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The one-dimensional Schro¨dinger equation is considered when the potential is
asymptotic to a positive constant on the right half line. The corresponding Darboux
transformation is established by showing how the scattering solutions, the scatter-
ing coefficients, and the potential change when bound states are added or removed.
The scattering coefficients are represented as certain integrals, from which their
properties can be directly extracted. ©2000 American Institute of Physics.
@S0022-2488~00!02304-5#

I. INTRODUCTION

Consider the one-dimensional Schro¨dinger equation,

c9~k,x!1k2c~k,x!5V~x!c~k,x!, xPR, ~1.1!

where the potentialV is real valued and satisfies

VPL1
1~R2!, V2c2PL1

1~R1!, ~1.2!

for somec>0. In our notation, the prime denotes the derivative with respect to the spatial va
x, R2:5(2`,0), R1:5(0,1`), andL1

1(I ) is the set of measurable functionsf on an intervalI
such that* Idx(11uxu)u f (x)u is finite. We will useC1 to denote the upper half complex plane a
C1:5C1øR.

Our main goal is to analyze the Darboux transformation for~1.1!, namely, to understand how
the scattering solutions, the scattering coefficients, and the potential change when bound st
added or removed. The Darboux transformation whenc50 in ~1.2! is well understood.1,2 For a
more general treatment of Darboux transformations, the reader is referred to Ref. 3 a
references therein. In the limitc→0, the transformation we present in Sec. IV reduces to
well-known case. The main difficulty whenc.0 is the analysis atkPC1 as x→1` of the
behavior off r(k,x), the Jost solution from the right defined in Sec. II. We overcome this diffic
by working with a regular solution of~1.1! analyzed in Sec. III.

The bound states of~1.1! are its square-integrable solutions, whereas the scattering stat
~1.1! correspond to solutions behaving likee6 ikx asx→2` and likee6 igx asx→1`, where

g:5Ak22c2, ~1.3!

in which the branch of the square-root function is used with Img >0. Thus,g is purely imaginary
whenkP(2c,c).

The reader is referred to Refs. 4–7 for the analysis of the direct and inverse sca
problems for~1.1!. For a more general analysis of the scattering problem, see also Refs. 8 a
and references therein. The inverse scattering problem for~1.1!, namely, the recovery ofV from
an appropriate set of scattering data, has important applications10–12 in the recovery of materia
properties of thin films. Thus, we expect our results to be useful in x-ray and ne
reflectometry.11–15
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Our paper is organized as follows: In Sec. II we review some relevant properties o
scattering solutions and the bound states. In Sec. III, we obtain various properties of a r
solution of~1.1! that are needed in establishing the Darboux transformation. In Sec. IV we pr
the Darboux transformation and show how the bound states can be added or removed. Fin
Sec. V we evaluate the spatial asymptotics of the Jost solutions and present some integra
sentations of the scattering coefficients.

II. JOST SOLUTIONS AND SCATTERING COEFFICIENTS

Among the scattering solutions of~1.1! are the so-called Jost solutions with specific bound
conditions atx56`. The Jost solution from the left,f l(k,x), associated withV is the solution of
~1.1! satisfying

e2 igxf l~k,x!511o~1!, e2 igxf l8~k,x!5 ig1o~1!, x→1`, ~2.1!

whereg is the quantity defined in~1.3!. It satisfies the integral relation

f l~k,x!5eigx1
1

g E
x

`

dy sing~y2x! @V~y!2c2# f l~k,y!. ~2.2!

Similarly, f r(k,x), the Jost solution from the right, is defined as the solution of~1.1! satisfying

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`, ~2.3!

and it satisfies the integral relation

f r~k,x!5e2 ikx1
1

k E2`

x

dy sink~x2y! V~y! f r~k,y!. ~2.4!

We later need the following known properties4,5 of the Jost solutions.
Proposition 2.1:AssumeV satisfies~1.2! for somec>0. Then, for each fixedxPR, the

functions f l(k,x), f l8(k,x), f r(k,x), and f r8(k,x) are analytic inkPC1 and continuous ink
PC1. Moreover, for each fixedkPC1, these four functions are continuous inxPR.

The transmission and reflection coefficients from the left,Tl andL, can be defined in terms o
the spatial asymptotics off l as

e2 ikxf l~k,x!5
1

Tl~k!
1

L~k!

