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The generalized Schdinger equationd?y/dx?+ F (k) y=[ikP(x)+Q(x)]y is
considered, wherB andQ are integrable potentials with finite first moments &nd
satisfies certain conditions. The behavior of the scattering coefficients near zeros of
F is analyzed. It is shown that in the so-called exceptional case, the values of the
scattering coefficients at a zero I6fmay be affected by (x). The location of the
k-values in the complex plane where the exceptional case can occur is studied.
Some examples are provided to illustrate the theory. 199 American Institute of
Physics[S0022-248809)03007-9

[. INTRODUCTION

In this paper we consider the generalized Sdinger equation

d?y(k,x)
kA

ax +F(K) (K, x)=[1kP(x)+Q(x)]y(k,x), xeR, (1.7

where the properties df will be detailed below. The functionB and Q satisfy
PeLi(R), QeLi(R), (1.2

whereL1(R) is the class of measurable functidrsuch thatf .dx|f(x)|(1+]|x|)< +o. For the
majority of the paperP andQ need not be real valued; if they are, this will be stated explicitly.
In applications,k may correspond to a wave number whig¢k) may represent energy. The
coefficientP(x) may represent the absorptive properties of a medium ) may be a restor-
ing force density or a potential for an external force. Some special cagéslpare

(A) F(k)=Kk? with P(x)=0,

(B) F(k)=k? with P(x)#0,

(C) F(k)=k?+1/(48%) with B>0.

Case(A) corresponds to the well-known quantum-mechanical case of the @obes equa-
tion on the line with potentiaQ(x). Case(B) was studied by Jean and Jaulétitand more
recently by Sattinger and Szmigielskand by u$ when P is real valued. CaséC) has been
investigated by Kaupin connection with the inverse scattering transform for an evolution equa-
tion (a long-wave water equation resembling the Boussinesq equatjofsutsunft and, more
recently, under the assumption th&t..dx P(x)=0, by Sattinger and Szmigielski.

Our interest in(1.1) is motivated by various inverse problems associated (ith. In study-
ing such problems, one needs to know the asymptotics of various quantities as the pakameter
approaches certain special values, in particuldf @ — o or ask— kg, wherek, is a zero ofF.

In this paper we will only be concerned with the second situation. We willlgal C a critical
value of(1.1) if F(ky) =0. Here,C denotes the complex plane. The quantities whose asymptotics
we will study are the transmission and reflection coefficients associated(ith Before we
define these quantities we list the assumption$-on
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(H1) Supposingk, is a critical value of(1.1), there exists a sefCC such thatF(k) is
continuous ors, F(k) #0 onS\{ke}, and the magx— u(k) = VF (k) is one-to-one fok e S. Here
the branch of the square root is such thatadgu<m, wherepu= u(k).

(H2) There is a pattP(ko) in S containingk, on which u takes on real non-negative values.

Note that, by(H1), D=u(S) is a subset of the closed upper-half complex plée (H2)
indicates that there is ae>0 so that[0,e]eD. In casesA) and (B), ko=0 is the only critical
value. We may then choosg={k:0<argk<w}U{0}, so thatu(k)=k and D=S. For the path
P(ko) we may take the intervd@D,+). In case(C) the critical values ar&,= *i/(28). The disk
{k: |k—i/(2B)|=<1/(2B)} can then be used a$ near the critical point+i/(28) and we have
D={u: |u|<1/(28), Oargu<wm}U{0}. As the pathP(k,) we can take the imaginary interval
i[0,1/(28)]. The modifications for the other critical point are obvious.

Forke S, (1.1) possesses the solutiohgk,x) andf,(k,x), the so-called Jost solutions from
the left and from the right, respectively, that are uniquely defined by their spatial asymptotics,
namely,

fik,x)=e*[1+0(1)], f/(kx)=iue®[1+0(1)], x—+o=, 1.3
fikx)=e "“[1+0(1)], f/(kx)=—iue "“{1+0(1)], Xx——, (1.9

where the prime indicates the derivative with respect to the spatial variablBor k
€ P(kg)\{ko} the Jost solutions obey

which define the transmission coefficiehtand the reflection coefficien® from the right and.

from the left, respectively. These quantities will collectively be referred to as scattering coeffi-
cients. It is also possible to define the scattering coefficients in terms of certain Wronskians of the
Jost solutions. For example, lettin§;g]=fg’ —f’g denote the Wronskian, froifd.1) and(1.3)—

