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The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which
one-dimensional wave propagation can be assumed is examined within the theoretical framework
of the governing Klein–Gordon equation. Previous deterministic methods developed over
the last 40 years have all required direct measurement of the reflectance or input impedance
but now, by application of the methods of inverse quantum scattering to the acoustical system,
it is shown that the reflectance can be algorithmically derived from the radiated wave. The
potential and area functions of the duct can subsequently be reconstructed. The results are
discussed with particular reference to acoustic pulse reflectometry. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2139618�
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I. INTRODUCTION

The noninvasive measurement of the internal geometry
of an acoustical duct is a problem that has long interested
researchers in all of mechanical engineering, medical diag-
nostics, musical acoustics, and speech analysis �see Refs. 1
and 2 for a review�. Although it has been established for
some 40 years that the transfer function of such a duct does
not uniquely determine its area function,2 even in the lossless
case, it is also well known that the area function is com-
pletely specified by the input impedance or, equivalently, the
reflectance.3–8 In recent years, accurate and fast duct recon-
structions have been obtained by the acoustic pulse reflecto-
metry �APR� method9–16 which, since the experimental ap-
paratus is relatively portable, has also proved ideally suited
to field measurements. Despite this efficiacy, the APR meth-
odology demands that the temporal reflectance be measured
directly, and so the experimental protocol requires up to
12 m of extraneous control tubing for the elimination of sec-
ondary reflections from the source boundary. Further, all
measurements must be taken in the same place and so the
method cannot be used to probe the shape of the vocal tract
during normal phonation at the glottis. Indeed, due to the
nonuniqueness, it is known that the vocal-tract area function
cannot be deterministically reconstructed from the radiated
speech wave alone, although statistical methods have been
attempted.17–21 Nevertheless, recent results from the math-
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ematical literature report existence proofs for the temporal
inversion of the Webster equation from radiated data and
known initial conditions.22–24

In this paper, a novel and computationally efficient,
frequency-domain method for the deterministic acoustical
duct inversion is presented, which makes no demands on the
direct measurement of either reflectance or impedance.
Rather, the reflectance is mathematically derived from the
wave radiated in response to a high-impedance source. Since
the algorithms naturally incorporate any number of reflec-
tions between the source and radiating end, which may be
any distance apart, the results are of relevance both in acous-
tic pulse reflectometry and to the speech inverse problem in
particular.

Section II reviews standard inversion methods that re-
construct the area function of an acoustical duct from mea-
surements of the reflected wave. Section III presents an al-
ternative methodology that allows the wave-mechanical
reflectance to be derived from the resonance spectrum of the
radiated wave, yielding the “potential” function of the duct.
The relationship between the potential and area functions is
discussed. Section IV validates the proposed inversion meth-
odology through numerical simulations at varying band-
width. Section V discusses further issues that become rel-
evant in experimental contexts.

II. BACKGROUND

Figure 1 gives a schematic diagram of an acoustic pulse
reflectometer,1,10 typically used for the noninvasive measure-

ment of narrow bore acoustical ducts. An electrical pulse
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produced by D/A conversion of a digital array is amplified
and the resultant pressure wave travels along a length of
control tubing, the “source” tube. Reflections from the test
object are recorded at the microphone, before A/D conver-
sion and analysis. In the determination of the unknown input
impulse response or filter function, z�t�, two consecutive
measurements are necessary: a calibration measurement of
the input pulse, the source function x�t�, obtained by sam-
pling the signal reflected back from the rigid termination of
the source tube capped with a removable end piece; and one
of the reflections, y�t�, obtained when the cap is replaced by
the test object. The control length l1 gives the approximation
of a source at infinity, allowing y�t� to be cleanly sampled
without interference from higher-order reflections at the
boundary.11 If reflections are to be measured for a time T
=50 ms, for example, l1 must be set to around 8.5 m. The
length l2, typically13 set to 4 m, ensures that the incident
pulse has completely passed the microphone before record-
ing of the reflections begins.

