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The radial Schro¨dinger equation is considered when the potential is real valued, is
integrable, and has a finite first moment. The Jost function, the scattering matrix,
the number of bound states for the potential are expressed in terms of the corre-
sponding quantities associated with the fragments of the potential. An improved
expansion on the small-energy asymptotics of the Jost solution is presented.
© 2000 American Institute of Physics.@S0022-2488~00!05307-X#

I. INTRODUCTION

Consider the radial Schro¨dinger equation

c9~k,x!1k2c~k,x!5V~x!c~k,x!, xP~0,1`!, ~1.1!

where the potentialV is real valued and belongs toL1
1(R1), i.e.,*0

`dx(11x)uV(x)u is finite. The
prime denotes the derivative with respect to the spatial coordinatex. We refer the reader to Ref.
for the analysis of the scattering theory for~1.1!. We choose our notations and conventions
conform with those given in Ref. 2. For the quantities associated withV, we useS(k) for the
scattering matrix,F(k) for the Jost function,f (k,x) for the Jost solution,w(k,x) for the regular
solution,c(k,x) for the physical solution,d(k) for the phase shift, andN for the number of bound
states. We define

dªH 0, F~0!Þ0,

1, F~0!50,
~1.2!

and say thatV is generic ifF(0)Þ0 and is exceptional ifF(0)50.
We recall the definition of these quantities below. The regular solution of~1.1!, w(k,x),

satisfies the boundary conditions

w~k,0!50, w8~k,0!51, ~1.3!

and the Jost solutionf (k,x) satisfies

e2 ikxf ~k,x!511o~1!, e2 ikxf 8~k,x!5 ik1o~1!, x→1`. ~1.4!

The Jost functionF(k) is defined as

F~k!ª f ~k,0!, ~1.5!

and the phase shiftd(k) is defined in terms of the phase of the Jost function as

F~k!ªuF~k!ue2 id~k!,

whered(k) is the continuous branch of the phase function such thatd(1`)50. The scattering
matrix is defined as
42620022-2488/2000/41(7)/4262/9/$17.00 © 2000 American Institute of Physics
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S~k!ª
F~2k!

F~k!
, ~1.6!

and the physical solution of~1.1! satisfies

c~k,x!5eid~k! sin~kx1d~k!!1o~1!, x→1`. ~1.7!

Let us use an asterisk to denote complex conjugation. The following are known.1,2

F~2k!5F~k!* , kPR, ~1.8!

c~k,x!5
k

F~k!
w~k,x!, ~1.9!

w~k,x!5
1

2ik
@F~2k! f ~k,x!2F~k! f ~2k,x!#, ~1.10!

S~k!5e2id~k!. ~1.11!

The bound states ofV correspond to the zeros ofF(k) on the positive imaginary axis inC1, and
according to the Levinson theorem

d~01!5S N1
d

2Dp,

whered is the quantity defined in~1.2!.
In this paper we study the small-k asymptotics of the Jost solution by fragmenting the pot

tial into two pieces and using the small-k properties related to the fragments. The reader is refe
to Refs. 3 and 4 for the history and further references on the small-k limits of the Jost solution of
~1.1!. The derivation of the ‘‘factorization formulas’’ in Sec. II has been motivated by sim
formulas ~see, e.g., Ref. 5! for the one-dimensional Schro¨dinger equation. It should be state
however, that the formulas in the radial case are somewhat different from the correspo
formulas on the full line; this is not surprising because the factorization formulas on the ful
possess certain symmetries, e.g., under a reflection through the origin or an interchange of
fragments, whereas such symmetries are missing in the radial case. Nevertheless, such fa
tion formulas are useful because in general the properties related to the fragments are e
obtain than the properties related to the whole potential; the factorization formulas allow
obtain the properties related to the whole potential in terms of those related to its fragmen

This paper is organized as follows. In Sec. II we fragment the potentialV into two pieces and
express its Jost function and scattering matrix in terms of the corresponding quantities ass
with the two fragments. In Sec. III we analyze the small-k asymptotics of the Jost solution an
show that for each fixedxPR1 the quantityf 8(k,x)/ f (k,x) or its reciprocal has a derivative wit
respect tok at k50 and we explicitly find that derivative. In Sec. IV we study the relation betw
the number of bound states ofV and the corresponding numbers for its fragments; we show
the sum of the number of bound states for the two fragments is either equal to or one large
the number of bound states ofV. In Sec. IV we also investigate exactly whenV is generic or
exceptional depending on its fragments being generic or exceptional.