(1.6) we get

21 g k) (K 1
W_[ r(K )5 fik, )] 1.7
In analogy with the usual Schidinger equation, given a critical valug, we will distinguish
between two cases: We say that the genégiceptiongl case occurs at=Kk, if and only if
fi(kg,x) and f,(kq,x) are linearly independeridependent In the exceptional case, we let
denote the nonzero constant defined as,

_ fl(kva)

Y o) e

From (1.7) we see thak, corresponds to the exceptional case if and only if

_ _op(k)
F(ko)=0, kllTo_T(k)_o'

In short, we will say thak, is an exceptional value if it corresponds to the exceptional case for
(1.2).

The behavior of the scattering coefficients(afl) at the critical valuek, does not seem to
have been studied in detail before, except in cages and (B). In these two cases it is
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knowrP1%-13 that there are two ways in whicli(k) can behave a&—0: either T(k)=ick

+o(k) for some nonzera, or T(k)=T(0)+0(1) with T(0)# 0. The former corresponds to the
generic case and the latter corresponds to the exceptional case. ([Crasdetailed investigation

of the behavior of the scattering coefficients nkge + 1/(28) does not seem to have been done
before. This is one of our goals in this paper, and particular attention will be paid to the excep-
tional case. In connection with a statement made in Theorem 2.6 of Ref. 9 regardin@ cesth

B=3, we would like to comment that while it is true that for reflectionless potentials only the
exceptional case can occurlat i, there are also potential¥(x) and Q(x), in particular real

ones, which are not reflectionless and for which the exceptional case occurs. This will be dis-
cussed in more detail in Sec. Ill.

This paper is organized as follows. In Sec. Il we prove our main result concerning the
behavior of the scattering coefficients at a critical vallideorem 2.2 and apply it to cases
(A)—(C) (Corollary 2.3. We also present some information about the location of the exceptional
k-values in the complex plane. In Sec. Ill we consider ¢&en more detail, show that one must
not identify the exceptional case with the reflectionless case, and provide four examples illustrat-
ing the location of the exception&ivalues and other aspects of the theory.

II. ASYMPTOTICS OF THE SCATTERING COEFFICIENTS

In this section we study the asymptotic behavior of the scattering coefficiekts kg, where
ko is a critical value of1.2). In doing so we will only be concerned with the leading terms of the
asymptotic expansions. Our main result is presented in Theorem 2.2. For its proof, we first need
some results about the usual Salinger equation.

Consider the pair of Schdinger equations

d?¢(u,
—%(M X)+,u2¢j(,u,,X)=Vj(X)¢j(:U~vx)’ j=12, (2.3)

X
whereV;j e LY(R). Here u is allowed to range over all of *; it is not restricted toD defined
earlier. Lett; denote the transmission coefficient andandl; denote the reflection coefficients
from the right and left, respectively, for the potenfigl. Let g;. («,x) andg;.,(u,x) denote the
corresponding Jost solutions (.1) from the left and right, respectively. It is knowht*3that

91 (— X)) =t()Gj (0, X) =1 ()G (1,X),  meR,

9j.r (= . X)=t() gy (e, X) =1 () g (1, %), pmeR. 2.2

Since u appears au? in (2.1), gj.(—u,x) and gj..(—u,Xx) are also solutions of2.1), and
gj1(—m,x)=e""[1+0(1)] asx—+ andg;, (—u,x)=€"*{1+0(1)] asx— —=.

Proposition 2.1:Suppose tha¥/; LY(R) for j=1,2. Then the scattering coefficients(af1)
satisfy

1 1 i o —
W:WJFE _de[Vz(X)—V1(X)]92;|(M,X)91;r(M,X), neCNO}, (2.3

lo(p) 1) if
to(w)  ti(wm) 2p

AXIVA00 ~Va(01020 (. X0Gr(— ), meR{OL (24

1 _ 1
to(p)  ta(m)

+ZI_,LLfj:odX[Vz(X)_Vl(x)]gzr(ﬂax)glﬂ(/‘L’X)’ ’MEF\{O}' (25)

ra(p) ralw)

i o
| XV Vi 0Ta (X0 ix), weRVOL (29
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Proof : First, let us note tha2.3) and(2.5) are given on p. 329 of Ref. 13, and some formulas
related to(2.4) and(2.6) can be also found there. We will give a different proof which yields both
(2.3) and(2.4) simultaneously. The proof 2.5 and(2.6) is similar and hence will be omitted.
By the variation of parameters formulgy. (u,Xx) obeys the integral equation

