−γj+1x, θ j ∈ (0, π], x ≥ b. (3.46)
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From (3.46), we see that the inequality in (3.37) is satisfied if and only if the quantity on the
left-hand side of (3.46) is positive for any x ≥ b. Let us now evaluate that quantity. From (3.7),
using j + 1 instead of j there and letting k = iγj+1 there, we obtain

ϕ(iγj+1, x; j) = ϕ(iγj+1, x; j + 1)
1 − g2

j+1

 x

0
dy ϕ(iγj+1, y; j + 1)2

, x ≥ 0,

or equivalently

ϕ(iγj+1, x; j + 1)
ϕ(iγj+1, x; j) = 1 − g2

j+1

 x

0
dy ϕ(iγj+1, y; j + 1)2, x ≥ 0. (3.47)

From (3.18) it follows that

1
g2
j+1

=

 ∞

0
dy ϕ(iγj+1, y; j + 1)2, (3.48)

and hence using
 x

0 =
 ∞

0 −
 ∞
x in (3.47), with the help of (3.48) we get

ϕ(iγj+1, x; j + 1)
ϕ(iγj+1, x; j) = g2

j+1

 ∞

x

dy ϕ(iγj+1, y; j + 1)2, x ≥ 0. (3.49)

Comparing (3.49) with (3.46), we observe that the inequality in (3.37) is satisfied if and only if
g2
j+1 appearing in (3.49) is positive. From (3.19) and (3.20), we already know that (3.39) and the

positivity of g2
j+1 are equivalent for V (·; j + 1) to have support in [0,b]. Thus, we have proved that

(3.19) is equivalent to

F(−iγj+1; j) = 0;
ϕ(iγj+1, x; j + 1)
ϕ(iγj+1, x; j) > 0, x ≥ b. (3.50)

With the help of (3.46), we see that (3.50) is equivalent to (3.37). Hence, the proof is complete. ■

One consequence of Theorem 3.7 is that the scattering matrix corresponding to a half-line
Schrödinger operator has a meromorphic extension with simple poles at the bound states.

Proposition 3.8. Let V (·; j) ∈ A for some fixed j ≥ 0 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for
s = 1, . . . , j, where j = 0 corresponds to the absence of bound states. Let F(k; j) and S(k; j) be
the corresponding Jost function and the scattering matrix defined in (2.6) and (2.16), respectively.
Assume that a bound state at k = iγj+1 is added to the spectrum without changing the support of the
potential and without changing the remaining part of the spectral data set. Under the corresponding
Darboux transformation, the scattering matrix is transformed as

S(k; j + 1) =
(

k + iγj+1

k − iγj+1

)2

S(k; j). (3.51)

The scattering matrix S(k; j) has a meromorphic extension from k ∈ R to the entire complex plane.
The only poles of S(k; j) in C+ occur at the bound states at k = iγs for s = 1, . . . , j and such poles
are all simple. Furthermore, S(k; j) has simple zeros at k = −iγs for s = 1, . . . , j.

Proof. The meromorphic extension of S(k; j) from k ∈ R to k ∈ C has already been established
in Theorem 2.1(e). We get (3.51) by using (3.3) in (2.16). Using induction, from (3.51) it is seen
that it is enough to prove that S(k; 0) has no poles in C+ and that S(k; j + 1) has a simple pole at
k = iγj+1 and has a simple zero at k = −iγj+1. Note that S(k; 0) has no poles in C+, which follows
from (2.16) and the fact that F(k; 0) has no zeros in C+. At first sight, (3.51) gives the wrong
impression that S(k; j + 1) has a double pole at k = iγj+1 and a double zero at k = −iγj+1. However,
the pole at k = iγj+1 is a simple one and the zero at k = −iγj+1 is a simple one, as the following
argument shows. Using (2.16), let us write (3.51) as

S(k; j + 1) = ∓
(

k + iγj+1

k − iγj+1

) (
F(−k; j)
k − iγj+1

) (
k + iγj+1

F(k; j)
)
, (3.52)
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where the upper sign refers to the non-Dirichlet boundary condition θ j ∈ (0, π) and the lower sign
to the Dirichlet boundary condition θ j = π. From (3.37), we know that F(−k; j) has a simple zero
at k = iγj+1. Thus, the second factor on the right-hand side of (3.52) has a removable singularity
at k = iγj+1 and no zero at k = iγj+1. Similarly, the third factor on the right-hand side of (3.52) has
a removable singularity at k = −iγj+1 and no zero at k = −iγj+1. We also know that F(k; j) in the
third factor cannot vanish at k = iγj+1 because we already have F(−iγj+1; j) = 0 as a result of the
fact that F(−k; j) and F(k; j) cannot vanish at the same k-value. Thus, the product of the second
and third factors on the right-hand side of (3.52) does not have a pole at k = iγj+1 and that product
does not have a zero at k = −iγj+1. Hence, the simple pole at k = iγj+1 in the first factor on the
right-hand side of (3.52) is the only pole of S(k; j + 1) at k = iγj+1 and that the simple zero at
k = −iγj+1 in the first factor is the only zero of S(k; j + 1) at k = −iγj+1. ■

It is useful to state the result of Theorem 3.7 in terms of the quantities associated with no bound
states. Thus, we present the following result.

