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The generalized Schro¨dinger equationd2c/dx21F(k)c5@ ikP(x)1Q(x)#c is
considered, whereP andQ are integrable potentials with finite first moments andF
satisfies certain conditions. The behavior of the scattering coefficients near zeros of
F is analyzed. It is shown that in the so-called exceptional case, the values of the
scattering coefficients at a zero ofF may be affected byP(x). The location of the
k-values in the complex plane where the exceptional case can occur is studied.
Some examples are provided to illustrate the theory. ©1999 American Institute of
Physics.@S0022-2488~99!03007-8#

I. INTRODUCTION

In this paper we consider the generalized Schro¨dinger equation

d2c~k,x!

dx2 1F~k!c~k,x!5@ ikP~x!1Q~x!#c~k,x!, xPR, ~1.1!

where the properties ofF will be detailed below. The functionsP andQ satisfy

PPL1
1~R!, QPL1

1~R!, ~1.2!

whereL1
1(R) is the class of measurable functionsf such that*2`

` dx u f (x)u(11uxu),1`. For the
majority of the paper,P andQ need not be real valued; if they are, this will be stated explici
In applications,k may correspond to a wave number whileF(k) may represent energy. Th
coefficientP(x) may represent the absorptive properties of a medium, andQ(x) may be a restor-
ing force density or a potential for an external force. Some special cases of~1.1! are

~A! F(k)5k2 with P(x)[0,
~B! F(k)5k2 with P(x)Ó0,
~C! F(k)5k211/(4b2) with b.0.
Case~A! corresponds to the well-known quantum-mechanical case of the Schro¨dinger equa-

tion on the line with potentialQ(x). Case~B! was studied by Jean and Jaulent,1–4 and more
recently by Sattinger and Szmigielski,5 and by us6 when P is real valued. Case~C! has been
investigated by Kaup7 in connection with the inverse scattering transform for an evolution eq
tion ~a long-wave water equation resembling the Boussinesq equation! by Tsutsumi8 and, more
recently, under the assumption that*2`

` dx P(x)50, by Sattinger and Szmigielski.9

Our interest in~1.1! is motivated by various inverse problems associated with~1.1!. In study-
ing such problems, one needs to know the asymptotics of various quantities as the paramk
approaches certain special values, in particular asF(k)˜` or ask˜k0 , wherek0 is a zero ofF.
In this paper we will only be concerned with the second situation. We will callk0PC a critical
value of~1.1! if F(k0)50. Here,C denotes the complex plane. The quantities whose asympt
we will study are the transmission and reflection coefficients associated with~1.1!. Before we
define these quantities we list the assumptions onF:
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~H1! Supposingk0 is a critical value of~1.1!, there exists a setS,C such thatF(k) is
continuous onS, F(k)Þ0 onS\$k0%, and the mapk°m(k)5AF(k) is one-to-one forkPS. Here
the branch of the square root is such that 0<argm,p, wherem5m(k).

~H2! There is a pathP(k0) in S containingk0 on whichm takes on real non-negative value
Note that, by~H1!, D5m~S! is a subset of the closed upper-half complex planeC1. ~H2!

indicates that there is ane.0 so that@0,e#PD. In cases~A! and ~B!, k050 is the only critical
value. We may then chooseS5$k:0<argk,p%ø$0%, so thatm(k)5k andD5S. For the path
P(k0) we may take the interval@0,1`!. In case~C! the critical values arek056 i /(2b). The disk
$k: uk2 i /(2b)u<1/(2b)% can then be used asS near the critical point1 i /(2b) and we have
D5$m: umu<1/(2b), 0<argm,p%ø$0%. As the pathP(k0) we can take the imaginary interva
i @0,1/(2b)#. The modifications for the other critical point are obvious.