92 (. X) =gy (. X) + f:dyg(M;X,Y)[Vz(Y) —Vi(¥)1921(m.Y), (2.7

where

gl;l(ﬂvx)gl;r(,“vy) - gl;r(:“vx)gl;l(:“aY)

G x,y)= 2.8
(pix.y) (021 (6200 (0] @8
Note that the Wronskian if2.8) is related to the transmission coefficient as
2iu
ti(p)= 2.9

- [gj;l(ﬂv');gj;r(ﬂv')] .

Now (2.3) and(2.4) follow by letting x— — in (2.7) and using(1.4), (1.5), (2.2), and(2.9. &

In the next theorem, the behavior of the scattering coefficient&.af is analyzed at critical
k-values.

Theorem 2.2: SupposeP,Q e L}(R) andF (k) satisfies(H1) and(H2). If kye C is a critical
value of(1.1), then we have the following.

(i) In the generic case we have

2iu

T= =tk i (ko 0] O

k—k, in S, (2.10

L(kl=—1+0(1), R(k)=—1+0(1), k—ky, in P(kg).
(i) In the exceptional case, using the constantnd w defined by

_k=ko “
a=lim ——, w=y*+ 1—aJ dx P(x)f,(Kg,X)?,
k—kg m(K) —o

we distinguish two subcase@) If «a exists and is finite and+0, then

2y .
T(k)=j+o(1), k—ky in S, (2.11

27y’ —w )
L(k)= +0(1), k—kg in P(kp), (2.12

2—w )
R(k)=T+o(1), k—ko In P(kop). (2.13

(b) 1f im_, |(k—ko)/ (k)| =+2 and [ ”..dx PO (ko,X)?#0, then

T(ky)=0, L(kg)=—1, R(kg)=-1.

In the exceptional case, if exists andw=0, then the scattering coefficients are not continuous at

ko; If @ does not exist, then, in general, the scattering coefficients are not continukyis at
Proof: In (2.3)—(2.6) we replaceV(x) by ikgP(x) +Q(x) andV,(x) by ikP(x)+Q(x) and

note that because ¢1.2) we haveV, e L}(R) for j=1,2 instead of jusV; e LY(R). The stronger
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assumption allows us to take the lipit=0 in (2.3)—(2.6). Thanks to Proposition 2.1 we can make
full use of the result¢ known in the casé(x)=0. Forgy. (u,x) andg,.(u,x) in (2.3—(2.6),
we substitutefl % (u,x) and fl%(u,x), respectively, where the latter two are the Jost solutions of

d2e(u,
(Pd—z—(f 0 +u2e(p,x)=[ikoP(X) + Q(X)Je(4,X). (2.14

Let TIO(w), RI%(w), andL[®l(u) denote the scattering coefficients associated (@ith4). Then
from (2.3 we get

11
Tk TO(w)

1- kz_:oT[O](u)r dx POl ) fi(k,X) [, we DO} (215

WhenP,Qe L}(R), we have
|99, x)|<C(1+max{ox})e!mmx  ,eC*, (2.1
If,(k,x)|<C(1+max{0,—x})e IM#* ke, (2.17
whereC is a constant independent gfand k. Hence, by the Lebesgue dominated convergence
theorem, the integral on the right-hand side(?15 converges ak—ky. Now (2.10 follows
from (2.9), (2.19, and the fact that in the generic case we have
[fi(Ko,-);fe(ko,)1=[{"(ko,); fi%(ko,-)]# 0.

In the exceptional case we obtdin.11) by using(2.15—(2.17) along with the fact that
[0] 1
fr (O.X)=fr(ko,X)=;fu(ko,X), (2.18

and(cf. Ref. 12

2y
[0l ) =
TH(0) prng

where vy is the constant irf1.8). The statement(ky) =0 in part(b) follows directly from(2.15.
Turning toL (k), from (2.4) we get