Tl~k!
e22ikx1o~1!, x→2`, kPR\$0%. ~2.5!

Similarly, the transmission and reflection coefficients from the right,Tr andR, can be defined in
terms of the spatial asymptotics off r as

eigxf r~k,x!5
1

Tr~k!
1

R~k!

Tr~k!
e2igx1o~1!, x→1`, gPR\$0%. ~2.6!

Since~2.6! holds only forkPR\@2c,c#, one needs to use other means to defineR(k) andTr(k)
for kP@2c,c#. It turns out4,5 that

Tr~k!5
g

k
Tl~k!, kPC1\$0%, ~2.7!

R~k!52
L~k!* Tl~k!

Tl~k!*
, kPR, ~2.8!
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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where the asterisk denotes complex conjugation. The reader is referred to Refs. 4, 5, and 7
small-k asymptotics of the scattering coefficients. The poles ofTl in C1 correspond4,5 to the
bound states of~1.1!. Under ~1.2! it is known4,5,7 that such poles are simple, confined to t
positive imaginary axis, and finite in number. Let us assume that there areN bound states atk
5 ik j with 0,k1,¯,kN .

Let @ f ;g#:5 f g82 f 8g denote the Wronskian. It is well known that the Wronskian of any t
solutions of~1.1! is independent ofx. From ~2.3! and ~2.5! it follows that

1

Tl~k!
5

1

2ik
@ f r~k,x!; f l~k,x!#, ~2.9!

and hencef l(k,x) and f r(k,x) are linearly dependent at the bound states and linearly indepen
otherwise. In fact,f l( ik j ,x) and f r( ik j ,x) decay exponentially4,5 to zero asx→6`. Thus, if we
let

m jª
f l~ ik j ,x!

f r~ ik j ,x!
, ~2.10!

then eachm j is independent ofx and is a real nonzero constant.
Proposition 2.2:AssumeV satisfies~1.2! for somec>0 with the bound states occurring a

k5 ik j for j 51,...,N. Then, bothf l( ik,x) and f r( ik,x) are strictly positive whenk>kN . In case
there are no bound states,f l( ik,x) and f r( ik,x) are strictly positive for allk.0.

Proof: The proof is similar to the case whenc50 and it can be obtained, e.g., by usin
Proposition 10.1 of Ref. 16. j

Proposition 2.3:AssumeV satisfies~1.2! for somec>0 with the bound states occurring a
k5 ik j for j 51,...,N. Then,

~i! Tl( ik).0 whenk.kN .
~ii ! (21) jTl( ik).0 whenkP(kN2 j ,kN2 j 11) for j 51,...,N21.
~iii ! (21)NTl( ik).0 whenkP(0,k1).

If there are no bound states, thenTl( ik).0 for k.0.
Proof: The proof is obtained by noticing4,5 that 1/Tl( ik) is real and continuous forkPR, it

has simple zeros atk5k j for j 51,...,N, and that it converges to 1 ask→1`. j

III. REGULAR SOLUTION

Let v(k,x) be the solution of~1.1! satisfying the boundary conditions

v~k,0!50, v8~k,0!51. ~3.1!

For each fixedxPR, v(•,x) is entire on the complex plane and hence it is a ‘‘regular’’ soluti
As in ~3.3! and ~3.5! of Ref. 7 we have the integral relations

v~k,x!55
singx

g
1

1

g E
0

x

dy sing~x2y! @V~y!2c2#v~k,y!, x>0,

sinkx

k
1

1

k Ex

0

dy sink~y2x!V~y!v~k,y!, x<0,

~3.2!

v8~k,x!55 cosgx1E
0

x

dy cosg~x2y! @V~y!2c2#v~k,y!, x>0,

coskx2E
x

0

dy cosk~y2x!V~y!v~k,y!, x<0,

~3.3!
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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From ~3.1! and the constancy of the Wronskian of any two solutions of~1.1!, it follows that

@ f l~k,x!;v~k,x!#5 f l~k,0!, @ f r~k,x!;v~k,x!#5 f r~k,0!. ~3.4!

Let us fixk.kN (k.0 if ~1.1! has no bound states!. When a bound state is added to~1.1! at
k5 ik, we are interested in finding the potential, the scattering coefficients, and the Jost so
corresponding to the resulting Schro¨dinger equation. For this, we prove several propositions
are needed to establish the Darboux transformation formulas in Sec. IV.