For kPS, ~1.1! possesses the solutionsf l(k,x) and f r(k,x), the so-called Jost solutions from
the left and from the right, respectively, that are uniquely defined by their spatial asympt
namely,

f l~k,x!5eimx@11o~1!#, f l8~k,x!5 imeimx@11o~1!#, x˜1`, ~1.3!

f r~k,x!5e2 imx@11o~1!#, f r8~k,x!52 ime2 imx@11o~1!#, x˜2`, ~1.4!

where the prime indicates the derivative with respect to the spatial variablex. For k
PP(k0)\$k0% the Jost solutions obey

f l~k,x!5
1

T~k!
eimx1

L~k!

T~k!
e2 imx1o~1!, x˜2`, ~1.5!

f r~k,x!5
1

T~k!
e2 imx1

R~k!

T~k!
eimx1o~1!, x˜1`, ~1.6!

which define the transmission coefficientT and the reflection coefficientsR from the right andL
from the left, respectively. These quantities will collectively be referred to as scattering c
cients. It is also possible to define the scattering coefficients in terms of certain Wronskians
Jost solutions. For example, letting@ f ;g#5 f g82 f 8g denote the Wronskian, from~1.1! and~1.3!–
~1.6! we get

2im

T~k!
5@ f r~k,• !; f l~k,• !#. ~1.7!

In analogy with the usual Schro¨dinger equation, given a critical valuek0 we will distinguish
between two cases: We say that the generic~exceptional! case occurs atk5k0 if and only if
f l(k0 ,x) and f r(k0 ,x) are linearly independent~dependent!. In the exceptional case, we letg
denote the nonzero constant defined as,

g5
f l~k0 ,x!

f r~k0 ,x!
. ~1.8!

From ~1.7! we see thatk0 corresponds to the exceptional case if and only if

F~k0!50, lim
k˜k0

m~k!

T~k!
50.

In short, we will say thatk0 is an exceptional value if it corresponds to the exceptional case
~1.1!.

The behavior of the scattering coefficients of~1.1! at the critical valuesk0 does not seem to
have been studied in detail before, except in cases~A! and ~B!. In these two cases it is
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



e

ne
xcep-

the

e dis-

the

ional
t

ustrat-

the
t need

s

3703J. Math. Phys., Vol. 40, No. 8, August 1999 Asymptotics of the scattering coefficients ...

Downloade
known6,10–13 that there are two ways in whichT(k) can behave ask˜0: either T(k)5 ick
1o(k) for some nonzeroc, or T(k)5T(0)1o(1) with T(0)Þ0. The former corresponds to th
generic case and the latter corresponds to the exceptional case. In case~C! a detailed investigation
of the behavior of the scattering coefficients neark0561/(2b) does not seem to have been do
before. This is one of our goals in this paper, and particular attention will be paid to the e
tional case. In connection with a statement made in Theorem 2.6 of Ref. 9 regarding case~C! with
b51

2, we would like to comment that while it is true that for reflectionless potentials only
exceptional case can occur atk56 i , there are also potentialsP(x) andQ(x), in particular real
ones, which are not reflectionless and for which the exceptional case occurs. This will b
cussed in more detail in Sec. III.

This paper is organized as follows. In Sec. II we prove our main result concerning
behavior of the scattering coefficients at a critical value~Theorem 2.2! and apply it to cases
~A!–~C! ~Corollary 2.3!. We also present some information about the location of the except
k-values in the complex plane. In Sec. III we consider case~C! in more detail, show that one mus
not identify the exceptional case with the reflectionless case, and provide four examples ill
ing the location of the exceptionalk-values and other aspects of the theory.

II. ASYMPTOTICS OF THE SCATTERING COEFFICIENTS

In this section we study the asymptotic behavior of the scattering coefficients ask˜k0 , where
k0 is a critical value of~1.1!. In doing so we will only be concerned with the leading terms of
asymptotic expansions. Our main result is presented in Theorem 2.2. For its proof, we firs
some results about the usual Schro¨dinger equation.