L) LO(u)
()~ T(4)

k—kq (=
+ Zluof_mdx P(X) FLO(— 1, %) (K,X). (2.19

Using(2.16 and(2.17) one can show that the integral (8.19 has a finite limit ak—k,. In the
generic case, we hate®(0)=—1 and

i T [A20):6%00)]
e T0) ~ [ilko)if(ko )]

o T —2i
e i (Ko, )it (Kou )1

Thus(2.19 implies thatl (ko) = — 1. To prove(2.12 we use(2.18), (2.19, and the fact that in the
exceptional case we have
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¥
(01 —
LO0)= 77

The arguments leading {@.13 and in casdb) are similar. [ |
The implications of Theorem 2.2 for the special cages-(C) are as follows.
Corollary 2.3: SupposeP,Q e L}(R) and F (k) satisfies(H1) and (H2). If koe C is an ex-
ceptional value, then we have the following.
(i) In case(A), we havek,=0 and
2 -1 1-
i1 Lko= g Rko= o7

2
T(ko)= (2.20

(i) In case(B), we haveky=0, u(k)=k, a=1, and(2.11)—(2.13 hold.

(iii) In case(C), kg==i/(2B) andF(k) vanishes linearly aky; hencea=0. In this case
(2.20 holds.

Next we address the question of where in the complex plane the possible excelptiahsts
can occur. Of course, in order forkavalue to correspond to the exceptional case, it must first be
a critical value, and this depends Bfk). In the next proposition, without referring to any specific
form of F(k), we present some sufficient conditions which ensure that the excepkivadlies
cannot occur off the imaginary axis.

Proposition 2.4:AssumeP(x)#0, Q(x) andP(x) are real valued, anB,Q e L}(R). If kg is
an exceptional value but not purely imaginary, théh,dx P(x)|f(kq,x)|2=0. If Q(x)=0, or
P(x)=<0, orP(x)=0, then the exception&tvalues for(1.1) can occur only on the imaginary axis.

Proof: Recall that in the exceptional case the Jost solutiond dj, f,(kq,x) andf,(kq,x),
are linearly dependent and henfgéky,Xx) remains bounded as— *+o. Moreover, sincd=(kg)
=0, one can showcf. (2.11) of Ref. 14 thatf| (ko,x) =0(1/x) asx— * . Thus, from(1.1), after
integrating by parts and using

lim £ (ko,x)fi(kg,x)* =0,

X— * oo

where* denotes complex conjugation, we obtain

| axititeon0l+ [~ dxlfitkoanlz=—iks [~ dx P01k
Since the right-hand side has to be real, both assertions follow. |

[ll. SPECIAL CASE (C) AND EXAMPLES

We first consider casgC) in some more detail and discuss the implications of our results for
the work of Sattinger and Szmigielskio establish the connection between the notation used here
and that used in Ref. 9, we note that in Ref. 9 the special Eélp=k?+ 1 was considered with
the notationE2=k?+1 (i.e., E in Ref. 9 corresponds tp. her®, and a complex uniformization
parameterz was used to expreds andk as

, kzz Z_E

E_l +l
“21%73 '

1(1

Then two sets of solutions df..1), - (x,z) and ¢-(x,z), having specific asymptotic behaviors
were defined. We state here only their connection with the Jost solutiofislpf We have

(X, 2)=Fi(kx),  ¢_(x,2)=T(K)f (kx)—R(K)f(kx),

¢+ (x,2)=f(kx),  ¢_(x,2)=T(K)f(k,x) = L(K)f(k,X).
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These definitions imply that

¢+ (x,2)=a(2)§-(x,2) +b(2) . (x,2),

¢-(x,2)=c(2) - (x,2) +d(2) ¢, (x,2),

with
1 R(k) L(k) T(k)2—L(k)R(K)
R (RN (TR R (3
The quantities
r+(2)—b(z) o2

“a P74

were called generalized reflection coefficients in Ref. 9. In terms of our scattering coefficients we
have

L(k)
L(K)R(k)=T(k)*"
Now let us apply Theorem 2.2 and Corollary 2.3 to the problem studied in Ref. 9. The critical

points arek= *i, corresponding t@=*i. In the notation of Ref. 9, generically one has(i)
=r.(—1i)=—1; on the other hand, in the exceptional case, one has

r+(2=Rk), r_(z=

1— 5% 1—vy
ro(xi)=—— r_(xi)= .
HED=ST T =

Herey, andy_ are the constants ifL.8) at the critical points and —i, respectively. Thus, we

see that potentials need not necessarily be reflectionless in order to viplaté)=—1 orr_
(xi)=-—1. In fact, in the next example we show that even rather simple potentials may cause
nontrivial reflection in the exceptional case. The following examples involve potentials of the form

b,, 0<x<1, a,, 0<x<1,
P(x)={ b-, —1<x<0, Q(x)=4 a-, —1<x<0, (3.1
0, elsewhere, 0, elsewhere,

wherea.. andb.. are parameters.