II. FACTORIZATION

Let us fragment the potential asV5V11V2 such thatV1 is supported in (0,a) and V2 is
supported in (a,1`) for some positive constanta. Our purpose in this section is to relate Jo
function and the scattering matrix ofV to the Jost functions and scattering matrices ofV1 andV2 .
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Let us use the subscripts 1 and 2 to identify the quantities related toV1 andV2 , respectively.
Thus, for example,S1 andS2 are the scattering matrices,F1 andF2 are the Jost functions,f 1 and
f 2 are the Jost solutions,w1 andw2 are the regular solutions, andd1 andd2 are the phase shifts fo
V1 andV2 , respectively.

Theorem 2.1: AssumeV is real valued and belongs toL1
1(R1). Let V1 and V2 be the

fragments ofV with supports in (0,a) and (a,1`), respectively, for somea.0. Then

F~k!

F1~k!F2~k!
5

1

2
@11S1~k!#1

1

2
@12S1~k!#x2~k!, ~2.1!

where

x2~k!ª
f 28~k,0!

ik f 2~k,0!
. ~2.2!

Consequently

S~k!5S2~k!
ik@11S1~k!# f 2~2k,0!1@12S1~k!# f 28~2k,0!

ik@11S1~k!# f 2~k,0!1@12S1~k!# f 28~k,0!
. ~2.3!

Proof: The regular solutions forV andV1 satisfy the same equation on (0,a) and the same
boundary conditions atx50; thus

w~k,x!5w1~k,x!, w8~k,x!5w18~k,x!, xP@0,a#. ~2.4!

Similarly, the Jost solutions forV and V2 satisfy the same equation on (a,1`) and the same
boundary conditions atx51`, and hence

f ~k,x!5 f 2~k,x!, f 8~k,x!5 f 28~k,x!, xP@a,1`!. ~2.5!

Let @ f ;g#ª f g82 f 8g denote the Wronskian. The Wronskian of any two solutions of~1.1! is
independent ofx. For example, from~1.4! we see that

@ f ~k,x!; f ~2k,x!#522ik,

and hence from~1.5! and ~1.10! we get

F~k!5@ f ~k,x!;w~k,x!#. ~2.6!

Evaluating the Wronskian in~2.6! at x5a and using~2.4! and ~2.5!, we get

F~k!5 f 2~k,a!w18~k,a!2 f 28~k,a!w1~k,a!. ~2.7!

On the other hand, sinceV1[0 for x.a, using~1.7! and ~1.9! we obtain

w1~k,x!5
F1~k!

k
eid1 sin~kx1d1!, xP@a,1`!, ~2.8!

and similarly, sinceV2[0 for x,a, we have

f 2~k,x!5 f 2~k,0!coskx1 f 28~k,0!
sinkx

k
, xP@0,a#,

or equivalently, by using~1.5! and ~2.2!, we get

f 2~k,x!5F2~k!@coskx1 ix2~k!sinkx#, xP@0,a#. ~2.9!
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Using ~2.8! and ~2.9! in ~2.7!, we obtain

F5F1F2eid1@coska1 ix2 sinka#cos~ka1d1!2F1F2eid1@2sinka1 ix2 coska#sin~ka1d1!,

which simplifies to

F5F1F2eid1@cosd12 ix2 sind1#. ~2.10!

