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The one-dimensional Schitimger equation is considered when the potential is
asymptotic to a positive constant on the right half line. The corresponding Darboux
transformation is established by showing how the scattering solutions, the scatter-
ing coefficients, and the potential change when bound states are added or removed.
The scattering coefficients are represented as certain integrals, from which their
properties can be directly extracted. ZD00 American Institute of Physics.
[S0022-248800)02304-3

I. INTRODUCTION

Consider the one-dimensional Sctimger equation,
" (K, x)+ K2k, x) = V(x) (K, x), xeR, 1.0
where the potentiaV/ is real valued and satisfies
Vel}R7), V-c?eL}(R"), (1.2

for somec=0. In our notation, the prime denotes the derivative with respect to the spatial variable
X, R7:=(—»,0), R":=(0,+=), andL}(I) is the set of measurable functiohsn an intervall
such thatf,dx(1+[x|)|f(x)| is finite. We will useC™ to denote the upper half complex plane and
C*:=CTUR.

Our main goal is to analyze the Darboux transformation(fot), namely, to understand how
the scattering solutions, the scattering coefficients, and the potential change when bound states are
added or removed. The Darboux transformation wher0 in (1.2) is well understood:? For a
more general treatment of Darboux transformations, the reader is referred to Ref. 3 and the
references therein. In the limd—0, the transformation we present in Sec. IV reduces to the
well-known case. The main difficulty wheo>0 is the analysis ake C* asx— + of the
behavior off,(k,x), the Jost solution from the right defined in Sec. Il. We overcome this difficulty
by working with a regular solution ofl.1) analyzed in Sec. Ill.

The bound states dfL.1) are its square-integrable solutions, whereas the scattering states of
(1.1) correspond to solutions behaving liké™™ asx— —« and likee™'” asx— +«, where

y:=Vk?—c?, (1.3

in which the branch of the square-root function is used withyl0. Thus,y is purely imaginary
whenke (—c,c).

The reader is referred to Refs. 4-7 for the analysis of the direct and inverse scattering
problems for(1.1). For a more general analysis of the scattering problem, see also Refs. 8 and 9,
and references therein. The inverse scattering problertiLfay, namely, the recovery of from
an appropriate set of scattering data, has important applicitidA the recovery of material
properties of thin films. Thus, we expect our results to be useful in x-ray and neutron
reflectometry-!~1°
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Our paper is organized as follows: In Sec. Il we review some relevant properties of the
scattering solutions and the bound states. In Sec. Ill, we obtain various properties of a regular
solution of(1.1) that are needed in establishing the Darboux transformation. In Sec. IV we present
the Darboux transformation and show how the bound states can be added or removed. Finally, in
Sec. V we evaluate the spatial asymptotics of the Jost solutions and present some integral repre-
sentations of the scattering coefficients.

II. JOST SOLUTIONS AND SCATTERING COEFFICIENTS

Among the scattering solutions ¢f.1) are the so-called Jost solutions with specific boundary
conditions atx= *. The Jost solution from the leff,;(k,x), associated witlV is the solution of
(1.2) satisfying

e "fi(k,x)=1+0(1), e '"7*f/(k,x)=iy+0(1), X— +, (2.3

where vy is the quantity defined ifl.3). It satisfies the integral relation

1 (=
f|(k,><)=e'7x+;fx dysiny(y—x) [V(y)—c?] fi(k,y). 2.2

Similarly, f,(k,x), the Jost solution from the right, is defined as the solutiofildl) satisfying
e*f (k,x)=140(1), e**f/(k,x)=—ik+0(1), x— —o=, 2.3

and it satisfies the integral relation

f(k,x)=e "+ % Jf dysink(x—y) V(y)f.(k,y). (2.9

We later need the following known propertiéf the Jost solutions.

Proposition 2.1:AssumeV satisfies(1.2) for somec=0. Then, for each fixekeR, the
functions f(k,x), f/(k,x), f.(k,x), andf/(k,x) are analytic inke C* and continuous irk
e C*. Moreover, for each fixette C*, these four functions are continuousxi R.