From ~2.9!, ~3.4!, and Propositions 2.2 and 2.3, it follows that any two off l( ik,x), f r( ik,x),
andv( ik,x) are linearly independent. Thus, we have

f r~ ik,x!5A1~k! f l~ ik,x!1A2~k! v~ ik,x!, x>0, ~3.5!

f l~ ik,x!5A3~k! f r~ ik,x!2A4~k! v~ ik,x!, x<0, ~3.6!

where the coefficientsAj (k) are analyzed in the next proposition.
Proposition 3.1:AssumeV satisfies~1.2! for somec>0 and thatk.kN ~if there are no

bound states, letk.0). Then, all the fourAj (k) appearing in~3.5! and~3.6! are strictly positive.
Proof: Using ~2.9! and ~3.4!–~3.6! we get

A1~k!5
1

A3~k!
5

f r~ ik,0!

f l~ ik,0!
, ~3.7!

A2~k!5
2k

Tl~ ik! f l~ ik,0!
, A4~k!5

2k

Tl~ ik! f r~ ik,0!
. ~3.8!

By Propositions 2.2 and 2.3 all the three quantitiesf l( ik,0), f r( ik,0), andTl( ik) are strictly
positive, and hence each of the fourAj (k) is strictly positive. j

Let

u~x;k!ªH e2lxv~ ik,x!, x>0,

ekxv~ ik,x!, x<0,
~3.9!

wherel is the constant defined in terms ofk as

l5Ak21c2, ~3.10!

andc is the constant appearing in~1.2!. Even thoughv( ik,x) is unbounded asx→6`, we will
see thatu(x;k) has nicer properties that will be useful later on.

Proposition 3.2:Assume thatV satisfies~1.2! for somec>0 and thatk.kN ~if there are no
bound states, letk.0). Then,

~i! u(x;k) andu8(x;k) are continuous and bounded inxPR.
~ii ! The spatial asymptotics ofu(x;k) andu8(x;k) are given by

u8~x;k!5o~1/x!, x→6`, ~3.11!

u~x;k!5H f l~ ik,0!

2l
1o~1!, x→1`,

2
f r~ ik,0!

2k
1o~1!, x→2`.

~3.12!

Proof: Using ~3.1! and~3.9! in ~1.1! we see thatu(•;k) andu8(•;k) are both continuous and
satisfyu(0;k)50 andu8(0;k)51. Thus, from~3.2!, ~3.3!, and~3.9! we get
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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u~x;k!55
1

2l
@12e22lx#1

1

2l E
0

x

dy @12e22l~x2y!#@V~y!2c2#u~y;k!, x>0,

1

2k
@e2kx21#1

1

2k E
x

0

dy @12e22k~y2x!#V~y!u~y;k!, x<0,

~3.13!

u8~x;k!55 e22lx1E
0

x

dy e22l~x2y!@V~y!2c2#u~y;k!, x>0,

e2kx2E
x

0

dy e22k~y2x!V~y!u~y;k!, x<0.

~3.14!

The Volterra equation~3.13! can be solved by using iteration, and we get

uu~x;k!u<5
1

l
expS 1

l E
0

x

dy uV~y!2c2u D , x>0,

1

k
expS 1

k E
x

0

dy uV~y!u D , x<0.

~3.15!

Because of~1.2!, we see from~3.15! thatu(x;k) is bounded inxPR. Letting C denote a generic
constant and usinguu(x;k)u<C in ~3.14!, we see thatu8(x;k) is bounded inxPR. In fact, from
~3.14! we get the following estimates. Whenx.0 we have

uu8~x;k!u<e22lx1CE
0

x/2

dy e22l~x2y!uV~y!2c2u1
2C

x E
x/2

x

dy y e22l~x2y!uV~y!2c2u

<e22lx1Ce2lxE
0

x/2

dy uV~y!2c2u1
2C

x E
x/2

x

dy y e22l~x2y!uV~y!2c2u. ~3.16!