Converting the trigonometric functions in~2.10! into complex exponentials and using the anal
of ~1.11! for S1 , we obtain~2.1!. Then, with the help of~1.6!, ~1.8!, ~1.11!, ~2.1!, and~2.2!, we get
~2.3!. j

III. SMALL-ENERGY ESTIMATES

In this section we consider the small-energy asymptotics of the Jost solution. Our main
is given in Theorem 3.5, where we show that forVPL1

1(R1), at each fixedx the quantity
f 8(k,x)/ f (k,x) or its reciprocal can be differentiated with respect tok at k50.

The following result is well known.1

Theorem 3.1: If V is real valued and belongs toL1
1(R1), then ask→0 in R we haveS(k)

511o(1) generically andS(k)5211o(1) in the exceptional case. IfV1 is real valued, it has
support in (0,a) for some finitea.0, andV1PL1(0,a), then the corresponding Jost functionF1

is entire in the complex planeC and hence

F1~k!5F1~0!1kḞ1~0!1O~k2!, k→0 in C,

where the overdot denotes the derivative with respect tok. In the generic case we haveF1(0)
Þ0 and

S1~k!5122k
Ḟ1~0!

F1~0!
1O~k2!, k→0 in C. ~3.1!

In the exceptional case,F1(0)50 andḞ1(0)Þ0, and we haveS1(k)5211O(k) ask→0 in C.
Let g(k,x) be the solution of~1.1! satisfying

g~k,0!51, g8~k,0!50. ~3.2!

We have

g~k,x!5coskx1
1

k E0

x

dy sink~x2y!V~y!g~k,y!. ~3.3!

The regular solutionw(k,x) satisfies

w~k,x!5
sinkx

k
1

1

k E0

x

dy sink~x2y!V~y!w~k,y!. ~3.4!

Let f(k,x) be the solution of~1.1! satisfying

f~k,0!5 f ~0,0!, f8~k,0!5 f 8~0,0!. ~3.5!

Thus

f~0,x!5 f ~0,x!, xP@0,1`!, ~3.6!



4266 J. Math. Phys., Vol. 41, No. 7, July 2000 Tuncay Aktosun
f~0,x!5 f ~0,0!1x f8~0,0!1E
0

x

dy ~x2y!V~y!f~0,y!. ~3.7!

Since f (0,x)511o(1) asx→1`, with the help of~3.6!, by lettingx→1` in ~3.7! we get

f 8~0,0!52E
0

`

dy V~y!f~0,y!, ~3.8!

f ~0,0!511E
0

`

dy yV~y!f~0,y!. ~3.9!

Moreover, from~1.3!, ~3.2!, and~3.5! it follows that

f~k,x!5 f ~0,0!g~k,x!1 f 8~0,0!w~k,x!. ~3.10!

Proposition 3.2:AssumeV is real valued and belongs toL1
1(R1). Then,

uf~k,x!2f~0,x!u<CS ukxu
11ukxu D

2

, xPR1, kP@2e,e#, ~3.11!

for any fixed positivee, whereC denotes a constant independent ofx andk.
Proof: The proof can be found in Lemma 2.2 of Ref. 6. j

Using ~1.3! and ~3.2! we get

f ~k,0!5@ f ~k,x!;w~k,x!#, f 8~k,0!52@ f ~k,x!;g~k,x!#. ~3.12!

Evaluating the Wronskians in~3.12! asx→1`, with the help of~3.3! and ~3.4! we get

f ~k,0!511E
0

`

dy eikyV~y!w~k,y!, ~3.13!

f 8~k,0!5 ik2E
0

`

dy eikyV~y!g~k,y!. ~3.14!

Proposition 3.3:AssumeV is real valued and belongs toL1
1(R1). ThenP(k)52 ik1o(k) as

k→0 in C1, whereP(k) is the quantity defined as

P~k!ª2 f 8~k,0! f ~0,0!1 f 8~0,0! f ~k,0!. ~3.15!

Proof: From ~3.5! and~3.15! it follows that P(k)5@ f (k,x);f(k,x)#. Using~3.12! and~3.13!
in ~3.15! we get

P~k!5 f ~0,0!F2 ik1E
0

`

dy eikyV~y!g~k,y!G1 f 8~0,0!F11E
0

`

dy eikyV~y!w~k,y!G .
~3.16!