The transmission and reflection coefficients from the [BfiandL, can be defined in terms of
the spatial asymptotics df as

1 L

e kX0 = 305 Tk

e 24 0(1), x——o, keR\{0}. (2.5

Similarly, the transmission and reflection coefficients from the rightandR, can be defined in
terms of the spatial asymptotics &f as

1 RK

k=05 T

e’ +0(1), x—+%, yeR\{0}. (2.6)

Since(2.6) holds only forke R\[ —c,c], one needs to use other means to deRik) andT, (k)
for ke[ —c,c]. It turns ouf® that

Tr(k)=%T,(k), ke CT\{0}, 2.7
LTk
R =~ e keR 2.9
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where the asterisk denotes complex conjugation. The reader is referred to Refs. 4, 5, and 7 for the
smallk asymptotics of the scattering coefficients. The polesTofn C* correspon®® to the
bound states of1.1). Under (1.2) it is knowrf*>’ that such poles are simple, confined to the
positive imaginary axis, and finite in number. Let us assume that therd dmund states at
=ikj with 0<x;<---<ky.

Let[f;g]:=fg’ —f'g denote the Wronskian. It is well known that the Wronskian of any two
solutions of(1.1) is independent ok. From (2.3) and (2.5 it follows that

1 1
T 1) [fr(k,x);f|(k,x)], (29)

Ti(k)  2ik
and hencd,(k,x) andf,(k,x) are linearly dependent at the bound states and linearly independent

otherwise. In factf,(i «; ,x) andf (i x;,x) decay exponentialf{? to zero asx— + . Thus, if we
let

f|(| K;j ,X)
=t e ) (210
then eachu; is independent ok and is a real nonzero constant.

Proposition 2.2:AssumeV satisfies(1.2) for somec=0 with the bound states occurring at
k=ik; for j=1,...N. Then, bothf,(i x,x) andf, (i «,x) are strictly positive whem= «y . In case
there are no bound states(i «,x) andf,(i«x,x) are strictly positive for allkk>0.

Proof: The proof is similar to the case wher=0 and it can be obtained, e.g., by using
Proposition 10.1 of Ref. 16. |

Proposition 2.3:AssumeV satisfies(1.2) for somec=0 with the bound states occurring at
k=ikj for j=1,...N. Then,

(i) Ti(ik)>0 whenk>ky.
(i) (—1)T(ix)>0 whenke (ky_j,kn—j+1) for j=1,.N—1.
(i)  (—1)NT,(ix)>0 whenk e (0,x;).

If there are no bound states, th&(ix)>0 for «>0.
Proof: The proof is obtained by noticifg that 17T,(i «) is real and continuous fote R, it
has simple zeros at=«; for j=1,..N, and that it converges to 1 as— + . [ |

Ill. REGULAR SOLUTION
Let v(k,x) be the solution of1.1) satisfying the boundary conditions
v(k,00=0, v'(k,00=1. (3.9

For each fixedke R, v(-,x) is entire on the complex plane and hence it is a “regular” solution.
As in (3.3 and (3.5 of Ref. 7 we have the integral relations

sin yx
Y

el 2
+ fdysmv(x y) [V(y)—c“Ju(k)y), x=0,
YJo

v(k,x)= (3.2

sinkx 1 (o )
K +Ef dysink(y—=x)V(y)v(k,y), x=<O0,
X

cosyx+ f:dyCOSy(X—y) [V(Y)—c?lu(k,y), x=0,
v'(k,x)= 0 (3.3
coskx—J dycosk(y—x)V(y)v(k,y), x=<0,
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From (3.1) and the constancy of the Wronskian of any two solutiongldl), it follows that
[f|(k,X),U(k,X)]:f|(k,0), [fr(kyx)rv(kyx)]:fl’(klo) (34)

Let us fix k> ky (k>0 if (1.1) has no bound statesVhen a bound state is added(fiol) at
k=ik, we are interested in finding the potential, the scattering coefficients, and the Jost solutions
corresponding to the resulting Schioger equation. For this, we prove several propositions that
are needed to establish the Darboux transformation formulas in Sec. IV.