Theorem 3.9. Let V (·; j) ∈ A for some fixed j ≥ 0 be the potential of the Schrödinger oper-
ator specified in (2.1)-(2.3) with the boundary parameter θ j and the bound states at k = iγs for
s = 1, . . . , j, where j = 0 corresponds to the absence of bound states. Let H(β; j) be the quantity
defined in (3.34) and b be the constant appearing in (2.2). Assume that a bound state at k = iγj+1 is
added to the spectrum, but otherwise the spectral data set is unchanged. The support of V (·; j + 1)
is also confined to [0,b] if and only if

H(−γj+1; 0) = 0, H ′(−γj+1; 0) > 0, (3.53)

where we recall that H(β; 0) refers to the quantity in (3.34) when there are no bound states.

Proof. From (3.3) and (3.34), we obtain

H(β; j) = H(β; 0)
j

s=1

(
β − γs
β + γs

)
. (3.54)

Thus, through differentiation with respect to β, (3.54) yields

H ′(β; j) = H(β; j)
j

s=1

(
2γs
β + γs

)
+ H ′(β; 0)

j
s=1

(
β − γs
β + γs

)
. (3.55)

From (3.54) and (3.55), we obtain

H(γj+1; j) = H(γj+1; 0)
j

s=1

(
γj+1 − γs
γj+1 + γs

)
, (3.56)

H ′(−γj+1; j) = H ′(−γj+1; 0)
j

s=1

(
γj+1 + γs

γj+1 − γs

)
, (3.57)

where we have used H(−γj+1; j) = 0 to get (3.57) from (3.55). From (3.56) and (3.57), we obtain

H ′(−γj+1; j)
H(γj+1; j) =

H ′(−γj+1; 0)
H(γj+1; 0)

j
s=1

(
γj+1 + γs

γj+1 − γs

)2

. (3.58)

Furthermore, from (3.36) and the fact that F(k; 0) has no zeros on the positive imaginary axis, we
know that H(β; 0) > 0 for β > 0. Thus, we see that (3.54) and (3.58) imply that (3.38) and (3.53)
are equivalent. ■

One important consequence of Theorem 3.9 is that an ineligible resonance remains ineligible
if a number of bound states are removed or added via Darboux transformations without changing
the compact support of the potential. An examination of the graph of H(β; j) or H(β; 0) and the
use of (3.38) or (3.53) reveal various facts about eligible and ineligible resonances. The following
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proposition lists several such facts. We remind the reader that the meaning of the maximal number
of eligible resonances is given in Sec. I.

Proposition 3.10. Let V (·; N) ∈ A be the potential of the Schrödinger operator specified in
(2.1)-(2.3) with the boundary parameter θ in (2.3) and N bound states at k = iγj for j = 1, . . . ,N,
where we have N = 0 if there are no bound states. Let M and Ninel denote the maximal number of
eligible resonances and the number of ineligible resonances, respectively, corresponding to the set
{V (·; N), θ}. Let H(β; N) be the quantity corresponding to the set {V (·; N), θ}, as defined in (3.34).
We have the following:

(a) The maximal number of eligible resonances corresponding to the set {V (·; N), θ} is equal to
the sum of the number eligible resonances and the number of bound states for {V (·; N), θ}.

(b) The number of ineligible resonances for {V (·; N), θ}, i.e., the value of Ninel, remains un-
changed if any number of bound states are removed or added via Darboux transformations
without changing the compact support of the potential.

(c) Between any two consecutive eligible resonances corresponding to {V (·; N), θ}, there must at
least be one ineligible resonance.

(d) We must have M ≤ 1 + Ninel, and hence for {V (·; N), θ} we must also have N ≤ 1 + Ninel.
(e) If there are at least two bound states associated with the set {V (·; N), θ}, then there must at

least be one ineligible resonance.
(f) If k = −iγ corresponds to an imaginary resonance and if H(β; N) has no zeros in the interval

β ∈ (−γ,γ), then k = −iγ must correspond to an eligible resonance for the set {V (·; N), θ}.

Proof. The proof of (a) intuitively follows from the definition of the maximal number of
eligible resonances, which is given in Sec. I. Here, we provide the technical details. Because
V (·; N) ∈ A, by Theorem 2.1(a) the corresponding Jost function F(k; N) is entire in k ∈ C and
hence H(β; N) appearing in (3.34) is a real-valued analytic function of β ∈ R. By Theorems 2.1
and 3.3, it then follows that H(β; s) is also a real-valued analytic function of β ∈ R for any
s = 0,1, . . . ,N. By definition, H(β; s) has exactly s zeros in the interval β ∈ (0,+∞), and by
(3.53) we conclude that M is the number of zeros of H(β; 0) in the interval β ∈ (−∞,0) satisfying
H ′(β; 0) > 0. Thus, H(β; N) is obtained from H(β; 0) by converting N eligible resonances into
bound states. Hence, H(β; N) has exactly N bound states and M − N eligible resonances, proving
(a). From (3.53), it follows that an ineligible resonance for {V (·; N), θ} corresponds to a zero of the
associated H(β; 0) in the interval β ∈ (−∞,0) satisfying H ′(β; 0) ≤ 0. As bound states are added,
no such zeros of H(β; 0) are moved from the interval (−∞,0) to the interval (0,+∞). Hence, (b)
holds. Let us now consider (c) when there are no bound states so that we can use the eligibility
criteria (3.53) of Theorem 3.9. In that case, H(β; 0) is a real-valued analytic function of β in the
interval (−∞,0), and hence it is impossible to have two consecutive zeros of H(β; 0) in the interval
(−∞,0) at which H ′(β; 0) > 0. Thus, in the absence of bound states there has to be at least one
ineligible resonance between two eligible resonances. As stated in the proof of (b), the ineligible
resonances are unaffected if some eligible resonances are converted into bound states. Therefore,
the process of adding bound states does not change the location of the ineligible resonances but
only moves a number of eligible resonances into bound states. Hence, even in the presence of
bound states, we must have at least one ineligible resonance between two consecutive eligible
resonances, proving (c). Note that the first inequality in (d) directly follows from (c). By (a), we
have N ≤ M and hence the second inequality in (d) is a consequence of the first inequality in
(d). Note that (e) directly follows from the second inequality in (d) if we have N ≥ 2. We prove
(f) as follows. If H(−γ; N) = 0, we cannot have H(γ; N) = 0 because otherwise the corresponding
regular solution ϕθ(k, x) given in (2.7) would have to be identically zero at k = iγ, contradicting
(2.5). Furthermore, if H(−γ; N) = 0 and H(β; N) has no zeros in the interval β ∈ (−γ,γ], then
H ′(−γ; N) and H(γ; N) must have the same sign. Hence, (3.38) implies that k = −iγ is an eligible
resonance. ■
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IV. RECOVERY FROM THE SCATTERING MATRIX