Consider the pair of Schro¨dinger equations

d2f j~m,x!

dx2 1m2f j~m,x!5Vj~x!f j~m,x!, j 51,2, ~2.1!

whereVjPL1(R). Herem is allowed to range over all ofC1; it is not restricted toD defined
earlier. Lett j denote the transmission coefficient andr j and l j denote the reflection coefficient
from the right and left, respectively, for the potentialVj . Let gj ; l(m,x) andgj ;r(m,x) denote the
corresponding Jost solutions of~2.1! from the left and right, respectively. It is known10,11,13that

gj ; l~2m,x!5t j~m!gj ;r~m,x!2r j~m!gj ; l~m,x!, mPR,

gj ;r~2m,x!5t j~m!gj ; l~m,x!2 l j~m!gj ;r~m,x!, mPR. ~2.2!

Since m appears asm2 in ~2.1!, gj ; l(2m,x) and gj ;r(2m,x) are also solutions of~2.1!, and
gj ; l(2m,x)5e2 imx@11o(1)# asx˜1` andgj ;r(2m,x)5eimx@11o(1)# asx˜2`.

Proposition 2.1:Suppose thatVj P L1(R) for j 51,2. Then the scattering coefficients of~2.1!
satisfy

1

t2~m!
5

1

t1~m!
1

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;l~m,x!g1;r~m,x!, mPC1\$0%, ~2.3!

l 2~m!

t2~m!
5

l 1~m!

t1~m!
2

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;l~m,x!g1;r~2m,x!, mPR\$0%, ~2.4!

1

t2~m!
5

1

t1~m!
1

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;r~m,x!g1;l~m,x!, mPC1\$0%, ~2.5!

r 2~m!

t2~m!
5

r 1~m!

t1~m!
2

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;r~m,x!g1;l~2m,x!, mPR\$0%. ~2.6!
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Proof : First, let us note that~2.3! and~2.5! are given on p. 329 of Ref. 13, and some formu
related to~2.4! and~2.6! can be also found there. We will give a different proof which yields b
~2.3! and~2.4! simultaneously. The proof of~2.5! and~2.6! is similar and hence will be omitted
By the variation of parameters formula,g2;l(m,x) obeys the integral equation

g2;l~m,x!5g1;l~m,x!1E
x

`

dyG~m;x,y!@V2~y!2V1~y!#g2;l~m,y!, ~2.7!

where

G~m;x,y!5
g1;l~m,x!g1;r~m,y!2g1;r~m,x!g1;l~m,y!

@g1;l~m,• !;g1;r~m,• !#
. ~2.8!

Note that the Wronskian in~2.8! is related to the transmission coefficient as

t j~m!52
2im

@gj ; l~m,• !;gj ;r~m,• !#
. ~2.9!

Now ~2.3! and ~2.4! follow by letting x˜2` in ~2.7! and using~1.4!, ~1.5!, ~2.2!, and~2.9!. j

In the next theorem, the behavior of the scattering coefficients of~1.1! is analyzed at critical
k-values.

Theorem 2.2:SupposeP,QPL1
1(R) andF(k) satisfies~H1! and~H2!. If k0PC is a critical

value of ~1.1!, then we have the following.
~i! In the generic case we have

T~k!52
2im

@ f l~k0 ,• !; f r~k0 ,• !#
1o~m!, k˜k0 in S, ~2.10!

L~k!5211o~1!, R~k!5211o~1!, k˜k0 in P~k0!.

~ii ! In the exceptional case, using the constantsa andv defined by

a5 lim
k˜k0

k2k0

m~k!
, v5g2112aE

2`

`

dx P~x! f l~k0 ,x!2,

we distinguish two subcases:~a! If a exists and is finite andvÞ0, then

T~k!5
2g

v
1o~1!, k˜k0 in S, ~2.11!

L~k!5
2g22v

v
1o~1!, k˜k0 in P~k0!, ~2.12!

R~k!5
22v

v
1o~1!, k˜k0 in P~k0!. ~2.13!

~b! If lim
k˜k0

u(k2k0)/m(k)u51` and*2`
` dx P(x) f l(k0 ,x)2Þ0, then

T~k0!50, L~k0!521, R~k0!521.

In the exceptional case, ifa exists andv50, then the scattering coefficients are not continuou
k0 ; if a does not exist, then, in general, the scattering coefficients are not continuous atk0 .