From ~1.2! it follows that the last integral in~3.16! is o(1) as x→1`, and henceu8(x;k)
5o(1/x) asx→1`. Similarly, whenx,0 we have

uu8~x;k!u<e2kx1CE
x/2

0

dy e22k~x2y!uV~y!u1
2C

uxu Ex

x/2

dy uyue22k~y2x!uV~y!u

<e2kx1CekxE
x/2

0

dy uV~y!u1
2C

uxu Ex

x/2

dy uyue22k~y2x!uV~y!u, ~3.17!

and since the last integral in~3.17! is o(1) as x→2`, it follows that u8(x;k)5o(1/x) as x
→2`. Thus,~3.11! has been established. Letting

ml~k,x!ªe2 igxf l~k,x!, ~3.18!

from ~2.1! we get

ml~ ik,x!511o~1!, ml8~ ik,x!5o~1!, x→1`.

The first Wronskian identity in~3.4! can be written as

f l~ ik,0!5ml~ ik,x!u8~x;k!1@2lml~ ik,x!2ml8~ ik,x!#u~x;k!. ~3.19!

Letting x→1` in ~3.19! and recalling thatf l( ik,0).0, with the help of~3.11! and~3.19!, we get
~3.12! asx→1`. Similarly, letting
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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mr~k,x!ªeikxf r~k,x!, ~3.20!

from ~2.3! we get

mr~ ik,x!511o~1!, mr8~ ik,x!5o~1!, x→2`. ~3.21!

The second Wronskian identity in~3.4! can be written as

f r~ ik,0!5mr~ ik,x!u8~x;k!2@2kmr~ ik,x!1mr8~ ik,x!#u~x;k!. ~3.22!

Letting x→2` in ~3.22! and recalling thatf r( ik,0).0, using ~3.11! and ~3.21!, we establish
~3.12! asx→2`. j

Proposition 3.3:Assume thatV satisfies~1.2! for somec>0 and thatk.kN ~if there are no
bound states, letk.0). Thenu8(•;k) belongs toL1

1(R), whereu(x;k) is the quantity defined in
~3.9!.

Proof: As shown in Proposition 3.2~i!, u8(•;k) is continuous. Thus, as seen from~3.16! and
~3.17!, in order to prove thatu8(•;k) belongs toL1

1(R), it is enough to prove thatI 1 and I 2 are
finite, where we have defined

I 1ªE
2a

`

dx S 11
1

xD E
x/2

x

dy y e22l~x2y!uV~y!2c2u, ~3.23!

I 2ªE
2`

22a

dx S 11
1

uxu D Ex

x/2

dy uyue22k~y2x!uV~y!u, ~3.24!

for some positive constanta>1. Changing the order of integration in~3.23!, we get

I 1<2E
a

`

dy y e2lyuV~y!2c2u E
y

2y

dx e22lx5
1

l E
a

`

dy y@12e22ly#uV~y!2c2u,

and hence, because of~1.2!, I 1 is finite. Similarly, a change of order of integration in~3.24! gives
us

I 2<2E
2`

2a

dy uyue22kyuV~y!u E
2y

y

dx e2kx5
1

k E
2`

2a

dy uyu@12e2ky#uV~y!u,

and henceI 2 is also finite because of~1.2!. Thus, the proof is completed. j

For a.0 let us define

h~x;k,a!ª f l~ ik,x!1a f r~ ik,x!, xPR, ~3.25!

j~x;k,a!ª
h8~x;k,a!

h~x;k,a!
, xPR. ~3.26!

Proposition 3.4:AssumeV satisfies~1.2! for somec>0, and leta.0 andk.kN ~if there are
no bound states, letk.0). Then,

~i! j(x;k,a) is bounded and continuous inxPR.
~ii ! j(•;k,a)2l belongs toL1

1(R1) andj(•;k,a)1k belongs toL1
1(R2).

~iii ! j8(•;k,a) exists a.e. and belongs toL1
1(R).

Proof: Because of Proposition 2.1, bothh(x;k,a) and h8(x;k,a) are continuous inxPR.
From Proposition 2.2, it follows thath(x;k,a) is strictly positive, and hencej(x;k,a) is con-
tinuous inxPR. Using ~3.5! and ~3.6! in ~3.25!, with the help of~3.7!–~3.10!, we obtain
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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h~x;k,a!5H @11a A1~k!# f l~ ik,x!1a A2~k!elxu~x;k!, x>0,

@a1A3~k!# f r~ ik,x!1A4~k!e2kxu~x;k!, x<0,
~3.27!

h8~x;k,a!5H @11a A1~k!# f l8~ ik,x!1a A2~k!elx@lu~x;k!1u8~x;k!#, x>0,

@a1A3~k!# f r8~ ik,x!1A4~k!e2kx@2ku~x;k!1u8~x;k!#, x<0.
~3.28!