In this section, we assume that we are given a scattering matrix Sθ(k) for k ∈ R and we know
that Sθ comes from a potential V in class A and from a boundary parameter θ for some θ ∈ (0, π],
where θ appears in (2.3). However, we do not know what V is and we do not know what the value
of θ is. In fact, we do not even know whether θ = π or θ ∈ (0, π). In other words, we are only given
the continuous part of the Marchenko data specified in (2.15) and we only know the existence of V
in A and the existence of θ ∈ (0, π]. In this section, we have two main goals. Our first main goal is
to determine whether Sθ uniquely determines both V and θ. Our second main goal is to reconstruct
V and θ in the case of uniqueness, or to reconstruct all possible sets {V, θ} corresponding the same
scattering matrix Sθ in the case of nonuniqueness.

To help the reader to understand better the theory developed in this section, we first summarize
our findings:

(i) If the extension of Sθ(k) from k ∈ R to k ∈ C has at least one pole on the positive imaginary
axis, then Sθ uniquely determines V and θ. We present an explicit algorithm to reconstruct the
corresponding V and θ from Sθ.

(ii) If the extension of Sθ(k) from k ∈ R to k ∈ C has no poles on the positive imaginary axis and
we have Sθ(0) = −1, then Sθ uniquely determines V and θ. We present an explicit algorithm to
reconstruct the corresponding V and θ from Sθ.

(iii) If the extension of Sθ(k) from k ∈ R to k ∈ C has no poles on the positive imaginary axis
and we have Sθ(0) = +1, then there are precisely two distinct sets {V1, θ1} and {V2, θ2}
corresponding to the same Sθ. We have θ1 = π and θ2 = π/2, and the potentials V1 and V2
correspond to some full-line reflection coefficients R(k) and −R(k), respectively. Neither of
the two corresponding full-line Schrödinger operators have any bound states, and they are
both exceptional in the sense that R(0) , −1. We present an algorithm to reconstruct the sets
{V1, θ1} and {V2, θ2}.

We already know from Theorem 2.1(f) that Sθ(0) must be either −1 or +1. Thus, the three
cases listed above cover all possible scenarios. Having summarized our findings, we now present the
theory yielding the results in (i), (ii), and (iii), starting with case (i).

Case (i) Given Sθ(k) for k ∈ R, by the uniqueness of the meromorphic extension, the poles of Sθ(k)
on the positive imaginary axis are uniquely determined. We already know from Theorem 2.1(e) that
such poles must be simple. Let us assume that there are N such poles and they occur at k = iγs for
s = 1, . . . ,N . For the unique reconstruction of V and θ, we proceed as follows:

(a) We record the set {γ1, . . . ,γN} as input to the Marchenko method in (2.18)-(2.20) toward the
identification of the bound states.

(b) Next, we evaluate the residues Res(Sθ, iγs) for s = 1, . . . ,N ; i.e., we uniquely determine the
residue of Sθ(k) at each bound-state pole at k = iγs. We then look at the sign of i Res(Sθ, iγs)
for any one value of s. With the help of (2.26), if that sign is positive then we conclude that
θ = π, and if that sign is negative then we conclude that θ ∈ (0, π).

(c) From the previous step, we know whether we have θ = π or θ ∈ (0, π). Then, we use the appro-
priate line in (2.18) and the corresponding set {Sθ,{γs,ms}Nj=s} in the Marchenko procedure
outlined in Sec. II and we uniquely determine V as in (2.20). In case θ ∈ (0, π), we use (2.24)
to determine the value of θ.

Case (ii) Given Sθ(k) for k ∈ R with Sθ(0) = −1 and with the further knowledge that the extension
of Sθ(k) from k ∈ R to k ∈ C does not have any poles on the positive imaginary axis, we proceed
as follows. From the Marchenko theory outlined in (2.18)-(2.24), we see that we only need to
know whether we have θ = π or θ ∈ (0, π). This is because we will use either the first line or the
second line of (2.18), but without the summation terms in those lines, as input to the corresponding
Marchenko equation. Thus, in the Marchenko equation (2.19), we have the Marchenko kernel and
the nonhomogeneous term are determined up to a sign, depending on whether we have θ = π or
θ ∈ (0, π). Let us assume that corresponding to Sθ, we have two distinct sets {V1, θ1} and {V2, θ2}.
We cannot have both θ1 and θ2 equal to π because then the second line of (2.18) would yield
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V1(x) ≡ V2(x) via the Marchenko method. Similarly, we cannot have both θ1 and θ2 different from
π because then the first line of (2.18) would yield V1(x) ≡ V2(x). Thus, one of θ1 and θ2 must be
equal to π and the other must be different from π. Without loss of any generality, we can assume
that θ1 = π and θ2 ∈ (0, π). Let us use f1(k,0) to denote the Jost function corresponding to {V1, θ1}
and use F2(k) to denote the Jost function corresponding to {V2, θ2}. Because Sθ(0) = −1, from (2.27)
and (2.28) it follows that we must have f1(0,0) = 0 and F2(0) , 0. From Theorem 2.1, we know
that k = 0 must be a simple zero of f1(k,0) and hence we have f1(k,0) = k h1(k) for some function
h1(k) in such a way that h1(k) is analytic and nonzero in k ∈ C+ and h1(k) = 1/k +O(1/k2) as
k → ∞ in k ∈ C+. Similarly, from Theorem 2.1 we know that F2(k) is analytic and nonzero in
k ∈ C+ and F2(k) = k +O(1) as k → ∞ in k ∈ C+. Since f1(k,0) and F2(k) correspond to the same
scattering matrix Sθ(k), because of (2.16) we must have