From (2.9, (3.4), and Propositions 2.2 and 2.3, it follows that any twd @f «,x), f,(i«,x),
anduv (i «,Xx) are linearly independent. Thus, we have

fr(in,x)=A1(k) fi(ic,X)+As(k) v(ik,x), Xx=0, (3.5
filik,x)=As(k) f,(ik,X)—Ays(x) v(ik,x), X<O0, (3.6

where the coefficientd(«) are analyzed in the next proposition.
Proposition 3.1:AssumeV satisfies(1.2) for somec=0 and thatk> «y (if there are no
bound states, let>0). Then, all the fouA;(«) appearing in(3.5 and(3.6) are strictly positive.
Proof: Using (2.9) and(3.4)—(3.6) we get

A 1 _fr(iK,O) 3
0 A0 w0 37
2k 2k
S (R (A (TS 9

By Propositions 2.2 and 2.3 all the three quantitig$«,0), f,(i«,0), andT,(i«) are strictly
positive, and hence each of the folyj(«) is strictly positive. |
Let

e Mu(ik,x), x=0,

u(x;x):= e (ikx), X=0, (3.9
where\ is the constant defined in terms efas
N=k’+C?, (3.10

andc is the constant appearing {t.2). Even thoughv (i x,x) is unbounded ag— *=oo, we will
see thauu(x; ) has nicer properties that will be useful later on.

Proposition 3.2:Assume that/ satisfies(1.2) for somec=0 and thatx> « (if there are no
bound states, let>0). Then,

(i) u(x; k) andu’(x;«) are continuous and boundedsire R.
(i)  The spatial asymptotics af(x; ) andu’(x; ) are given by

u’'(x;k)=0(1/X), X—*oo, (3.11
f|(iK,0)
N +O(1), X— + 0,

u(x;x)= ) .(ix.0) (3.12

2k

+0(1), X——oo,

Proof: Using (3.1) and(3.9) in (1.1) we see thati(-;x) andu’(-;«) are both continuous and
satisfyu(0;x)=0 andu’(0;«x)=1. Thus, from(3.2), (3.3), and (3.9 we get
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1 1 (x
Z[1—e-2M]+5Jooly[l—e—ZMX—W][V(y)—c2]u(y;;<), x=0,

u(X; k)= 1 1 (o (3.13
Z[ez“x—lﬁZLdy[l—e‘z“y‘X)]V(y)U(y;K), x=<0,

X
e‘z”x+f dy e 20V [V(y)—c?Ju(y;x), x=0,
0
u'(X;k)= 0 (3.19
eZKX—f dy e 209V (y)u(y;x), x=<O0.
X

The Volterra equatiori3.13 can be solved by using iteration, and we get

! 1fxd v 2 0
— — — =

! 1f0d V 0
— — <
pie b N yIViyl ], x=<0.

Because 0of1.2), we see from3.15 thatu(x; «) is bounded irx e R. Letting C denote a generic
constant and usinfu(x; x)|<C in (3.14), we see that’(x; ) is bounded irxe R. In fact, from
(3.14 we get the following estimates. Wher>0 we have

[u(x; k)| <

(3.15

I (- <~ 2\X xI2 — 2\ (X—Y) _~2 2C [ 2N (X—Y) _ A2
w'(xK)|<e”*+C| dye Vy)—cf+ -] dyye [V(y)—c?l
X

x/2 2C (x
semrce [Tayvin-cl 5 [Layye vl 319
X

From (1.2) it follows that the last integral in3.16) is o(1) asx— +c, and henceu’(X; k)
=0(1/x) asx— +oo. Similarly, whenx<0 we have

) 0 ) 2C (x12 )
[u’(x;x)|<e "X+Cf/2dy e "(”)IV(y)IJer dylyle 2<V=9|v(y)|
X X

2 KkX KX 0 2C (2 —2k(y—Xx)
=erCer| dylVyl+ g | dylyle vy, (3.17
X X

and since the last integral i(8.17) is 0(1) asx— —x, it follows thatu’(x;«)=0(1/x) asx
— —o0, Thus,(3.11) has been established. Letting

my(k,x):==e~7*f,(k,x), (3.189
from (2.1) we get
mi(ik,x)=1+0(1), m (ik,x)=0(1), X— +o.
The first Wronskian identity ir{3.4) can be written as
(i ,00=my(i k,x)U’ (X; &) +[2xmy (i 5, %) — M} (i &,%) JU(X; ). (3.19

Lettingx— +< in (3.19 and recalling thaf,(i «,0)> 0, with the help o0f(3.11) and(3.19, we get
(3.12 asx— +o. Similarly, letting
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m; (k,x) :==e'**f (k,x), (3.20
from (2.3 we get
m,(ik,X)=1+0(1), m/(ix,x)=0(1), X— —oo. (3.21
The second Wronskian identity 13.4) can be written as
fr(ik,0)=m, (i k,x)U’" (X; k) —[26m, (i ,X) +m/ (i k,X) JU(X; K). (3.22

Letting x— —<0 in (3.22 and recalling thaf (i x,0)>0, using(3.11) and (3.21), we establish
(3.12 asx— —co, [ |

Proposition 3.3:Assume thal/ satisfies(1.2) for somec=0 and thatx> « (if there are no
bound states, let>0). Thenu’(-;«) belongs td_}(R), whereu(X; k) is the quantity defined in
(3.9.