Using ~2.1!, ~2.3!, ~3.11!, and~3.12! in ~3.27! and ~3.28!, we obtain

j~x;k,a!5H l1
u8~x;k!

u~x;k!
1

1

u~x;k!
O~e22lx!, x→1`,

2k1
u8~x;k!

u~x;k!
1

1

u~x;k!
O~e2kx!, x→2`.

~3.29!

As seen from~3.12!, u(x;k) is bounded and remains bounded away from zero asx→6`. Thus,
from ~3.12! and ~3.29! we get

j~x;k,a!5H l1
2lu8~x;k!

f l~ ik,0!
@11o~1!#1O~e22kx!, x→1`,

2k2
2ku8~x;k!

f r~ ik,0!
@11o~1!#1O~e2kx!, x→2`.

~3.30!

Using ~3.11! and Proposition 2.2 in~3.30!, we see thatj(x;k,a) is bounded for allxPR. Since
j(•;k,a) is continuous, theL1

1-properties stated in~ii ! follow from ~3.30! and theL1
1-property of

u8(x;k) established in Proposition 3.3. From~1.1! and ~3.26! we get

j8~x;k,a!5V~x!1k22j~x;k,a!2, xPR. ~3.31!

Using ~3.10! we can write~3.31! also as

j8~x;k,a!5V~x!2c21l22j~x;k,a!2, xPR. ~3.32!

Thus, because of~1.2!, as seen from~3.31! and~3.32!, in order to show thatj8(•;k,a) belongs to
L1

1(R), it is sufficient to show thatj(•;k,a)22l2 belongs toL1
1(R1) and j(•;k,a)22k2 be-

longs toL1
1(R2). However, these directly follow from~i! and ~ii !, as seen by writing

j~x;k,a!22l25@j~x;k,a!2l#@j~x;k,a!1l#,

j~x;k,a!22k25@j~x;k,a!1k#@j~x;k,a!2k#,

and using~ii ! and the boundedness ofj(x;k,a)1l andj(x;k,a)2k. j

IV. DARBOUX TRANSFORMATION

Let us use a tilde to denote the quantities associated with the resulting Schro¨dinger equation
when a bound state is added to~1.1! at k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!.
That is,Ṽ is the resulting potential,f̃ l and f̃ r are the Jost solutions,T̃l andT̃r are the transmission
coefficients, andL̃ andR̃ are the reflection coefficients, from the left and from the right, resp
tively. We have the following result:

Theorem 4.1: AssumeV satisfies~1.2! for somec>0. If a bound state is added to~1.1! at
k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!, then

Ṽ~x;k,a!5V~x!22j8~x;k,a!, ~4.1!
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



s

s

roof is

1626 J. Math. Phys., Vol. 41, No. 4, April 2000 Tuncay Aktosun

Downloade
f̃ l~k,x;k,a!5
1

i ~g1 il!
@ f l8~k,x!2j~x;k,a! f l~k,x!#, ~4.2!

f̃ r~k,x;k,a!5
i

~k1 ik!
@ f r8~k,x!2j~x;k,a! f r~k,x!#, ~4.3!

T̃l~k;k,a!5
g1 il

k2 ik
Tl~k!, L̃~k;k,a!52

k1 ik

k2 ik
L~k!, ~4.4!

T̃r~k;k,a!5
g1 il

k2 ik
Tr~k!, R̃~k;k,a!52

g1 il

g2 il
R~k!, ~4.5!

whereg is as in~1.3!, l is the constant in~3.10!, andj(x;k,a) is the function defined in~3.26!.
Proof: It can be verified directly thatf̃ l and f̃ r given in ~4.2! and ~4.3!, respectively, satisfy

~1.1! when the potentialV is replaced byṼ. Moreover, from the asymptotics asx→1` stated in
~2.1! and ~3.30!, it follows that f̃ l is the Jost solution from the left associated withṼ. Similarly,
from the asymptotics asx→2` stated in~2.3! and ~3.30!, it follows that f̃ r is the Jost solution
from the right forṼ. With the help of~2.5!, ~2.6!, ~3.11!, and~3.30!, we obtainT̃l andL̃ given in
~4.4!. Finally, by using~2.7!, ~2.8!, and~4.4!, we establish~4.5!. j

Proposition 4.2:AssumeV satisfies~1.2! for somec>0. If a bound state is added to~1.1! at
k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!, thenṼ belongs to the same class a
V, namely,

ṼPL1
1~R2!, Ṽ2c2PL1

1~R1!. ~4.6!

