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The radial Schrdinger equation is considered when the potential is real valued, is
integrable, and has a finite first moment. The Jost function, the scattering matrix,
the number of bound states for the potential are expressed in terms of the corre-
sponding quantities associated with the fragments of the potential. An improved
expansion on the small-energy asymptotics of the Jost solution is presented.
© 2000 American Institute of Physids$S0022-24880)05307-X]

I. INTRODUCTION
Consider the radial Schdinger equation
P (K,x) + K2k, x) =V(X)p(k,x), xe(0,+%), (1.1

where the potentiaV is real valued and belongs td(R™), i.e., [5dx(1+x)|V(x)| is finite. The
prime denotes the derivative with respect to the spatial coordindtée refer the reader to Ref. 1
for the analysis of the scattering theory fdr.1). We choose our notations and conventions to
conform with those given in Ref. 2. For the quantities associated Wijtiwe useS(k) for the
scattering matrixF (k) for the Jost functionf(k,x) for the Jost solutiong(k,x) for the regular
solution, (k,x) for the physical solutiong(k) for the phase shift, and for the number of bound
states. We define

0, F(0)+#0,

4=11. F(0)=0, 2

and say thaV is generic ifF(0)# 0 and is exceptional iIF(0)=0.
We recall the definition of these quantities below. The regular solutiofldj, ¢(k,x),
satisfies the boundary conditions
e(k,0)=0, ¢'(k0)=1, (1.3
and the Jost solutiof(k,x) satisfies
e f(k,x)=1+0(1), e ®f'(k,x)=ik+0(1), Xx— +o. (1.9
The Jost functiorF (k) is defined as
F(k):=f(k,0), (1.5
and the phase shif#(k) is defined in terms of the phase of the Jost function as
F(k):=|F(k)|e 90,

where §(k) is the continuous branch of the phase function such #ate)=0. The scattering
matrix is defined as
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F(=k)
and the physical solution dfl.1) satisfies
Pk, x)=e"2® sin(kx+ 8(k))+0(1), X— +o. (1.7

Let us use an asterisk to denote complex conjugation. The following are khbwn.

F(—k)=F(k)*, keR, 1.9
k
w(k,x)=m¢(k,x), 1.9
1
o(kx)= 5 [F(=kf(kx) = F (k) f(=kx)], (1.10
S(k)=e? oW, (1.12

The bound states of correspond to the zeros Bf(k) on the positive imaginary axis i@", and
according to the Levinson theorem

N+d
2

50 = T,
whered is the quantity defined if1.2).
In this paper we study the smalasymptotics of the Jost solution by fragmenting the poten-
tial into two pieces and using the smélproperties related to the fragments. The reader is referred
to Refs. 3 and 4 for the history and further references on the dofiafiits of the Jost solution of
(1.2). The derivation of the “factorization formulas” in Sec. Il has been motivated by similar
formulas (see, e.g., Ref.)5for the one-dimensional Schiimger equation. It should be stated,
however, that the formulas in the radial case are somewhat different from the corresponding
formulas on the full line; this is not surprising because the factorization formulas on the full line
possess certain symmetries, e.g., under a reflection through the origin or an interchange of the two
fragments, whereas such symmetries are missing in the radial case. Nevertheless, such factoriza-
tion formulas are useful because in general the properties related to the fragments are easier to
obtain than the properties related to the whole potential; the factorization formulas allow us to
obtain the properties related to the whole potential in terms of those related to its fragments.
This paper is organized as follows. In Sec. Il we fragment the potéwtialo two pieces and
express its Jost function and scattering matrix in terms of the corresponding quantities associated
with the two fragments. In Sec. lll we analyze the snkadisymptotics of the Jost solution and
show that for each fixede R* the quantityf’ (k,x)/f(k,x) or its reciprocal has a derivative with
respect tk atk=0 and we explicitly find that derivative. In Sec. IV we study the relation between
the number of bound states ¥fand the corresponding numbers for its fragments; we show that
the sum of the number of bound states for the two fragments is either equal to or one larger than
the number of bound states ¥f In Sec. IV we also investigate exactly wh&his generic or
exceptional depending on its fragments being generic or exceptional.