Proof: As shown in Proposition 3(B, u’(-;«) is continuous. Thus, as seen fra8116 and
(3.17), in order to prove thati’(-; ) belongs toL}(R), it is enough to prove thdt, andl, are
finite, where we have defined

0 1 X

Ilzzj dx| 1+ = f dyye 20Y|v(y)—c?, (3.23
2a X/) Jxi2
—2a 1 x/2

|2::f dx 1+MJ dy|yle 2<0=X|v(y)], (3.249
— X

for some positive constari=1. Changing the order of integration {8.23, we get

0 2y 1 ©
I1$2f dyyez”ylv(y)—czlf dxe’”xjf dyy{1-e *V]|V(y)—¢c?,
a y a

and hence, because df.2), |, is finite. Similarly, a change of order of integration(®.24) gives
us

-a y 1(-a
2=2]_“aylyle vyl [ axe= [ Caylita-evil,

and hencd, is also finite because @f..2). Thus, the proof is completed. |
For >0 let us define

h(x;x,a):=f(ik,xX)+af (ik,X), XeR, (3.25
h'(X;k,a)
&(x; K,a) :ZW, xeR. (32@

Proposition 3.4:AssumeV satisfieg1.2) for somec=0, and leta>0 andx> ky (if there are
no bound states, le¢>0). Then,

(i) &(X; k,a) is bounded and continuous ke R.
(i)  €&(-;k,a)—\ belongs toL}(R*) and &(-; x,a) + k belongs toL}(R*).
(i)  &'(-;k,a) exists a.e. and belongs I.ci(R).

Proof: Because of Proposition 2.1, bolt{x; x,a) andh’(X;«,a) are continuous irxe R.

From Proposition 2.2, it follows that(x; «,«) is strictly positive, and hencé(x; x,«) is con-
tinuous inxe R. Using (3.5 and(3.6) in (3.25, with the help of(3.7)—-(3.10, we obtain
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. B [14+ a A(x)]f (i k,X)+ a Ay(k)eMu(x; k), x=0,
NG =1 Ak ]F (k) Ag(K)e~ P U(X: k), X=0, (3.29
o [14a Ay(r)]f] (i 1, X)+ @ Ay k) EMNU(X; k) + U (X;k)], x=0,
h' (X, @)= [a+Ag(©)]F! (1 k,X) +As(k)e [ — kU(X; k) +U' (X;x)], X=<O. (3.28
Using (2.1), (2.3), (3.1, and(3.12 in (3.27 and(3.28), we obtain
u’(X;k) 1 oy .
UXix) | U(xK) O(e™™), x=+e,
EX Kk, )= (3.29

u'(x;«)
u(Xx; k) * u(x; k)

O(eZKX)v X— =,

As seen from3.12), u(x; ) is bounded and remains bounded away from zem-as- . Thus,
from (3.12 and(3.29 we get

2\U' (X k) .
a0 [LToIFO(e ), Xt

e 2kU' (X; k) 24 (3.30
_K_fr(i—K'())[l+0(1)]+o(eK), s — o0

Using (3.11) and Proposition 2.2 i3.30, we see that(X; «,a) is bounded for alk e R. Since
&(-; K, @) is continuous, thd-;i-properties stated ifii) follow from (3.30 and theLi-property of
u’(x; k) established in Proposition 3.3. Frofh.1) and(3.26) we get

(X k,a)=V(X)+Kk>— X k,a)?, XxeR. (3.30)

Using (3.10 we can write(3.31) also as

(X k,a)=V(X)—c?+\N°—&(x;k,a)?, xeR. (3.32
Thus, because dfl.2), as seen fron(3.31) and(3.32), in order to show tha¢’ (-; x,«) belongs to
L}(R), it is sufficient to show that(-;«,a)?—\? belongs toL}(R™) and &(-; k,a)?— k? be-
longs toL(R™). However, these directly follow frorti) and(ii), as seen by writing