Moreover, the positive constanta introduced in~3.25! is related to the ratio of the Jost solution
of Ṽ at the bound statek5 ik as

f̃ l~ ik,x;k,a!

f̃ r~ ik,x;k,a!
5

ak

l
, ~4.7!

wherel is the quantity defined in~3.10!. Furthermore,f̃ l( ik,x;k,a) and f̃ r( ik,x;k,a) are both
strictly positive for allxPR and decay exponentially to zero asx→6` with the asymptotics
given by

f̃ l~ ik,x;k,a!5H e2lx@11o~1!#, x→1`,

ak

l
ekx@11o~1!#, x→2`,

~4.8!

f̃ r~ ik,x;k,a!5H l

ak
e2lx@11o~1!#, x→1`,

ekx@11o~1!#, x→2`.

~4.9!

Proof: We get~4.6! by using~1.2!, ~4.1!, and Proposition 3.4~iii !. Evaluating~4.2! and ~4.3!
at k5 ik and using~3.26!, we obtain~4.7!. Sincef̃ l is asymptotic toeigx asx→1` as in~2.1! and
f̃ r to e2 ikx asx→2` as in ~2.3!, using~4.7! we obtain~4.8! and ~4.9!. j

In the next theorem we present the Darboux transformation when we remove from~1.1! the
bound state of the lowest energy. The proof is omitted because the technique used in the p
similar to that used in Theorem 4.1 and Proposition 4.2.
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



e
r

g

1627J. Math. Phys., Vol. 41, No. 4, April 2000 Darboux transformation for steplike potentials

Downloade
Theorem 4.3: Assume thatṼ satisfies~4.6! for somec>0 and that its lowest bound-stat
energy corresponds tok5 ik for somek.0. Let f̃ l(k,x) and f̃ r(k,x) denote the Jost solutions fo
Ṽ, from the left and from the right, respectively. After the removal of the bound state atk5 ik, let
us denote the resulting potential byV with the corresponding Jost solutionsf l(k,x) and f r(k,x).
Then,

V~x!5Ṽ~x!22h8~x!,

f l~k,x!5
1

i ~g2 il!
@ f̃ l8~k,x!2h~x! f̃ l~k,x!#,

f r~k,x!5
i

~k2 ik!
@ f̃ r8~k,x!2h~x! f̃ r~k,x!#,

where g is as in ~1.3!, l is as in ~3.10!, and h(x)ª f̃ l8( ik,x)/ f̃ l( ik,x). Moreover, h(1`)
52l, h(2`)5k, h8PL1

1(R), andV belongs to the same class asṼ specified in~4.6!.
Using Propositions 4.1 and 4.2 in a recursive manner, we obtain the following result:
Corollary 4.4: Assume thatV satisfies~1.2! for somec>0 and it has bound states atk

5 ik j for j 51,...,N; let l j5Ak j
21c2. Then,

Tl~k!5Tl
@0#~k!)

j 51

N
g1 il j

k2 ik j
, Tr~k!5Tr

@0#~k!)
j 51

N
g1 il j

k2 ik j
, ~4.10!

L~k!5~21!NL @0#~k!)
j 51

N
k1 ik j

k2 ik j
, R~k!5~21!NR@0#~k!)

j 51

N
g1 il j

g2 il j
, ~4.11!

whereTl
@0# , Tr

@0# , L @0#, andR@0# are the scattering coefficients corresponding to the potentialV@0#

obtained fromV by removing all its bound states, andV@0# belongs to the same class asV does,
i.e., V@0#PL1

1(R2) andV@0#2c2PL1
1(R1).

Notice that if we letc→0 in ~4.2!–~4.5!, ~4.10!, and~4.11!, then we obtain the well-known
Darboux transformation formulas1,2 for the standard Schro¨dinger equation.