Il. FACTORIZATION

Let us fragment the potential &6=V,+V, such thatV, is supported in (&) andV, is
supported in §,+) for some positive constar Our purpose in this section is to relate Jost
function and the scattering matrix ®fto the Jost functions and scattering matrice¥ pndV,.
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Let us use the subscripts 1 and 2 to identify the quantities relate¥d &mdV,, respectively.
Thus, for exampleS; andS, are the scattering matrices; andF, are the Jost function$; and
f, are the Jost solutiong,; and¢, are the regular solutions, ad and &, are the phase shifts for
V; andV,, respectively.

Theorem 2.1: AssumeV is real valued and belongs ﬂoi(R+). Let V, and V, be the
fragments ofV with supports in (&) and (@, + =), respectively, for soma>0. Then

F(ky 1 1
W_§[1+Sl(k)]+5[1_51('()])(2“(), (2.2)
where
f5(k,0)

XalK ::ikiz(k,O)' 2.2

Consequently

ik[ 1+ Sy (K)]fo(—k,0)+[1— S, (k) ]f5(—k,0)

S(k)=S,(k) P o 2.3

ik[1+S;(k)]f,(k,0)+[1—S,(k)]f5(k,0)

Proof: The regular solutions fo¥ andV; satisfy the same equation on &D,and the same
boundary conditions at=0; thus

e(kX)=ei(kx), ¢'(kx)=ei(kx), xe[0al. (2.9

Similarly, the Jost solutions fovY andV, satisfy the same equation oa,(+>) and the same
boundary conditions at= +, and hence

f(k,x)=fo(k,x), f'(kx)=f5(k,x), xel[a,+»). (2.5

Let [f;g]:=fg’—f'g denote the Wronskian. The Wronskian of any two solutiong1of) is
independent ok. For example, fron(1.4) we see that

[f(k,x);f(—k,x)]=—2ik,
and hence fronil.5 and(1.10 we get
F(K)=[f(k,x);(k,x)]. (2.6
Evaluating the Wronskian if2.6) at x=a and using(2.4) and (2.5, we get
F(k)=fa(k,a)ei(k,a)—fa(k,a)ea(k,a). (2.7)

On the other hand, sincé;=0 for x>a, using(1.7) and(1.9) we obtain

Rk s
<pl(k,x)—Te tsin(kx+68;), Xela,+»), (2.8

and similarly, since/,=0 for x<a, we have

sinkx

f,(k,x)=f,(k,0)coskx+ f5(k,0) o xe[0a],

or equivalently, by usingl.5) and(2.2), we get
fo(k,x)=Fy(k)[ coskx+i y,(k)sinkx], xe[0a]. (2.9
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Using (2.8) and(2.9) in (2.7), we obtain
F=F,F,e' % [coska+iy,sinka]Jcogka+ &;) — F;F,e %[ —sinka+i y, coska]sin(ka+ &;),
which simplifies to
F=F,F,e'%[coss;—iy,sind]. (2.10

Converting the trigonometric functions {2.10 into complex exponentials and using the analog
of (1.17) for S;, we obtain(2.1). Then, with the help of1.6), (1.8), (1.11), (2.1), and(2.2), we get
(2.3. |

Ill. SMALL-ENERGY ESTIMATES

In this section we consider the small-energy asymptotics of the Jost solution. Our main result
is given in Theorem 3.5, where we show that fée Li(R*), at each fixedx the quantity
f’(k,x)/f(k,x) or its reciprocal can be differentiated with respecktat k=0.

The following result is well knowrt.

Theorem 3.1:1f V is real valued and belongs to}(Rﬂ, then ak—0 in R we haveS(k)
=1+0(1) generically andS(k)=—1+0(1) in the exceptional case. \f, is real valued, it has
support in (0a) for some finitea>0, andV, e L1(0,a), then the corresponding Jost functiBr
is entire in the complex plan€ and hence

F1(k)=F1(0)+kF,(0)+0O(k?, k—O0 in C,

where the overdot denotes the derivative with respedt tm the generic case we havg(0)
#0 and

F1(0)
F1(0)

Si(k)=1-2k +0(k?), k—0 in C. (3.1

In the exceptional cas&,;(0)=0 andF;(0)#0, and we haves, (k)= —1+O(k) ask—0 in C.
Let g(k,x) be the solution of1.1) satisfying

a(k,0=1, g'(k,0=0. (3.2

We have

g(k,x)=coskx+ % fxdysink(x—y)V(y)g(k,y). (3.3
0

The regular solutiorp(k,x) satisfies

sinkx 1 (x )
p(kx)=——+ 1 fodysmku—y)vw)so(k,y). (34

Let ¢(k,x) be the solution of1.1) satisfying
¢(k,00=1(0,0, ¢'(k,0=7'(0,0). (3.5
Thus