& k,@)2 = N2=[&(X; k@) = N][E(X; Kk, @) +\],

g(X;K,C!)Z—K2:[§(X;K,Q)+K][§(X;K,0[)—K],

and using(ii) and the boundedness é€x; k,a) +\ and é(X; k, @) — . |

IV. DARBOUX TRANSFORMATION

Let us use a tilde to denote the quantities associated with the resultingdBgjeoequation
when a bound state is added(fol) atk=i x with x> ky (with x>0 if (1.1) has no bound states

That is,V is the resulting potentiaf, and?, are the Jost solution3; andT, are the transmission

coefficients, and. andR are the reflection coefficients, from the left and from the right, respec-
tively. We have the following result:

Theorem 4.1: AssumeV satisfies(1.2) for somec=0. If a bound state is added td.1) at
k=i with k> ky (with k>0 if (1.1) has no bound statgsthen

V(x;k,a)=V(X)—2& (X k,a), (4.1
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fi(k,x; k,0)= e +m)[f| (k,x)— &(x; k, ) f(k,x)], (4.2)

Tk Xk, a)= (k+| )[f (k,x)— &(x; k, ) f,(K,X)], 4.3
y+ik - k+ixk

|(k K,a)= —T|(k) L(k;K,a)I—mL(k), (4.4
y+iN ~ y+iN

T (K k)= T (K, R(K;k,a)=— mR(k), (4.5

wherey is as in(1.3), \ is the constant i3.10, and&(X; k, ) is the function defined if3.26).
Proof: It can be verified directly thaf, and, given in (4.2) and (4.3), respectively, satisfy
(1.1) when the potentiaV/ is replaced byv. Moreover, from the asymptotics as- + % stated in
(2.1) and(3.30), it follows thatT, is the Jost solution from the left associated with Similarly,
from the asymptotics as— —« stated in(2.3) and(3.30), it follows thatTr is the Jost solution

from the right forV. With the help of(2.5), (2.6), (3.11), and(3.30, we obtainT, andL given in
(4.4). Finally, by using(2.7), (2.8), and(4.4), we establish(4.5). [ |
Proposition 4.2:AssumeV satisfies(1.2) for somec=0. If a bound state is added (t.1) at

k=ik with k> Ky (with k>0 if (1.1) has no bound statesthenV belongs to the same class as
V, namely,

Vell(R™), V-c?eL}R"). (4.6

Moreover, the positive constantintroduced in(3.25 is related to the ratio of the Jost solutions
of V at the bound statk=i« as

flixxica) _ax @7

hf‘r(iK,X;K,a) A

where\ is the quantity defined i63.10. Furthermoref,(i x,x; x,a) andf,(ik,x;x,a) are both
strictly positive for allxe R and decay exponentially to zero &s»+« with the asymptotics
given by

e M1+0(1)], x— -+,

fillrexis @)= TevLro(1)], X, 48

A —AX 0
?r(iK,X;K,a): aKe (1o x=+e, (4.9

e[1+0(1)], X——oo,

Proof: We get(4.6) by using(1.2), (4.1), and Proposition 3(i). Evaluating(4.2) and (4.3
atk=ix and using3.26), we obtain(4.7). Sinceﬂ is asymptotic te' ™ asx— +« as in(2.1) and
T, to e asx— —o as in(2.3), using(4.7) we obtain(4.8) and (4.9). [ ]
In the next theorem we present the Darboux transformation when we remove frynthe
bound state of the lowest energy. The proof is omitted because the technique used in the proof is
similar to that used in Theorem 4.1 and Proposition 4.2.
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Theorem 4.3: Assume thal/ satisfies(4.6) for somec=0 and that its lowest bound-state
energy corresponds to=i « for somex>0. LetT,(k,x) andf,(k,x) denote the Jost solutions for

V, from the left and from the right, respectively. After the removal of the bound stéte &at, let
us denote the resulting potential Mywith the corresponding Jost solutiofigk,x) andf,(k,x).
Then,

V(x)=V(x)—27'(x),

1 ~
m[f((k,x)— 7(x) fi(k.x)1,

fik,x) =
fo(k,x)= ! Tl (k T.(k
i ,X)—m[ 1 (K,x) = (%) f,(k,x)],
where y is as in (1.3, X is as in(3.10, and 7(x):=T, (i x,x)/,(ix,x). Moreover, 7(+ )
==\, p(—x)=«k, 7' € L}(R), andV belongs to the same class dsspecified in(4.6).
Using Propositions 4.1 and 4.2 in a recursive manner, we obtain the following result:
Corollary 4.4: Assume thatV satisfies(1.2) for somec=0 and it has bound states lat
=ikj for j=1,...N; let )\j=\//<j2+cz. Then,