In certain applications11–14in materials science, the potentialV(x) has support inR1. In such
cases, we show in the next proposition that the constanta appearing in~3.25! must be chosen in
a unique manner in order not to change the potential forx,0.

Proposition 4.5:Assume thatV satisfies~1.2! for somec>0, vanishes forx,0, and has
bound states atk5 ik j for j 51,...,N. If a bound state is added toV at k5 ik with k.kN ~with
k.0 if ~1.1! has no bound states!, then Ṽ also vanishes forx,0 if and only if the constanta
appearing in~3.25! is chosen as

a52
L~ ik!

Tl~ ik!
. ~4.12!

Proof: WhenV vanishes forx,0, its Jost solutions onR2 are determined by the scatterin
coefficients as

f l~k,x!5
eikx1L~k!e2 ikx

Tl~k!
, f r~k,x!5e2 ikx, x<0. ~4.13!

Using ~3.25! and ~4.13! in ~3.26!, we get

j~x;k,a!52k
e2kx/Tl~ ik!2@a1L~ ik!/Tl~ ik!#ekx

e2kx/Tl~ ik!1@a1L~ ik!/Tl~ ik!#ekx , x<0,
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and hence, because of~4.1!, Ṽ vanishes forx,0, i.e.j(x;k,a) is a constant, if and only if~4.12!
is satisfied. j

V. REPRESENTATIONS FOR SCATTERING COEFFICIENTS

The integral relation~2.2! is not suitable to obtain the asymptotics off l(k,x) asx→2`. For
this we can use the representation

2ik f l~k,x!5B1~k!eikx1B2~k!e2 ikx1E
x

0

dy @eik~y2x!2e2 ik~y2x!#V~y! f l~k,y!, ~5.1!

where we have defined

B1~k!ª ik f l~k,0!1 f l8~k,0!, B2~k!ª ik f l~k,0!2 f l8~k,0!. ~5.2!

It can be easily checked thatf l(k,x) given in ~5.1! satisfies~1.1! and the appropriate boundar
conditions atx50. Letting

pl~k,x!ªe2 ikxf l~k,x!, ~5.3!

we can write~5.1! as

2ikpl~k,x!5B1~k!1B2~k!e22ikx1E
x

0

dy @e2ik~y2x!21#V~y!pl~k,y!. ~5.4!

By iterating ~5.4!, for x>0 we get

upl~k,x!u<
1

2uku @ uB1~k!u1uB2~k!u# expS 1

uku E2`

0

dy uV~y!u D , kPC1\$0%. ~5.5!

With the help of~2.5!, ~5.1!, ~5.2!, ~5.4!, and~5.5!, we obtain

2ik

Tl~k!
5 ik f l~k,0!1 f l8~k,0!2E

2`

0

dy V~y!pl~k,y!, kPC1\$0%, ~5.6!

2ikL~k!

Tl~k!
5 ik f l~k,0!2 f l8~k,0!1E

2`

0

dy e2ikyV~y!pl~k,y!, kPR\$0%. ~5.7!

For each fixedkPC1, letting x→2` in ~5.4! and using~5.6!, we get

2ikpl~k,x!5B1~k!2E
2`

0

dy V~y!pl~k,y!1o~1!5
2ik

Tl~k!
1o~1!, ~5.8!

and hence from~5.2! and ~5.8! we have

e2 ikxf l~k,x!5
1

Tl~k!
@11o~1!#, kPC1, x→2`.

In the integrand in~5.7!, whenkPC1, the factore2iky grows exponentially asy→2`; hence,
unlessV(y) decays faster, the integral does not converge and thusL(k) does not have an exten
sion from realk values to complex ones.

In a similar manner, in order to study the asymptotics off r(k,x) asx→1`, instead of~2.4!
we will use the integral relation
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2ig f r~k,x!5B3~k!eigx1B4~k!e2 igx1E
0

x

dy @eig~x2y!2e2 ig~x2y!#@V~y!2c2# f r~k,y!,

~5.9!

where we have defined

B3~k!ª ig f r~k,0!1 f r8~k,0!, B4~k!ª ig f r~k,0!2 f r8~k,0!. ~5.10!