Proof: In ~2.3!–~2.6! we replaceV1(x) by ik0P(x)1Q(x) andV2(x) by ikP(x)1Q(x) and
note that because of~1.2! we haveVjPL1

1(R) for j 51,2 instead of justVjPL1(R). The stronger
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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assumption allows us to take the limitm˜0 in ~2.3!–~2.6!. Thanks to Proposition 2.1 we can mak
full use of the results12 known in the caseP(x)[0. For g1;l(m,x) andg2;r(m,x) in ~2.3!–~2.6!,
we substitutef l

@0#(m,x) and f r
@0#(m,x), respectively, where the latter two are the Jost solution

d2w~m,x!

dx2 1m2w~m,x!5@ ik0P~x!1Q~x!#w~m,x!. ~2.14!

Let T@0#(m), R@0#(m), andL @0#(m) denote the scattering coefficients associated with~2.14!. Then
from ~2.3! we get

1

T~k!
5

1

T@0#~m! F12
k2k0

2m
T@0#~m!E

2`

`

dx P~x! f r
@0#~m,x! f l~k,x!G , mPD\$0%. ~2.15!

WhenP,QPL1
1(R), we have

u f r
@0#~m,x!u<C~11max$0,x%!e~ Im m!x, mPC1, ~2.16!

u f l~k,x!u<C~11max$0,2x%!e2~ Im m!x, kPS, ~2.17!

whereC is a constant independent ofx and k. Hence, by the Lebesgue dominated converge
theorem, the integral on the right-hand side in~2.15! converges ask˜k0 . Now ~2.10! follows
from ~2.9!, ~2.15!, and the fact that in the generic case we have

@ f l~k0 ,• !; f r~k0 ,• !#5@ f l
@0#~k0 ,• !; f r

@0#~k0 ,• !#Þ0.

In the exceptional case we obtain~2.11! by using~2.15!–~2.17! along with the fact that

f r
@0#~0,x!5 f r~k0 ,x!5

1

g
f l~k0 ,x!, ~2.18!

and ~cf. Ref. 12!

T@0#~0!5
2g

g211
,

whereg is the constant in~1.8!. The statementT(k0)50 in part~b! follows directly from~2.15!.
Turning toL(k), from ~2.4! we get

L~k!

T~k!
5

L @0#~m!

T@0#~m!
1

k2k0

2m E
2`

`

dx P~x! f r
@0#~2m,x! f l~k,x!. ~2.19!

Using ~2.16! and~2.17! one can show that the integral in~2.19! has a finite limit ask˜k0 . In the
generic case, we haveL @0#(0)521 and

lim
k˜k0

T~k!

T@0#~m!
5

@ f l
@0#~0,• !; f r

@0#~0,• !#

@ f l~k0 ,• !; f r~k0 ,• !#
51,

lim
k˜k0

T~k!

m
5

22i

@ f l~k0 ,• !; f r~k0 ,• !#
.

Thus~2.19! implies thatL(k0)521. To prove~2.12! we use~2.18!, ~2.19!, and the fact that in the
exceptional case we have
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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L @0#~0!5
g221

g211
.

The arguments leading to~2.13! and in case~b! are similar. j

The implications of Theorem 2.2 for the special cases~A!–~C! are as follows.
Corollary 2.3: SupposeP,QPL1

1(R) and F(k) satisfies~H1! and ~H2!. If k0PC is an ex-
ceptional value, then we have the following.

~i! In case~A!, we havek050 and

T~k0!5
2g

g211
, L~k0!5

g221

g211
, R~k0!5

12g2

g211
. ~2.20!

~ii ! In case~B!, we havek050, m(k)5k, a51, and~2.11!–~2.13! hold.
~iii ! In case~C!, k056 i /(2b) and F(k) vanishes linearly atk0 ; hencea50. In this case

~2.20! holds.
Next we address the question of where in the complex plane the possible exceptionalk-values

can occur. Of course, in order for ak-value to correspond to the exceptional case, it must firs
a critical value, and this depends onF(k). In the next proposition, without referring to any speci
form of F(k), we present some sufficient conditions which ensure that the exceptionalk-values
cannot occur off the imaginary axis.