Sθ(k) = f1(−k,0)
f1(k,0) =

−F2(−k)
F2(k) , k ∈ R, (4.1)

which implies

f1(k,0)
F2(k) =

− f1(−k,0)
F2(−k) , k ∈ R. (4.2)

Since f1(k,0) = k h1(k), we can write (4.2) also as

h1(k)
F2(k) =

h1(−k)
F2(−k) , k ∈ R. (4.3)

Note that the left-hand side of (4.3) has an analytic extension from k ∈ R to k ∈ C+, and that
analytic extension is continuous in C+ and behaves as O(1/k2) as k → ∞ in C+. Similarly, the
right-hand side of (4.3) has an analytic extension from k ∈ R to k ∈ C−, and that analytic extension
is continuous in C− and behaves as O(1/k2) as k → ∞ in C−. Thus, h1(k)/F2(k) must be an entire
function of k and behaving like O(1/k2) as k → ∞ in C. By Liouville’s theorem, we must then have
h1(k) ≡ 0. However, that would imply f1(k,0) ≡ 0, contradicting the second line of (2.27). Thus,
we cannot have both {V1, θ1} and {V2, θ2} corresponding to the same Sθ(k) and we must have a
unique set {V, θ} corresponding to the input Sθ(k). Having established the uniqueness, let us now
consider the reconstruction problem. As explained in Sec. II, we can use the Marchenko method
for the reconstruction. We can first try the second line of (2.18) as input to the Marchenko equation
with θ = π without the summation term there. We can construct the corresponding potential and Jost
solution via (2.20) and can check if the right-hand side of (2.21) is zero at k = 0,which is required
by the second line of (2.27). Alternatively, we can check if the right-hand side of (2.23) is equal to
our scattering matrix Sθ(k). If there is no agreement, we then know that θ ∈ (0, π), and hence use
the first line of (2.18) without the summation term there as input to the Marchenko equation and
uniquely construct the corresponding V and θ via the first equality in (2.20) and by using (2.24),
respectively.
Case (iii) Given Sθ(k) for k ∈ R with Sθ(0) = +1 and with the further knowledge that the extension
of Sθ(k) from k ∈ R to k ∈ C does not have any poles on the positive imaginary axis, we proceed
as follows. As in case (ii), from the Marchenko theory it follows that it is enough to check the
nonuniqueness by assuming that, corresponding to Sθ, we have two distinct sets {V1, θ1} and {V2, θ2}
with θ1 = π and θ2 ∈ (0, π). Contrary to case (ii), we will now prove that there are precisely two
distinct sets {V1, θ1} and {V2, θ2} corresponding to the same Sθ(k). We again use f1(k,0) to denote
the Jost function corresponding to {V1, θ1} and use F2(k) to denote the Jost function corresponding
to {V2, θ2}. Let us use f2(k, x) to denote the Jost solution corresponding to V2. From (2.6), we have

F2(k) = −i
�

f ′2(k,0) + (cot θ2) f2(k,0)� . (4.4)

This time, from (2.27) and (2.28) it follows that f1(0,0) , 0 and F2(0) = 0. From Theorem 2.1(a),
we know that k = 0 must be a simple zero of F2(k), and hence we have F2(k) = k g2(k) for some
function g2(k) in such a way that g2(k) is analytic and nonzero in k ∈ C+ and g2(k) = 1 +O(1/k)
as k → ∞ in k ∈ C+. Similarly, from Theorem 2.1 we know that f1(k,0) is analytic and nonzero in
k ∈ C+ and f1(k,0) = 1 +O(1/k) as k → ∞ in k ∈ C+. Since f1(k,0) and F2(k) correspond to the
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same scattering matrix Sθ(k), we must have (4.1) and (4.2) satisfied. Since F2(k) = k g2(k), we can
write (4.2) also as

f1(k,0)
g2(k) =

f1(−k,0)
g2(−k) , k ∈ R. (4.5)

Note that the left-hand side of (4.5) has an analytic extension from k ∈ R to k ∈ C+, and that
analytic extension is continuous in C+ and behaves as 1 +O(1/k) as k → ∞ in C+. Similarly, the
right-hand side of (4.5) has an analytic extension from k ∈ R to k ∈ C−, and that analytic extension
is continuous in C− and behaves like 1 +O(1/k) as k → ∞ in C−. Thus, we must have f1(k,0)/g2(k)
entire and behaving like 1 +O(1/k) as k → ∞ in C. By Liouville’s theorem, we must then have
g2(k) ≡ f1(k,0), or equivalently we must have

F2(k) ≡ k f1(k,0). (4.6)