Example 3.1:In (3.1) let us useb,=2, b_=b with b=0, a, =1, a_=0, and choose
F(k)=k?+ 1. We can solvg1.1) and evaluate the scattering coefficients explicitly. The critical
points arek=*i. Lettingk=i(1—¢€), ask—i so thate—0 through positive values, we obtain

2ip . .

m:\/BCOS].SIn\/B-FSInlCOSb‘FO(\/E). (3.2
There are an infinite number of positileevalues that cause the leading tern{3m2) to vanish, and
each suclb-value causek=i to yield the exceptional case. The smallesb1s6.77194 the next
two values ard=36.3663andb=85.7127(the overline means that the last digit may have been
affected by round-off For b=6.77194we getT(i)=—0.901744and L (i)=—0.432166 for b
=36.3663we get T(i)=0.851046and L(i)=—0.525091 and for b=85.7127we get T(i)
=—0.842793andL(i)=—0.538224

Example 3.2in (3.1) letb, =b_=b, a, =a_=0, and choos& (k) =k?. Then we are in the
exceptional case for evety=0. The only critical value i%k,=0 and we havd (kqy,x)=1 and
v=1[cf. (1.8], and
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1 ok ) ik+b ) 3.3
W—e cos(20) — 5 sin(20) |, (3.3
whereo = JkZ?—ikb. Hence
—1 =1-Db
T(0) ’

which is in agreement witl2.11). If b=1, thenw=0 anda=1 in Theorem 2.2, an€B.3) gives

T(k)= %-FO(l), k—0.

This shows thaff (k) can be discontinuous at a critical value.
We conclude with two examples illustrating the location of possible exceptienalues; in
these examples, unless otherwise indicakggdk) is not assumed to have any special form.
Example 3.3:In (3.1) let b, =1 andb_=a,=a_=—1. Settingk=k, and F(ky)=0 we
solve (1.1) to find the Jost solutiorf|(kqy,x) and then impose the condition thiiky,x) be
bounded agx— —«; that is, we demand thdt (ko, —1)=0. This is a necessary condition fiog
to be an exceptional value for any given functie(k). A straightforward calculation shows that
the (possibly exceptional values are given by the solutions of the equation

J—1+ikotanhy—1+iko+—1—ikgtanhy—1—iky=0.

This equation has infinitely many roots on the imaginary axis located symmetrically about the
origin and, as can be seen numerically, one symmetric pair of roots on the real axis. The two real
roots areko= *+1.355 and the imaginary roots closest to zero lege +=14.139. The correspond-

ing Jost solutiorf|(kq,x) is given by

cosh(y—1+ikg(1—x)), 0=x=1,
fi(ko,X)=3 coshy—1+ikg
coshy—1-ikg

and on each of the intervals-«,—1) and(1,+), f|(kg,X) is constant and obtained by continuity.
This example shows the possibility of real as well as purely imaginary exceptional values. The two
imaginary roots above would be critical values for c&Sgif 8=0.035 The two real roots are not
critical values for any of casd#®)—(C). In accordance with Proposition 2.4, one can verify that
J21dx PO f1(ko,X)[*=0.

Example 3.41n (3.1) letb,=b_=1,a,=0, anda_=—1. Then the(possibly exceptional
values satisfy

cosh(y—1—ikg(x+1)), —1=<x=0,

Viko tanhyiko+ v —1—ikg tanhy—1—ik,=0.

There are again infinitely many purely imaginary roots; there are also complex roots, one pair of
which isky=*=1.1008+0.5. The corresponding Jost solutidr(kq,x) is given by

cosh(\iko(1—x)), 0=x=<1,
fi(ko,X)= coshyikg

———————=—=cosh(y—1—ikp(x+1)), —1<x=<0,
coshy—1—ikg, ( of )
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and for|x|>1, f,(kq,X) is constant and obtained by continuity. This example shows the possibility
of exceptional values that are neither real nor purely imaginary. In @s@nly the purely
imaginary roots could be critical values for suitalfie
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