Using ~3.10! in ~3.16! we have

P~k!52 ik f ~0,0!1 f 8~0,0!1E
0

`

dy eikyV~y!f~k,y!. ~3.17!

Evaluating~3.13! and~3.14! at k50 and using the result on the right-hand side of~3.17!, with the
help of ~3.8! and ~3.9! we getP(k)52 ik1J11J2 , where
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J1ªE
0

`

dy @eiky212 iky#V~y!f~0,y!, ~3.18!

J2ªE
0

`

dy eikyV~y!@f~k,y!2f~0,y!#. ~3.19!

Let us useC to denote a constant not necessarily assuming the same value at different a
ances. Using the inequality

ueiz2 iz21u<
Cz2

11z
, z>0,

from ~3.18! we get

uJ1u<Cuku E
0

`

dy
ukyu

11ukyu
yuV~y!u,

and henceJ15o(k) ask→0. Similarly, using~3.11! in ~3.19! we get

uJ2u<Cuku E
0

`

dy
ukyu

11ukyu
yuV~y!u,

and henceJ25o(k). Thus, the theorem is proved whenk→0 in R. With the help of the
Phragme´n–Lindelöf theorems it follows that the limit is valid also whenk→0 in C1. j

Theorem 3.4:AssumeV is real valued and belongs toL1
1(R1). Then, if f (0,0)Þ0 we have

f 8~k,0!

f ~k,0!
5

f 8~0,0!

f ~0,0!
1

ik

f ~0,0!2 1o~k!, k→0 in C1, ~3.20!

and if f 8(0,0)Þ0 we have

f ~k,0!

f 8~k,0!
5

f ~0,0!

f 8~0,0!
2

ik

f 8~0,0!2 1o~k!, k→0 in C1. ~3.21!

Proof: When f (0,0)Þ0, from ~3.15! we get

f 8~k,0!

f ~k,0!
2

f 8~0,0!

f ~0,0!
5

P~k!

f ~k,0! f ~0,0!
.

Thus, using Proposition 3.3 and the continuity off (k,0) atk50, we get~3.20!. On the other hand
if f 8(0,0)Þ0, we obtain~3.21! by using

f ~k,0!

f 8~k,0!
2

f ~0,0!

f 8~0,0!
52

P~k!

f 8~k,0! f 8~0,0!
,

and by applying Proposition 3.3 and the continuity off 8(k,0) atk50. j

Next, we show that the result in Theorem 3.4 holds not only atx50 but for anyxPR1.
Theorem 3.5: AssumeV is real valued and belongs toL1

1(R1). Then, for each fixedx
PR1, if f (0,x)Þ0 we have

f 8~k,x!

f ~k,x!
5

f 8~0,x!

f ~0,x!
1

ik

f ~0,x!2 1o~k!, k→0 in C1 , ~3.22!

and if f 8(0,x)Þ0 we have
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f ~k,x!

f 8~k,x!
5

f ~0,x!

f 8~0,x!
2

ik

f 8~0,x!2 1o~k!, k→0 in C1. ~3.23!

Proof: The proof is similar to the proof of Theorem 3.4. For any fixeda>0, define the
solutionswa , ga , andfa of ~1.1! satisfying

wa~k,a!50, wa8~k,a!51,

ga~k,a!51, ga8~k,a!50,

fa~k,a!5 f ~0,a!, fa8~k,a!5 f 8~0,a!.

Similar to ~3.6!–~3.10! we get

fa~0,x!5 f ~0,x!, xP@0,1`!,

fa~0,x!5 f ~0,a!1~x2a! f 8~0,a!1E
a

x

dy ~x2y!V~y!fa~0,y!,

f 8~0,a!52E
a

`

dy V~y!fa~0,y!,

f ~0,a!511a f8~0,a!1E
a

`

dy yV~y!fa~0,y!,

fa~k,x!5 f ~0,a!ga~k,x!1 f 8~0,a!wa~k,x!.