$(0x)=f(0x), Xe[0,+»), (3.6
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#(0x)=£(0,0 +xf'(0,0) + foxdy (X=y)V(y) $(0y). 3.7

Sincef(0x)=1+0(1) asx— +«, with the help of(3.6), by lettingx— +« in (3.7) we get

£(0,0=— f:dy V(y) $(0y), (39

F(0,0=1+ f:dy YMy) $(0y). (3.9

Moreover, from(1.3), (3.2), and(3.5) it follows that
#(k,x)=1(0,09(k,x)+ (0,0 ¢(k,X). (3.10
Proposition 3.2:AssumeV is real valued and belongs L(J}(R+). Then,

kx|

1+ kx|

2

|b(k,x) — p(0X)|<C . XeR", ke[—eel (3.11)

for any fixed positivee, whereC denotes a constant independenixaind k.
Proof: The proof can be found in Lemma 2.2 of Ref. 6. |
Using (1.3 and(3.2) we get
f(k,0)=[f(k,x);e(kx)], f'(k,0)=—[f(k,x);g9(k,x)]. (3.12

Evaluating the Wronskians i(8.12 asx— +«, with the help of(3.3) and(3.4) we get

f(k,0)=1+f:dy dYV(y)e(k,y), (3.13

f'(k,0)=ik— f:dy dYVv(y)g(k,y). (3.14

Proposition 3.3:AssumeV is real valued and belongs Id(R"). ThenP(k)=—ik+o(k) as
k—0 in C*, whereP(k) is the quantity defined as
P(k):=—f'(k,00f(0,00+'(0,0)f(k,0). (3.195

Proof: From (3.5 and(3.15 it follows that P(k) =[f(k,x); ¢(k,x)]. Using(3.12 and(3.13
in (3.15 we get

P(k)=f(0,0)[—ik+f:dy dYV(y)g(k,y)|+f'(0,0 1+J’:dy ékyV(y)cp(k,y)}.
(3.16
Using (3.10 in (3.16 we have
P(k)=—ikf(0,0)+f’(0,0)+foody YV (y)p(Kk,y). (3.17)
0

Evaluating(3.13 and(3.14) atk=0 and using the result on the right-hand sidé31.7), with the
help of (3.8) and (3.9 we getP(k)=—ik+J;+J,, where
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Jyi= J:dy [e'Y—1—iky]V(y)$(0y), (3.18

Jpi= J;dy V(y)[p(k,y)— H(0Y)]. (3.19

Let us useC to denote a constant not necessarily assuming the same value at different appear-
ances. Using the inequality

|eiZ—iz—1|$—1+Z, 7=0,
from (3.18 we get
= |ky|
J $CkJ dy———V|V(y)|,
| l| | | 0 y1+|ky|y| (Y)|

and hencel;=o0(k) ask—0. Similarly, using(3.11) in (3.19 we get

= |ky|
J SCkf dy———Vy|V ,
2] [K| 0 y1+|ky| y|V(y)|

and henceJ,=o0(k). Thus, the theorem is proved wheén-0 in R. With the help of the
Phragme-Lindeld theorems it follows that the limit is valid also whén-0 in C*. [ |
Theorem 3.4: AssumeV is real valued and belongs Lo}(R*). Then, iff(0,0)#0 we have

f'(k,0) (0,0 ik

f(k,00 (0,0 + f(070)2+0(k), k—0 in C™, (3.20

and if f'(0,0)#0 we have

f(k0) (0,0 ik
f'(k,00 (0,00 (0,0

s+0(k), k—0 in C". (3.21)

Proof: Whenf(0,0)#0, from (3.15 we get

f'(k,0) (0,0  P(k
f(k,00 f(0,00 f(k,0f(0,0°

Thus, using Proposition 3.3 and the continuityf gk,0) atk=0, we get(3.20. On the other hand,
if £'(0,0)#0, we obtain(3.21) by using

f(k0) (0,0 P(k)
f'(k,0 f(0,00 f'(k,0f' (0,0’

and by applying Proposition 3.3 and the continuityfofk,0) atk=0. |
Next, we show that the result in Theorem 3.4 holds not only=a0 but for anyxe R™.
Theorem 3.5: AssumeV is real valued and belongs ﬂo}(R*). Then, for each fixedk
eR*, if f(0x)#0 we have

k) /(0% ik
flkx) ~ Fox) T fox2 ok

k—0 in C*, (3.22

and if f"(0x)#0 we have
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f(kx)  f(0x) ik
f'(k,x) f'(0x) f'(O,