Since there are no poles of Sθ(k) on the positive imaginary axis in C+, it follows that the Marchenko
kernel, which we call M1(y), corresponding to the first set {V1, θ1} with θ1 = π is given by the sec-
ond line of (2.18) but without the summation term there. Then, the Marchenko kernel, which we call
M2(y), corresponding to the second set {V2, θ2} with θ2 ∈ (0, π) is given by the first line of (2.18)
but without the summation term there. From (2.18), it is clear that M2(y) = −M1(y) for y > 0. Let
us now view V1 and V2 as compactly supported potentials in the full-line Schrödinger equation with
V1(x) = 0 for x < 0 and V2(x) = 0 for x < 0. As in (2.30), let us associate the scattering coefficients
T1,L1,R1 with V1 and associate the scattering coefficients T2,L2,R2 with V2. Since Sθ(k) has no poles
on the positive imaginary axis, we know that Nθ2 = 0 and Nπ = 0, where Nθ2 and Nπ denote the
number of bound states corresponding to {V2, θ2} and {V1, θ1}, respectively. From (4.6), we know
that F2(0) = 0, and hence Theorem 2.2(f) indicates that we cannot have θ2 ∈ (0, π/2) ∪ (π/2, π] and
thus we must have θ2 = π/2, which yields cot θ2 = 0. By Theorem 2.3, we then know that Ñ = 0,
i.e., neither T1(k) nor T2(k) has any poles on the positive imaginary axis. From Theorem 2.4, we
then get M1(y) = R̂1(y) and M2(y) = R̂2(y) for y > 0 with R̂1(y) and R̂2(y) denoting the Fourier
transforms as in (2.45). Since we already know that M2(y) ≡ −M1(y),we then get R̂2(y) ≡ −R̂1(y),
and hence yielding R2(k) ≡ −R1(k). Because Ñ = 0, it then also follows that T1(k) ≡ T2(k). From
the characterization conditions8–10,15,16 for the full-line Schrödinger operators, we already know that
if there exists V1 ∈ A corresponding to R1 and T1, we are assured the existence of V2 ∈ A corre-
sponding to −R1 and T1 by recalling that R1(0) , −1 and that T1 does not have any bound-state poles
on the positive imaginary axis. Thus, we have established the existence of two distinct sets {V1, θ1}
and {V2, θ2} with θ1 = π and θ2 = π/2. Note that using cot θ2 = 0 in (4.4), we get F2(k) = −i f ′2(k,0)
and hence (4.6) indicates that

f ′2(k,0) = ik f1(k,0).
One consequence of (4.6) is that we must have b

0
dx V1(x) =

 b

0
dx V2(x). (4.7)

We obtain (4.7) by expanding F2(k) with cot θ2 = 0 with the help of the first line of (2.25) and by
comparing it with the expansion of the right-hand side of (4.6) via the second line of (2.25). The
potential V1 can be reconstructed with the help of the second line of (2.18) without the summation
term there. The potential V1 is then obtained by solving (2.19) and using the first equality in (2.20).
Similarly, V2 can be reconstructed by using the first line of (2.18) without the summation term there.
Thus, V2 can be obtained by using (2.19) and (2.20).

We summarize our findings in this section in the following theorem.

Theorem 4.1. Assume that we are given Sθ(k) for k ∈ R and we know that it comes from a
potential V in class A and from a boundary parameter θ for some θ ∈ (0, π], where θ appears in
(2.3). We then have the following:

(a) If Sθ(0) = +1 and the extension of Sθ(k) from k ∈ R to k ∈ C+ has no poles on the posi-
tive imaginary axis, then there are precisely two distinct sets {V1, θ1} and {V2, θ2} with θ1 =
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π,θ2 = π/2,V1 ∈ A, and V2 ∈ A. The set {V1, θ1} corresponds to the Jost solution f1(k, x),
and the corresponding Jost function f1(k,0) satisfies f1(0,0) , 0. The Jost function F2(k)
for the second set {V2, θ2} is equal to k f1(k,0). Both sets can be uniquely reconstructed
by the Marchenko procedure. The set {V1, θ1} is associated with some scattering coefficients
R1,L1,and T1 in such a way that T1(0) , 0 and that T1(k) does not have poles on the positive
imaginary axis. The scattering coefficientsR1,L1,and T1 are related to f1(k,0) and f ′1(k,0) as
in (2.30). The set {V2, θ2} is associated with the scattering coefficients R2,L2,and T2 where
R2(k) ≡ −R1(k),L2(k) ≡ −L1(k), and T2(k) ≡ T1(k). Although, in general the potentials V1 and
V2 are distinct, their integrals have the same value, as seen from (4.7). The very special case
V1(x) ≡ V2(x) occurs when R1(k) ≡ 0,L1(k) ≡ 0, and T1(k) ≡ 1, which yields V1(x) ≡ 0 and
V2(x) ≡ 0.

(b) If Sθ(0) , +1 or the extension of Sθ(k) from k ∈ R to k ∈ C+ has at least one pole on the posi-
tive imaginary axis, then there is a unique potential V ∈ A and a unique boundary parameter
θ in the interval (0, π] corresponding to Sθ(k). The corresponding potential V and boundary
parameter θ can be uniquely reconstructed by the Marchenko procedure outlined in Sec. II.

V. RECOVERY FROM ABSOLUTE VALUE OF THE JOST FUNCTION

Our goal in this section is to investigate the determination of a real-valued, integrable, compactly
supported potential and a selfadjoint boundary condition from the input data consisting of the abso-
lute value of the corresponding Jost function known for k ∈ R. In other words, we assume that we
only know the continuous part of the Gel’fand-Levitan spectral data given in (2.10) without having
any explicit knowledge of its discrete part. Furthermore, we know that our input data set corresponds
to a selfadjoint Schrödinger operator on the half line with a selfadjoint boundary condition at x = 0.
However, we do not know if the boundary condition is Dirichlet or non-Dirichlet, and we do not
know if there are any bound states and we do not know the number of bound states if there are
any. In fact, we would like to determine all such characteristics from our input data set alone, if
possible.