Proposition 2.4:AssumeP(x)Ó0, Q(x) andP(x) are real valued, andP,QPL1
1(R). If k0 is

an exceptional value but not purely imaginary, then*2`
` dx P(x)u f 1(k0 ,x)u250. If Q(x)>0, or

P(x)<0, or P(x)>0, then the exceptionalk-values for~1.1! can occur only on the imaginary axis
Proof: Recall that in the exceptional case the Jost solutions of~1.1!, f l(k0 ,x) and f r(k0 ,x),

are linearly dependent and hencef l(k0 ,x) remains bounded asx˜6`. Moreover, sinceF(k0)
50, one can show@cf. ~2.11! of Ref. 14# that f l8(k0 ,x)5o(1/x) asx˜6`. Thus, from~1.1!, after
integrating by parts and using

lim
x˜6`

f l8~k0 ,x! f l~k0 ,x!* 50,

where* denotes complex conjugation, we obtain

E
2`

`

dx u f l8~k0 ,x!u21E
2`

`

dx Q~x!u f l~k0 ,x!u252 ik0E
2`

`

dx P~x!u f l~k0 ,x!u2.

Since the right-hand side has to be real, both assertions follow. j

III. SPECIAL CASE „C… AND EXAMPLES

We first consider case~C! in some more detail and discuss the implications of our results
the work of Sattinger and Szmigielski.9 To establish the connection between the notation used
and that used in Ref. 9, we note that in Ref. 9 the special caseF(k)5k211 was considered with
the notationE25k211 ~i.e., E in Ref. 9 corresponds tom here!, and a complex uniformization
parameterz was used to expressE andk as

E5
1

2 S z1
1

zD , k5
1

2 S z2
1

zD .

Then two sets of solutions of~1.1!, c6(x,z) andf6(x,z), having specific asymptotic behavior
were defined. We state here only their connection with the Jost solutions of~1.1!. We have

c1~x,z!5 f l~k,x!, c2~x,z!5T~k! f r~k,x!2R~k! f l~k,x!,

f1~x,z!5 f r~k,x!, f2~x,z!5T~k! f l~k,x!2L~k! f r~k,x!.
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



ts we

itical

cause
form

cal

en

3707J. Math. Phys., Vol. 40, No. 8, August 1999 Asymptotics of the scattering coefficients ...

Downloade
These definitions imply that

f1~x,z!5a~z!c2~x,z!1b~z!c1~x,z!,

f2~x,z!5c~z!c2~x,z!1d~z!c1~x,z!,

with

a~z!5
1

T~k!
, b~z!5

R~k!

T~k!
, c~z!52

L~k!

T~k!
, d~z!5

T~k!22L~k!R~k!

T~k!
.

The quantities

r 1~z!5
b~z!

a~z!
, r 2~z!5

c~z!

d~z!
,

were called generalized reflection coefficients in Ref. 9. In terms of our scattering coefficien
have

r 1~z!5R~k!, r 2~z!5
L~k!

L~k!R~k!2T~k!2 .

Now let us apply Theorem 2.2 and Corollary 2.3 to the problem studied in Ref. 9. The cr
points arek56 i , corresponding toz56 i . In the notation of Ref. 9, generically one hasr 6( i )
5r 6(2 i )521; on the other hand, in the exceptional case, one has

r 1~6 i !5
12g6

2

g6
2 11

, r 2~6 i !5
12g6

2

g6
2 11

.

Hereg1 andg2 are the constants in~1.8! at the critical pointsi and2 i , respectively. Thus, we
see that potentials need not necessarily be reflectionless in order to violater 1(6 i )521 or r 2

(6 i )521. In fact, in the next example we show that even rather simple potentials may
nontrivial reflection in the exceptional case. The following examples involve potentials of the

P~x!5H b1 , 0,x,1,

b2 , 21,x,0,

0, elsewhere,

Q~x!5H a1 , 0,x,1,

a2 , 21,x,0,

0, elsewhere,

~3.1!

wherea6 andb6 are parameters.
Example 3.1:In ~3.1! let us useb152, b25b with b>0, a151, a250, and choose

F(k)5k211. We can solve~1.1! and evaluate the scattering coefficients explicitly. The criti
points arek56 i . Letting k5 i (12e), ask˜ i so thate˜0 through positive values, we obtain

2im

T~k!
5Ab cos 1 sinAb1sin 1 cosb1O~Ae!. ~3.2!