2 oK), k=0 in c*. (3.23

Proof: The proof is similar to the proof of Theorem 3.4. For any fixeg 0, define the
solutionse,, g,, and ¢, of (1.1) satisfying

pa(k,@)=0, oi(k,a)=1,
ga(k,a)=1, gi(k,a)=0,

da(k,a)=1(02), ¢y(ka)=F'(0a).
Similar to (3.6)—(3.10 we get

$(0x)=1(0x), xe[0,+x),

$2(0X)=F(02)+ (x—a)f' (0a)+ f:dy (X=y)V(y) ba(0Y),
f(02)=— f:dy V() ba(0Y).

f(0@)=1+af'(0,a)+ J:dy YMY) ¢a(0y),

Pa(k,x)=F(0,2)ga(k,x) +'(0.2) @a(k,X).

Proposition 3.2 still holdsif we use ¢, instead of¢ in (3.11). Proceeding as in the proof of
Proposition 3.3, we obtain

f(0,2)f' (k,a)—f'(0)f(k,a)=ik+0o(k), k—0 in C*. (3.24

Imitating the proof of Theorem 3.4, froif8.24) we get(3.22 and(3.23 holding at anyx=a.ll
WhenV e Li(R*), even though in generdl(k,x) and f’(k,x) are not differentiable with
respect tdk atk=0, the above theorem shows that their ratio is indeed differentiable with respect
to k at k=0. Note that(3.22 does not hold at thex values wheref(0x)=0. We will see in
Proposition 4.8v) that the number of suckivalues is equal to the number of bound state¥ of

IV. BOUND STATES

In this section we relate the number of bound stateg & the number of bound states of its
fragmentsV,; andV,. We also analyze the circumstances\bteing generic and exceptional
depending on whether the fragments are generic or exceptional. A similar analysis on the whole
line was given in Ref. 7.

The first two propositions contain known resutia.brief proof of Proposition 4.1 is included
merely to remind the reader the oscillation properties of the Jost function kisean the positive
imaginary axis.

Proposition 4.1:AssumeV is real valued and belongs lo}(R*), and let its bound states
correspond tk=i«; with 0<k;<---<xky. Then,

(i) F(iB) has simple zeros @=«; for j=1,...N.

(i)  F(iB)>0 whenB>ky.

(i) (=1)NIF(iB)>0 whenBe (k;,kj1q) for j=1,..N—1.
(iv) (—=1)NF(iB)>0 whenBe (0,x;).
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(v)  Generically 1)NF(0)>0 and in the exceptional ca$g0)=0.

Proof: The proof is standard(i) is known, and the rest follow from the fact tha(k)=1
+0(1/k) ask— in C*, the only(simple zeros ofF(k) in C™\{0} occur atk=i«;, and that
F(iB) is real and continuous o R™. |

The number of bound states is also related to the zerdi gfx) onxe R*, as summarized
in the following proposition.

Proposition 4.2:AssumeV is real valued and belongs to}(R*), and let its bound states
correspond tk=i«; with 0<k;<---<ky. Then we have the following:

(i)  For each3=0, we havef(i3,x)=e P1+0(1)] asx— +.

(i)  For each fixed3= ky, f(iB,x) has no zeros or e (0,+ ).

(i)  For each fixedB e[ «j,xj,1) with j=1,..N—1, the quantityf(i8,x) has exactlyN—j
zeros onx e (0,+ ).

(iv)  For each fixed3 e[ 0,x4),f(i B,x) hasN zeros onx e (0,+ ).