In this section, we use the notation introduced in Sec. III, namely, we use θ j,V (x; j), ϕ(k, x; j),
and F(k; j) to denote the relevant quantities corresponding to the half-line Schrödinger operator
with bound states at k = iγ1, . . . , iγj, where the case j = 0 refers to the quantities with no bound
states. Note that θ j is the boundary parameter appearing in (2.3), ϕ(k, x; j) is the regular solution
in (2.5), F(k; j) is the Jost function in (2.6), gj is the Gel’fand-Levitan norming constant in (2.9),
G(x, y; j) is the Gel’fand-Levitan kernel appearing in (2.12) and (2.13), A(x, y; j) is the solution in
(2.14) to the Gel’fand-Levitan equation, and H(β; j) is the quantity in (3.34).

Mathematically speaking, we consider the selfadjoint Schrödinger operator on the half line
with the potential V (·; N) in class A, the boundary parameter θN , the Jost function F(k; N),
the bound states at k = iγs with the corresponding Gel’fand-Levitan norming constants gs for
s = 1, . . . ,N, where N is a nonnegative integer. We assume that our input data set solely consists
of |F(k; N)| for k ∈ R. We do not know the value of N , and we do not know anything about
the set {γs, gs}Ns=1. We would like to investigate to what extent our input data set determines
N, θN ,{γs, gs}Ns=1, and V (·; N). In other words, we know the existence of at least one potential V
in class A and the existence of one selfadjoint boundary parameter θ ∈ (0, π] corresponding to
our input data, and we would like to investigate the uniqueness or nonuniqueness of the set {V, θ}
by determining all potentials V in class A and all boundary parameters θ in the interval (0, π]
corresponding to our input data set.

Our findings are summarized as follows: We can determine whether the boundary condition is
Dirichlet or non-Dirichlet. We can determine all the corresponding potentials and boundary condi-
tions, but the uniqueness is only up to the inclusion of the eligible resonances. Thus, if the maximal
number of eligible resonances is zero, then we have the unique determination of the potential
V (·; 0) and the boundary parameter θ0 corresponding to our data. If the maximal number of eligible
resonances is one, then we determine the two distinct sets {V (·; 0), θ0} and {V (·; 1), θ1,{γ1, g1}} cor-
responding to our input data. If the maximal number of eligible resonances is M , then we determine
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that there is a 2M-fold nonuniqueness and that any one of those 2M sets corresponds to our input
data. We remind the reader that the definition of the maximal number of eligible resonances is given
in Sec. I.

As mentioned earlier, the number of imaginary resonances may be infinite, but under some mild
additional assumptions20 such as V (x) ≥ 0, or V (x) ≤ 0, in the vicinity of x = b, that number is
guaranteed to be finite. We recall that b refers to the constant in (2.2) and related to the compact
support of the potential V . Thus, under a mild additional assumption we are guaranteed that M , the
maximal number of eligible resonances, is finite.

Having summarized our findings, let us now outline the method of determining all potentials
and boundary conditions corresponding to our input data:

(a) From our input data |F(k; N)| for k ∈ R, by using the asymptotic behavior in (2.11) we can tell
whether the corresponding boundary parameter θN satisfies θN ∈ (0, π) or θN = π.

(b) From (3.3) and (3.6), it is clear that we have

|F(k; 0)| = |F(k; N)|, k ∈ R, (5.1)

where F(k; 0) is the Jost function corresponding to no bound states. Using the Gel’fand-
Levitan procedure outlined in Sec. II, from |F(k; 0)|, which is equivalent to |F(k; N)| as seen
from (5.1), we uniquely construct V (x; 0), θ0, and the regular solution ϕ(k, x; 0). This is done,
by first forming the Gel’fand-Levitan kernel as in (2.12) and (2.13) without the summation
terms there, namely,

G(x, y; 0) B



1
π

 ∞

−∞
dk


k2

|F(k; N)|2 − 1

(cos k x)(cos k y), θ0 ∈ (0, π),

1
π

 ∞

−∞
dk


1

|F(k; N)|2 − 1

(sin k x)(sin k y), θ0 = π.

Using G(x, y; 0) in the corresponding Gel’fand-Levitan equation in (2.14), namely, in

A(x, y; 0) + G(x, y; 0) +
 x

0
dz A(x, z; 0)G(z, y; 0) = 0, 0 < y < x,

we uniquely recover A(x, y; 0), from which we get V (x; 0) and θ0 via

cot θ0 = −A(0,0; 0), θ0 ∈ (0, π),
V (x; 0) = 2

dA(x, x; 0)
dx

, θ0 ∈ (0, π].
(c) As a consequence of (5.1), we uniquely determine F(k; 0) from our input data via7,8

F(k; 0) =



k exp
(
−1
πi

 ∞

−∞
dt

log |t/F(t; N)|
t − k − i0+

)
, θN ∈ (0, π),

exp
(

1
πi

 ∞

−∞
dt

log |F(t; N)|
t − k − i0+

)
, θN = π,

(5.2)

where i0+ indicates that the value for k ∈ R must be obtained as a limit from within C+. Since
F(k; 0) has an analytic extension to the entire complex plane, we are assured that (5.2) holds
for all k ∈ C.