N

. N .
_ 0] ’y+|)\j _ 0] ’y+|)\j
=Tl =5 To=T0 1T 3= (4.10
N ktixg Nyt
L=~ T == ROO=(=D"ROY T —— = (4.19
j=1 K= Ik j=1 y—l)\j

whereT[% TIO1 | I0] andRI®! are the scattering coefficients corresponding to the potewfal
obtained fromV by removing all its bound states, aii®! belongs to the same class dsloes,
i.e., VI%eL}(R7) andVI®9-c2e Li(R").

Notice that if we letc—0 in (4.2—(4.5), (4.10, and(4.11), then we obtain the well-known
Darboux transformation formul&$ for the standard Schdinger equation.

In certain application’d~24in materials science, the potentia{x) has support ilR™. In such
cases, we show in the next proposition that the constaappearing in3.25 must be chosen in
a unique manner in order not to change the potentiakfof.

Proposition 4.5:Assume thatv satisfies(1.2) for somec=0, vanishes foix<0, and has
bound states d=ik; for j=1,..N. If a bound state is added ¥ at k=i« with x>« (with
x>0 if (1.1) has no bound statesthenV also vanishes fok<0 if and only if the constant
appearing in3.25 is chosen as

L(ik)

a=-Tag (4.12

Proof: WhenV vanishes forx<0, its Jost solutions oR™ are determined by the scattering
coefficients as

eikx+ L(k)e—ikx

filkx)=""F

, f(kx)=e ™ x=0. (4.13

Using (3.25 and(4.13 in (3.26), we get

e T, (i) —[a+L(i k)T, (i k)]
e T, (i) +[atL(ix)/T(ix)]e™

EX Kk, a)=—«k x<0,
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and hence, because @.1), V vanishes fox<0, i.e. £(X; «,a) is a constant, if and only if4.12)
is satisfied. |

V. REPRESENTATIONS FOR SCATTERING COEFFICIENTS

The integral relatior{2.2) is not suitable to obtain the asymptoticsfpfk,x) asx— —oo. For
this we can use the representation

2ikf,(k,x)=B(k) e+ B,(k)e "+ fody[ei'“y—x)— e KO (y)f (ky), (5.2

where we have defined
Bi(k):=ikf (k,00+f[(k,0), By(k):=ikf(k,0)—f/(k,0). (5.2

It can be easily checked thaf(k,x) given in (5.1) satisfies(1.1) and the appropriate boundary
conditions atx=0. Letting

pi(k,x) ==~ F (k,x), (5.3
we can write(5.1) as
2ikp;(k,x) =By (k) +By(k)e~2k*+ fody[e”k(y‘x)—1]V(y)p|(k,y)- (5.9
By iterating (5.4), for x=0 we get
1p1(k)| = 5 [Bo(K)] 4B <k)|]exp(if° dy |V >|) keCT{0). (55
Pi(K, \2|k| 1 2 |k| . y Y| € . .

With the help of(2.5), (5.1), (5.2), (5.4), and(5.5), we obtain

2ik , 0 _

W—kal(k,O)"‘ﬁ(k.O)_fwdyV(Y)pl(kyy), ke C\{0}, (5.6)
M:ikfl(kyo)—f((k,oﬂfo dy € V(y)pi(k,y), keR\{0}. (5.7
Ti(k) .

For each fixecke C*, letting x— — in (5.4) and using(5.6), we get

. 0 2ik
2ikp (k,x) =By (k) — f_xdy VyIpi(ky)+o(1)= 3 +o(d), (5.9

and hence front5.2) and (5.8) we have

e R (k,x)= %[14‘0(1)], keC*, x——o.

In the integrand in(5.7), whenke C*, the factore?*¥ grows exponentially ag— —; hence,
unlessV(y) decays faster, the integral does not converge andltlikis does not have an exten-
sion from realk values to complex ones.