Proposition 3.2 still holds6 if we usefa instead off in ~3.11!. Proceeding as in the proof o
Proposition 3.3, we obtain

f ~0,a! f 8~k,a!2 f 8~0,a! f ~k,a!5 ik1o~k!, k→0 in C1. ~3.24!

Imitating the proof of Theorem 3.4, from~3.24! we get~3.22! and~3.23! holding at anyx5a.j
When VPL1

1(R1), even though in generalf (k,x) and f 8(k,x) are not differentiable with
respect tok at k50, the above theorem shows that their ratio is indeed differentiable with res
to k at k50. Note that~3.22! does not hold at thex values wheref (0,x)50. We will see in
Proposition 4.2~iv! that the number of suchx values is equal to the number of bound states ofV.

IV. BOUND STATES

In this section we relate the number of bound states ofV to the number of bound states of i
fragmentsV1 and V2 . We also analyze the circumstances ofV being generic and exceptiona
depending on whether the fragments are generic or exceptional. A similar analysis on the
line was given in Ref. 7.

The first two propositions contain known results.8 A brief proof of Proposition 4.1 is included
merely to remind the reader the oscillation properties of the Jost function whenk is on the positive
imaginary axis.

Proposition 4.1:AssumeV is real valued and belongs toL1
1(R1), and let its bound state

correspond tok5 ik j with 0,k1,¯,kN . Then,

~i! F( ib) has simple zeros atb5k j for j 51,...,N.
~ii ! F( ib).0 whenb.kN .
~iii ! (21)N2 jF( ib).0 whenbP(k j ,k j 11) for j 51,...,N21.
~iv! (21)NF( ib).0 whenbP(0,k1).
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~v! Generically (21)NF(0).0 and in the exceptional caseF(0)50.

Proof: The proof is standard:~i! is known, and the rest follow from the fact thatF(k)51
1O(1/k) ask→` in C1, the only~simple! zeros ofF(k) in C1\$0% occur atk5 ik j , and that
F( ib) is real and continuous onbPR1. j

The number of bound states is also related to the zeros off ( ib,x) on xPR1, as summarized
in the following proposition.

Proposition 4.2:AssumeV is real valued and belongs toL1
1(R1), and let its bound state

correspond tok5 ik j with 0,k1,¯,kN . Then we have the following:

~i! For eachb>0, we havef ( ib,x)5e2bx@11o(1)# asx→1`.
~ii ! For each fixedb>kN , f ( ib,x) has no zeros onxP(0,1`).
~iii ! For each fixedbP@k j ,k j 11) with j 51,...,N21, the quantityf ( ib,x) has exactlyN2 j

zeros onxP(0,1`).
~iv! For each fixedbP@0,k1), f ( ib,x) hasN zeros onxP(0,1`).

Proposition 4.3:AssumeV is real valued and belongs toL1
1(R1), and letV5V11V2 , where

V1 is supported in (0,a) andV2 in (a,1`) for somea.0. If V1 is generic, then

f ~0,x!5H F~0!

F1~0!
f 1~0,x!1F f 8~0,0!2

F~0!

F1~0!
f 18~0,0!Gw~0,x!, x<a,

f 2~0,x!, x>a.

~4.1!

If V1 is exceptional, then

f ~0,x!5H F~0!g1~0,x!1
f 8~0,0!

f 18~0,0!
f 1~0,x!, x<a,

f 2~0,x!, x>a,

~4.2!

whereg1(k,x) is the solution of~1.1! corresponding to the potentialV1 with the boundary con-
ditions @cf. ~3.2!#

g1~k,0!51, g18~k,0!50.