(d) Having F(k; 0) at hand for k ∈ C, we construct the real-valued function H(β; 0) defined in
(3.34). We already know that H(β; 0) does not have any zeros when β > 0. We can have
H(0; 0) , 0 (generic case) or we can have H(0; 0) = 0 (exceptional case) with a simple zero of
H(β; 0) at β = 0. We then go ahead and determine all imaginary resonances, i.e., the zeros of
H(β; 0) when β < 0.

(e) We then identify each imaginary resonance either as eligible or ineligible by using the eligi-
bility criteria given in (3.53), namely, by finding all negative β-values satisfying

H(β; 0) = 0, H ′(β; 0) > 0. (5.3)

Assuming that (5.3) is satisfied when β = −βs for s = 1, . . . ,M,we uniquely determine the set
{βs}Ms=1. Note that M is the maximal number of eligible resonances. We know that M may be
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zero, a positive integer, or infinity. As mentioned previously, a mild additional assumption20

guarantees the finiteness of M.
(f) Each eligible resonance k = −i βs can be converted into a bound state by using the Darboux

transformation formulas given in Theorem 3.1. Thus, it is possible to add N bound states,
where N is an integer between 0 and M . We can choose N bound states at k = iγs among the
M possible choices k = i βs in

(
M
N

)
ways, where

(
M
N

)
denotes the binomial coefficient, which

is equal to M!/((N!)(M − N)!). Thus, as N takes all values between 0 and M , we find that we
have 2M distinct sets consisting of a potential and a boundary parameter, each corresponding
to the same absolute value of the Jost function.

VI. EXPLICIT EXAMPLES

In this section, we illustrate our main results presented in Sections III-V with some explicit
examples. The first example is provided to remind the reader that the boundary parameter θ appear-
ing in (2.3) indeed affects the bound states and resonances, and in fact even the trivial potential can
have a bound state or a resonance depending on the value of the boundary parameter θ appearing in
(2.3).

Example 6.1. Assume that V (x) ≡ 0 in (2.1). The corresponding Jost function Fθ(k) is given
by (2.8). Since Fπ(k) has no zeros in C, there are no bound states and there are no resonances
in the Dirichlet case θ = π. Let us now consider the non-Dirichlet case with some fixed boundary
parameter θ ∈ (0, π). Recall that the zeros of Fθ(k) in C+ correspond to the bound states and the
zeros in C− correspond to the resonances. If cot θ > 0, then there is one bound state and there
are no resonances. If cot θ = 0, then there are no bound states and there are no resonances. If
cot θ < 0, then there are no bound states and there is one imaginary resonance. In fact, as a result
of Proposition 3.10(f), k = i cot θ is an eligible resonance when cot θ < 0. Thus, if cot θ < 0 we can
add a bound state to V (x) ≡ 0 at k = −i cot θ, and if we choose the Gel’fand-Levitan bound-state
norming constant g as in (3.19), i.e., with g2 = −2 cot θ, then the transformed potential still vanishes
everywhere, and hence the transformed potential and the original potential have the same (trivial)
compact support. Note that such a choice is compatible with (3.1). Let us see what happens if we
do not use g2 = −2 cot θ as our norming constant. With f (k, x) = eik x and Fθ(k) = k − i cot θ, using
the first line in (2.7) we evaluate ϕθ(k, x) as

ϕθ(k, x) = 1
2k

�(k − i cot θ) e−ik x + (k + i cot θ) eik x
�
.

If we add a bound state at k = −i cot θ with the Gel’fand-Levitan norming constant g, then the
quantity inside the brackets in (3.2) is given by the right-hand side in the following equation:

2g2 ϕθ(−i cot θ, x)2

1 + g2

 x

0
dy ϕθ(−i cot θ, y)2

=
4g2 cot θ

−g2 + (2 cot θ + g2) e2x cot θ . (6.1)

Thus, the choice g2 = −2 cot θ makes the right-hand side in (6.1) equal to the constant −4 cot θ,
and hence the support of the potential is unchanged when we add the bound state at k = −i cot θ
with the norming constant g =

√
−2 cot θ. Any other choice for the norming constant g results in a

potential with support on the entire half line.

Next, we provide some examples of eligible resonances when the potential and the boundary
parameter are known.

Example 6.2. Let us assume that we are given the boundary parameter θ ∈ (0, π) and that V is
the piecewise constant potential (potential barrier or potential well) given by

V (x) =



v, 0 < x < 1,

0, x > 1,
(6.2)
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where v is a constant parameter. With the help of (2.4)-(2.7) and (6.2) we can explicitly evaluate the
regular solution ϕθ(k, x), the Jost solution f (k, x), and the Jost function Fθ(k) and get

ϕθ(k, x) =



cosh ηx − cot θ
sinh ηx
η

, 0 ≤ x ≤ 1,

b1 cos k(x − 1) + b2

k
sin k(x − 1), 1 ≤ x < +∞,

(6.3)

f (k, x) =



eik cosh η(x − 1) + ik eik
sinh η(x − 1)

η
, 0 ≤ x ≤ 1,

eik x, 1 ≤ x < +∞,

Fθ(k) = eik(k − i cot θ) cosh η − eik(k cot θ − iη2) sinh η
η

, (6.4)

where we have defined

η B
√
v − k2, b1 B cosh η − cot θ

sinh η
η

, b2 B η sinh η − cot θ cosh η.

Let us now analyze (6.2) for various values of v and cot θ. We use an overline on a digit to indicate a
round off.