In a similar manner, in order to study the asymptotics$,¢k,x) asx— +, instead 0f(2.4)
we will use the integral relation
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2iy fi(kx)=Bs(k)e'™+By(k)e™ ™+ fde[ei”X_y)—e_i’(x_y)][V(Y)—Cz]fr(k.Y),
0
(5.9

where we have defined
Ba(k) =iy f,(k,0)+f/(k,0), Byk):=iyf (k0 —f/ (k0. (5.10

It can be checked thdt (k,x) given in (5.9 satisfies(1.1) and the appropriate boundary condi-
tions atx=0. Letting

pr(k,x):=€'7*f (k,x), (5.1

we can write(5.9) as
2iy pr(k,x) =Bg(k)e ™+ B4(k)+fxdy[e””x‘y)—1][V(y)—cz]pr(k.y)- (5.12
0
Iterating (5.12), for x=0 we get
1 1 [~ —
Ipr(k,X)|<m[lBs(k)l+|B4(k)l] exp(mfo dyIV(y)—CZI>, yeC™\{0}. (5.13

Using (2.6), (5.9, (5.10, (5.12, and(5.13), we obtain

27 iy~ f1(k0— [ 2]p,(k c*
T Y ((K,0) = f1( D)—fo y[V(y)—c?lp;(k,y), yeC™\{0}, (5.14

—Z'VR(k)=iyf,(k,0)+f,’(k,0)+dee‘ziw[V(y)—cz]pr(k,y), yeR\0}L (5.19
T (k) 0

Using(2.7), (2.8), (5.6), and(5.7), we can extendR(k) andT,(k) toke[ —c,c] as well. In(5.12),
for each fixedye C™", letting x— + we get

o 2
2iy pr(k,x)=By(k) - fo dy[V(y)—c?Ip,(k,y)+o(1)= %M(l), (5.16

and hence front5.11) and(5.16 we get

. 1
&7F, (k)= g [1 (D] yeC', x—+x.

In the integrand in5.15, whenye C*, the factore 2""Y grows exponentially ag— + 9, and
hence unles¥(y) —c? decays faster, the integral does not convergeRflJ does not have an
extension from reak values to complex ones.

Proposition 5.1:AssumeV satisfies(1.2) for somec=0. Then,p;(k,x) andp,(k,x) defined
in (5.3 and(5.11), respectively, have the following properties:

(i)  For eachxeR, p(-,x) andp,(-,x) are analytic inke C* and continuous itke C*.
(i)  Uniformly in xe R~ we have

pi(k,X)=1+0(1k), p/(k,x)=0(1), k— in C*.

(i)  Uniformly in xe R* we have
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p.(k,x)=1+0(1k), p;(kx)=0(1), k== in C*.

Proof: Because 0f(5.3) and (5.11), the analyticity and continuity properties stated (in
directly follow from Proposition 2.1. Froni2.2) and (5.3), by proceeding? as in the standard
Schralinger equation witlt=0, we get

mi(k,00=1+0(1/y), m/(k,00=0(1), y—= in C*,

and from(1.3) we havey=k+O(1/k) ask— in C*. Thus, with the help of3.18), from (5.2)
we obtain

B.(K)=i(k+y)[1+O(1/y)]+0(1)=2ik+0(1), k—= in CT, (5.17
B,(K)=i(k—y)[1+O(1/y)]+0(1)=0(1), k—o in C¥, (5.18

Note that|e 2¥¥|<1 whenxe R~ andke C*. Using iteration on(5.4), we find that
1 | o
p,(k,x)—W[Bl(kHBz(k)e‘z"‘x]=0(1/k), k—o in C*. (5.19

Thus, from (5.17—(5.19 we obtainp;(k,x)=1+0(1/k) ask—x» in C* uniformly for all x
eR™. From(5.4) we obtain

0 .
o/ (koX) = — Ba(k)— f dy E-0V(y)py(.y). (5.20

Iterating (5.20 and using(5.18 and(5.19, we getp| (k,x) =0(1) ask— in C* uniformly for
all xe R™. Thus, the proof ofii) is complete. The proof dfiii) is similar to that of(ii), and it is
obtained by using2.4), (3.20, (5.11), and(5.12. [ |

The integral representatiors.6), (5.7), (5.14), and(5.15 can be used to establish various
properties of the scattering coefficients such as their skeatld largek asymptotics. For example,
their largek asymptotics can be obtained with the help of Proposition 5.1. However, such deriva-
tions will not be given in this paper, and we let the interested reader extract such properties from
those integral representations.
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