Proof: If V1 is generic, from~2.6! we see thatf 1(0,x) andw1(0,x) are linearly independent on
xPR1. Writing f (0,x) as a linear combination off 1(0,x) andw1(0,x), we determine the coeffi-
cients in terms off (0,0) andf 8(0,0) and get~4.1!. In the exceptional case, writingf (0,x) as a
linear combination off 1(0,x) andg1(0,x) and determining the coefficients in terms off (0,0) and
f 8(0,0), we get~4.2!. j

Proposition 4.3:AssumeV1 is real valued, has support in (0,a) for somea.0, belongs to
L1(0,a), and hasN1 bound states. IfV1 is generic, thenf 1(0,x) hasN1 zeros all located in (0,a)
with no zeros atx50 and no zeros in@a,1`). If V1 is exceptional, thenf 1(0,x) hasN1 zeros all
located in (0,a), an additional zero atx50, and no zeros in@a,1`).

Proof: The proof follows from Proposition 4.2~iv! and the fact thatf 1(0,x)51 for all x
P@a,1`). j

Proposition 4.4:Assume thatV2 is real valued, has support in (a,1`) for some a.0,
belongs toL1

1(a,1`), and hasN2 bound states. IfV2 is exceptional, thenf 2(0,x) hasN2 zeros in
(a,1`), no zeros in (0,a#, and one zero atx50. If V2 is generic andf 28(0,0)/f 2(0,0)>0, then
f 2(0,x) has N2 zeros in (a,1`) and no zeros in@0,a#. If V2 is generic andf 28(0,0)/f 2(0,0)
,0, then f 2(0,x) hasN221 zeros in (a,1`), and one zero in (0,a#, and no zeros atx50.

Proof: The proof is obtained by using Proposition 4.2~iv! and the fact that

f 2~0,x!5F2~0!1 f 28~0,0!x, x<0,
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which implies thatf 2(0,x) has exactly one zero in (0,a# if f 28(0,0)/f 2(0,0),0. j

Theorem 4.5: AssumeV is real valued, belongs toL1
1(R1), and hasN bound states; letV

5V11V2 , whereV1 has support in (0,a) andV2 in (a,1`) for somea.0, and supposeV1 has
N1 bound states andV2 hasN2 bound states. Then we have the following:

~i! If V2 is generic andf 28(0,0)/f 2(0,0),0, thenN5N11N221; in any other cases, we hav
N5N11N2 .

~ii ! If both V1 andV2 are exceptional, thenV is also exceptional.
~iii ! If V1 is exceptional,V2 is generic, andf 28(0,0)Þ0, thenV is generic.
~iv! If V1 is exceptional,V2 is generic, andf 28(0,0)50, thenV is exceptional.
~v! If V1 andV2 are both generic andf 28(0,0)50, thenV is also generic.
~vi! If V1 and V2 are both generic andf 28(0,0)Þ0, then V is exceptional ifF1(0)F2(0)

5 i Ḟ 2(0) f 28(0,0) and otherwise generic.

Proof: According to the Sturm–Liouville theory,8 f (0,x) and f 1(0,x) must have the same
number of zeros in (0,a); hence, from Proposition 4.3 it follows thatf (0,x) hasN1 zeros in (0,a);
on the other hand, the number of zeros off (0,x) in (a,1`) is determined in terms ofN2 by
Proposition 3.4. Thus,~i! is proved. Recall from Theorem 3.1 thatS(0)51 generically and
S(0)521 in the exceptional case. When bothV1 andV2 are exceptional, we haveS1(0)521
and f 28(0,0)Þ0; thus, lettingk→0 in ~2.3!, we see thatS(0)5S2(0), and henceS(0)521,
which proves~ii !. The proof of ~iii ! is obtained similarly as in the proof of~ii !; from S(0)
5S2(0) it follows that V is generic asV2 is. To get~iv! note that~2.2! and ~3.20! imply that
x2(k)51/F2(0)21o(1) ask→0, and hence from~2.3! we getS(0)52S2(0), which implies that
V is exceptional becauseV2 is generic. The proof of~V! is obtained from~2.1! ask→0, i.e., from
F(0)5F1(0)F2(0), which is obtained by usingS1(k)511o(1) andx2(k)51/F2(0)21o(1) as
k→0. Finally, to prove ~vi!, using ~3.1! and ~3.21! in ~2.1!, we get F(0)5F1(0)F2(0)
2 i Ḟ 1(0) f 28(0,0), from which the conclusion follows. j
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