(a) When (v,cot θ) = (−10,1), using (3.34) and (6.4) we obtain Hθ(β), plotted in the first graph of
Figure 1. We observe from the graph of Hθ(β) that it has two positive zeros and one negative
zero. Thus, there are two bound states occurring at k = 0.760 409i and k = 3.252 73i and
that Fθ(k) has a simple zero at k = −γi, where γ = 2.820 84. From the graph of Hθ(β), we
easily see that Hθ(γ) < 0 and H ′θ(−γ) > 0, and hence by (3.38) we conclude that k = −γi is an
ineligible resonance and that it is impossible to add a bound state to V without changing the
compact support property. Equivalently, using b = 1 for the constant b appearing in (2.2), with
the help of (6.3) we evaluate the right-hand side of the second equality in (3.19) and hence
obtain g2 = −4.237 61. Thus, we confirm that k = −γi is an ineligible resonance because
(3.20) is not satisfied. The same conclusion can also be reached via Proposition 3.10(e)
because we have precisely two bound states and one imaginary resonance and hence that
imaginary resonance must be ineligible.

(b) When (v,cot θ) = (−0.2,6), the plot of Hθ(β), given as the second graph in Figure 1, reveals
that Hθ(β) has one positive zero and two negative zeros. Thus, there is a bound state at
k = 6.016 64i and that Fθ(k) has simple zeros at k = −γ1i and k = −γ2i, where γ1 = 3.361 82
and γ2 = 5.958 42. From the graph of Hθ(β), we easily see that Hθ(γ2) < 0 and H ′θ(−γ2) > 0,
and hence k = −γ2i is an ineligible resonance, as indicated by the criteria in (3.38). On the
other hand, Hθ(γ1) < 0 and H ′θ(−γ1) < 0, so that k = −γ1i is an eligible resonance because of
the criteria in (3.38). In fact, from the second equality in (3.19), using b = 1 and γ = γ1 we
get g2 = g2

1 > 0 with g2
1 = 1.932 09. Thus, we can add a bound state to V at k = iγ1 with the

Gel’fand-Levitan norming constant g1 = 1.39 and the resulting potential has also support in
the interval [0,1].

(c) When (v,cot θ) = (0.003 521,−3), from the plot of Hθ(β) given as the third graph in Figure 1
we observe that Hθ(β) has no positive zeros and has a double zero at a negative β-value. Thus,
there are no bound states and Fθ(k) has a double zero at k = −γi,where γ = 3.6205. We have

FIG. 1. The plots of Hθ(β) versus β in Examples 6.2(a), 6.2(b), and 6.2(c), respectively.
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FIG. 2. The numerically reconstructed potentials V1 and V2 in Example 6.3 corresponding to L1 and −L1, respectively.

Hθ(γ) > 0 and H ′θ(−γ) = 0. Thus, the incompatibility with (3.38) shows that we cannot add
any bound states to V without changing the compact support property.

In our final example, we elaborate on the nonuniqueness in the special case, case (iii) of
Sec. IV, and present two distinct sets {V1, θ1} and {V2, θ2} corresponding to the same scattering
matrix S.

Example 6.3. As stated in Theorem 4.1(a), we note that {V1, θ1} and {V2, θ2} with V1(x) ≡ 0,
θ1 = π,V2(x) ≡ 0, θ2 = π/2 yield the same scattering matrix Sθ(k) ≡ 1, as seen from (2.8) and (2.16),
illustrating the double nonuniqueness indicated in Sec. IV. We now present a less trivial example of
nonuniqueness by using the potential

V1(x) =



1, 0 < x < 1,

−a,
1
2
< x < 1,

0, x > 1,

(6.5)

where a is a positive parameter. We can evaluate the Jost solution f1(k, x) explicitly by using (6.5)
in (2.1) and the asymptotic condition given in (2.4) and by satisfying the continuity of f1(k, x) and
f ′1(k, x) at x = 1 and at x = 1/2. We then evaluate f1(k,0) and f ′1(k,0) explicitly as a function of
k in the presence of the parameter a. Then, from (2.30) we obtain the corresponding scattering
coefficients T1,L1, and R1 explicitly via

T1(k) = 2ik
ik f1(k,0) + f ′1(k,0)

, L1(k) =
ik f1(k,0) − f ′1(k,0)
ik f1(k,0) + f ′1(k,0)

,

R1(k) = −
ik f1(−k,0) + f ′1(−k,0)

ik f1(k,0) + f ′1(k,0)
.

We then choose the value of a so that T1(k) has no poles on the positive imaginary axis and that
T1(0) , 0. From the small-k limits of T1(k), we find that those two conditions are satisfied provided
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a is obtained by solving near a = 1 the equation

√
a tan

(√
a

2

)
= tanh

(
1
2

)
,

which yields a = 0.857 247. With this choice of a, we get T1(0) = 0.973 827,L1(0) = −0.2273, and
R1(0) = 0.2273. Note that with a = 0.857 247 in (6.5), the half-line scattering matrix S1(k) corre-
sponding to the Dirichlet boundary condition θ1 = π is obtained by using the second line of (2.16).
With the same specific a-value, we then evaluate the potential V2(x) corresponding to the scattering
coefficients T2,L2,and R2, where

T2(k) ≡ T1(k), L2(k) ≡ −L1(k), R2(k) ≡ −R1(k).
Since T1(k) has no poles on the positive imaginary axis, one can uniquely reconstruct V2(x) from
R2(k), or equivalently from −R1(k), with the help of (2.45), (2.44), and the first equation in (2.20).
Note that V1 and V2 can also uniquely be reconstructed from L1 and −L1, respectively. In fact, the
corresponding numerical approximations of V1 and V2 have been computed in MATLAB via the
method of Ref. 19, using L1(k) and −L1(k) in the interval k ∈ [0,100] with a discretization length of
∆k = 0.01. The resulting potentials are shown in Figure 2.
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