There are an infinite number of positiveb-values that cause the leading term in~3.2! to vanish, and
each suchb-value causesk5 i to yield the exceptional case. The smallest isb56.77194̄, the next
two values areb536.3663̄andb585.7127̄~the overline means that the last digit may have be
affected by round-off!. For b56.77194̄we getT( i )520.901744̄and L( i )520.432166̄; for b
536.3663̄ we get T( i )50.851046̄and L( i )520.525091̄; and for b585.7127̄ we get T( i )
520.842793̄andL( i )520.538224̄.

Example 3.2:In ~3.1! let b15b25b, a15a250, and chooseF(k)5k2. Then we are in the
exceptional case for everyb>0. The only critical value isk050 and we havef l(k0 ,x)51 and
g51 @cf. ~1.8!#, and
d 23 Dec 2000  to 129.186.116.55.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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1

T~k!
5e2ikFcos~2s!2

2ik1b

2s
sin~2s!G , ~3.3!

wheres5Ak22 ikb. Hence

1

T~0!
512b,

which is in agreement with~2.11!. If b51, thenv50 anda51 in Theorem 2.2, and~3.3! gives

T~k!5
3i

2k
1O~1!, k˜0.

This shows thatT(k) can be discontinuous at a critical value.
We conclude with two examples illustrating the location of possible exceptionalk-values; in

these examples, unless otherwise indicated,F(k) is not assumed to have any special form.
Example 3.3:In ~3.1! let b151 and b25a15a2521. Settingk5k0 and F(k0)50 we

solve ~1.1! to find the Jost solutionf l(k0 ,x) and then impose the condition thatf l(k0 ,x) be
bounded asx˜2`; that is, we demand thatf l8(k0 ,21)50. This is a necessary condition fork0

to be an exceptional value for any given functionF(k). A straightforward calculation shows tha
the ~possibly! exceptional values are given by the solutions of the equation

A211 ik0 tanhA211 ik01A212 ik0 tanhA212 ik050.

This equation has infinitely many roots on the imaginary axis located symmetrically abou
origin and, as can be seen numerically, one symmetric pair of roots on the real axis. The tw
roots arek0561.355̄, and the imaginary roots closest to zero arek05614.139̄i . The correspond-
ing Jost solutionf l(k0 ,x) is given by

f l~k0 ,x!5H cosh~A211 ik0~12x!!, 0<x<1,

coshA211 ik0

coshA212 ik0

cosh~A212 ik0~x11!!, 21<x<0,

and on each of the intervals~2`,21! and~1,1`!, f l(k0 ,x) is constant and obtained by continuit
This example shows the possibility of real as well as purely imaginary exceptional values. Th
imaginary roots above would be critical values for case~C! if b50.035̄. The two real roots are no
critical values for any of cases~A!–~C!. In accordance with Proposition 2.4, one can verify th
*21

1 dx P(x)u f l(k0 ,x)u250.
Example 3.4:In ~3.1! let b15b251, a150, anda2521. Then the~possibly! exceptional

values satisfy

Aik0 tanhAik01A212 ik0 tanhA212 ik050.

There are again infinitely many purely imaginary roots; there are also complex roots, one p
which is k0561.1008̄10.5i . The corresponding Jost solutionf l(k0 ,x) is given by

f l~k0 ,x!5H cosh~Aik0~12x!!, 0<x<1,

coshAik0

coshA212 ik0

cosh~A212 ik0~x11!!, 21<x<0,
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and foruxu.1, f l(k0 ,x) is constant and obtained by continuity. This example shows the possi
of exceptional values that are neither real nor purely imaginary. In case~C! only the purely
imaginary roots could be critical values for suitableb.
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