Proposition 4.3:AssumeV is real valued and belongs td(R*), and letV=V;+V,, where
V, is supported in (&) andV, in (a,+) for somea>0. If V; is generic, then

F(O) 1(0x)+| (0,0 — F(O) 1(0,0 |¢(0 <
2(0,X), X=a.
If V, is exceptional, then
F(0)91(0, )+f,(0 0 f1(0x), x=a
X X <a,
f(0x)= o HO w2

f,(0x), x=a,

whereg,(k,X) is the solution o0f(1.1) corresponding to the potentigl, with the boundary con-
ditions|[cf. (3.2)]

Proof: If V, is generic, from(2.6) we see thaf;(0,x) and¢4(0x) are linearly independent on
xeR™". Writing f(0x) as a linear combination df;(0,x) and¢,(0x), we determine the coeffi-
cients in terms off (0,0) andf’(0,0) and get(4.1). In the exceptional case, writinf(0,x) as a
linear combination of ;(0,x) andg,(0,x) and determining the coefficients in termsf¢0,0) and
f'(0,0), we get(4.2). [ |

Proposition 4.3:AssumeV; is real valued, has support in &), for somea>0, belongs to
L1(0,a), and hasN; bound states. I¥/; is generic, therf;(0x) hasN; zeros all located in (@)
with no zeros ak=0 and no zeros iha, +). If V, is exceptional, theffi;(0x) hasN; zeros all
located in (Ga), an additional zero at=0, and no zeros ifa, + ).

Proof: The proof follows from Proposition 4(®) and the fact thaf,(0x)=1 for all x
ela,+x). |

Proposition 4.4:Assume thatV, is real valued, has support ira(+«) for somea>0,
belongs td.}(a,%—oo), and hasd\, bound states. I¥/, is exceptional, theifi,(0,x) hasN, zeros in
(a,+), no zeros in (@], and one zero at=0. If V, is generic and;(0,0)/f,(0,0)=0, then
f,(0x) hasN, zeros in @,+«) and no zeros if0,a]. If V, is generic andf5(0,0)/f,(0,0)
<0, thenf,(0x) hasN,—1 zeros in &,+), and one zero in (@], and no zeros at=0.

Proof: The proof is obtained by using Proposition @2 and the fact that

fo,(0X)=F,(0)+f5(0,0%, x=<0,



4270 J. Math. Phys., Vol. 41, No. 7, July 2000 Tuncay Aktosun

which implies thatf,(0,x) has exactly one zero in @) if f5(0,0)/f,(0,0)<0. |

Theorem 4.5: AssumeV is real valued, belongs tbi(R+), and hasN bound states; le¥
=V,;+V,, whereV, has support in (@) andV, in (a,+ ) for somea>0, and suppos¥; has
N; bound states and, hasN, bound states. Then we have the following:

(i) If VV, is generic and 5(0,0)/f,(0,0)<0, thenN=N;+N,—1; in any other cases, we have
N=N;+N,.

(i)  If both V; andV, are exceptional, theW is also exceptional.

(i) If V4 is exceptionalV, is generic, and 5(0,0)# 0, thenV is generic.

(iv) If V4 is exceptionalV, is generic, and5(0,0)=0, thenV is exceptional.

(v) If V; andV, are both generic ant},(0,0)=0, thenV is also generic.

(vi) If V, andV, are both generic and;(0,0)#0, thenV is exceptional ifF,(0)F,(0)
=iF2(0)fé(O,0) and otherwise generic.

Proof: According to the Sturm—Liouville theofy/f(0x) and f;(0x) must have the same
number of zeros in (@); hence, from Proposition 4.3 it follows th&t0,x) hasN; zeros in (0q);
on the other hand, the number of zerosf@dx) in (a,+=) is determined in terms dfl, by
Proposition 3.4. Thus(i) is proved. Recall from Theorem 3.1 th&0)=1 generically and
S(0)=—1 in the exceptional case. When bdth andV, are exceptional, we havg,(0)=—1
and f;(0,0)#0; thus, lettingk—0 in (2.3), we see thatS(0)=S,(0), andhenceS(0)=—1,
which proves(ii). The proof of (iii) is obtained similarly as in the proof dfi); from S(0)
=S5,(0) it follows thatV is generic asV, is. To get(iv) note that(2.2) and (3.20 imply that
x2(K)=1/F,(0)?+0(1) ask—0, and hence fron2.3) we getS(0)= — S,(0), which implies that
V is exceptional becausé, is generic. The proof ofV) is obtained from(2.1) ask—0, i.e., from
F(0)=F,(0)F,(0), which is obtained by using,(k)=1+o0(1) andy,(k)=1/F,(0)?>+0(1) as
k—0. Finally, to prove (vi), using (3.1) and (3.2) in (2.2, we get F(0)=F4(0)F,(0)
—il'Zl(O)fg(O,O), from which the conclusion follows. |
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