It can be checked thatf r(k,x) given in ~5.9! satisfies~1.1! and the appropriate boundary cond
tions atx50. Letting

pr~k,x!ªeigxf r~k,x!, ~5.11!

we can write~5.9! as

2ig pr~k,x!5B3~k!e2igx1B4~k!1E
0

x

dy @e2ig~x2y!21#@V~y!2c2#pr~k,y!. ~5.12!

Iterating ~5.12!, for x>0 we get

upr~k,x!u<
1

2ugu @ uB3~k!u1uB4~k!u# expS 1

ugu E0

`

dy uV~y!2c2u D , gPC1\$0%. ~5.13!

Using ~2.6!, ~5.9!, ~5.10!, ~5.12!, and~5.13!, we obtain

2ig

Tr~k!
5 ig f r~k,0!2 f r8~k,0!2E

0

`

dy @V~y!2c2#pr~k,y!, gPC1\$0%, ~5.14!

2ig R~k!

Tr~k!
5 ig f r~k,0!1 f r8~k,0!1E

0

`

dy e22igy@V~y!2c2#pr~k,y!, gPR\$0%. ~5.15!

Using~2.7!, ~2.8!, ~5.6!, and~5.7!, we can extendR(k) andTr(k) to kP@2c,c# as well. In~5.12!,
for each fixedgPC1, letting x→1` we get

2ig pr~k,x!5B4~k!2E
0

`

dy @V~y!2c2#pr~k,y!1o~1!5
2ig

Tr~k!
1o~1!, ~5.16!

and hence from~5.11! and ~5.16! we get

eigxf r~k,x!5
1

Tr~k!
@11o~1!#, gPC1, x→1`.

In the integrand in~5.15!, whengPC1, the factore22igy grows exponentially asy→1`, and
hence unlessV(y)2c2 decays faster, the integral does not converge andR(k) does not have an
extension from realk values to complex ones.

Proposition 5.1:AssumeV satisfies~1.2! for somec>0. Then,pl(k,x) andpr(k,x) defined
in ~5.3! and ~5.11!, respectively, have the following properties:

~i! For eachxPR, pl(•,x) andpr(•,x) are analytic inkPC1 and continuous inkPC1.
~ii ! Uniformly in xPR2 we have

pl~k,x!511O~1/k!, pl8~k,x!5o~1!, k→` in C1.

~i! Uniformly in xPR1 we have
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pr~k,x!511O~1/k!, pr8~k,x!5o~1!, k→` in C1.

Proof: Because of~5.3! and ~5.11!, the analyticity and continuity properties stated in~i!
directly follow from Proposition 2.1. From~2.2! and ~5.3!, by proceeding1,2 as in the standard
Schrödinger equation withc50, we get

ml~k,0!511O~1/g!, ml8~k,0!5o~1!, g→` in C1,

and from~1.3! we haveg5k1O(1/k) ask→` in C1. Thus, with the help of~3.18!, from ~5.2!
we obtain

B1~k!5 i ~k1g!@11O~1/g!#1o~1!52ik1o~1!, k→` in C1, ~5.17!

B2~k!5 i ~k2g!@11O~1/g!#1o~1!5o~1!, k→` in C1, ~5.18!

Note thatue22ikxu<1 whenxPR2 andkPC1. Using iteration on~5.4!, we find that

pl~k,x!2
1

2ik
@B1~k!1B2~k!e22ikx#5O~1/k!, k→` in C1. ~5.19!

Thus, from ~5.17!–~5.19! we obtainpl(k,x)511O(1/k) as k→` in C1 uniformly for all x
PR2. From ~5.4! we obtain

pl8~k,x!52B2~k!2E
x

0

dy e2ik~y2x!V~y!pl~k,y!. ~5.20!

Iterating~5.20! and using~5.18! and~5.19!, we getpl8(k,x)5o(1) ask→` in C1 uniformly for
all xPR2. Thus, the proof of~ii ! is complete. The proof of~iii ! is similar to that of~ii !, and it is
obtained by using~2.4!, ~3.20!, ~5.11!, and~5.12!. j

The integral representations~5.6!, ~5.7!, ~5.14!, and ~5.15! can be used to establish variou
properties of the scattering coefficients such as their small-k and large-k asymptotics. For example
their large-k asymptotics can be obtained with the help of Proposition 5.1. However, such de
tions will not be given in this paper, and we let the interested reader extract such propertie
those integral representations.
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