The system is described by a Fredholm equation of the
first kind, namely

y�t� = �
0

t

x�t − ��z���d�, 0 � t � T , �1�

from which z�t� must be obtained by a deconvolution proce-
dure before being submitted to a bore reconstruction
algorithm.1,25 It is known6,26 that this deconvolution is ill
posed in the context of finite experimental bandwidths, and
previous work by the authors1 has discussed both theoretical
and experimental regularization procedures. However, it was
shown by us that propagation losses27 �−2dB/m at 1 kHz�
within the long lengths of control tubing can reduce the
effective range of the loudspeaker from the nominal limit
of 18 kHz to around just 6 kHz. Since the axial resolution,
�, in the bore reconstruction is defined by the effective
signal bandwidth, feff, as

� =
c

4feff
, �2�

for c the speed of sound in free space, neglecting dissipation
�taken to be 344 m s−1 at 20 °C�, it was thus shown that the
control tubing causes an increase in resolution from a
nominal value of 3.9 mm �at 44.1 kHz sampling� to just

1.6 cm �around four sample points�. Clearly, the APR ap-
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paratus could be substantially streamlined and the preci-
sion and accuracy of the duct reconstruction much im-
proved if an alternative to the direct measurement of the
reflections, y�t�, could be found.

Available bore reconstruction algorithms assume plane-
wave propagation,25,28 and previous work1 has noted that the
inverse mapping from reflectance �or impedance� to area
function will only be fully regularized for algorithms that
take into account higher mode solutions,29–32 which may
propagate at high bandwidth in wide and/or strongly expand-
ing objects. To assess the relative contribution of propagation
losses and experimental higher modes to the ill-posedness of
the bore reconstruction problem, therefore, numerical simu-
lations were made of a conical horn of length 7.5 cm and
input and terminating radii r0=4.8 mm and rl=3 cm, respec-
tively. A lead-in tube of 34.4 cm length was assumed for the
control of pressure offsets15 and an ideal closed termination
�Zrad→�� was chosen to minimize the effect of the radiation
impedance, elucidating multimodal phenomena due to
changes in the bore.

The multimodal PAK
29,30 algorithms were implemented

numerically at varying mode order, and “forward” solutions
for the input impedance were obtained, yielding impulse re-
sponses, z�t�, that were implemented in a standard, plane-
wave, inversion. Lossy forms of both the forward and in-
verse algorithms were adopted.31,33 �Due to strongly
evanescent higher order modes, convergence in the numeri-
cal solution of the PAK algorithms may require an extremely
small cylindrical discretization, d, which should be smaller
than the spatial sampling length. The reported simulations,
for example, were run at d=0.1 mm �one-mode solution�,
and d=0.02 mm �four-mode solution�, �=0.2 mm, with nu-
merical problems due to the inversion of singular matrices
becoming evident at higher orders. For these parameters, a
one-mode solution takes around 30 min to compute on a
1.8 GHz PC with 512 Mbytes RAM under MATLAB for Win-
dows.� Results were obtained first at an idealized, high band-
width of 400 kHz, corresponding to an axial resolution of
0.2 mm.

Figure 2�a� illustrates that, when plane-wave propaga-
tion is assumed in both the forward and inverse algorithms,
the bore reconstruction agrees with the nominal bore radius
to within a maximum numerical error of around 0.7% at the

FIG. 1. A schematic diagram of the acoustic pulse re-
flectometer.
mouth. When the first higher mode is included in the forward
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simulation �cut-on 7 kHz�, the error rises to some 1.7% due
to the ill-posedness of the plane-wave reconstruction. Adding
the second higher mode �cut-on 13 kHz� increases the error
by around 1%, to 2.7%. However, this error remains stable
with the addition of the next higher mode �cut-on 19 kHz�. A
far more dramatic effect is found by filtering the plane-wave
solution at a half-power point of 6 kHz, below higher mode
cut-on but representative of the reduced experimental band-
width that results from propagation losses. Figure 2�a� now
shows that the effective axial resolution falls to around
1.6 cm so that rapid changes in the bore profile take three to
four nominal sample points to manifest, introducing an un-
derestimation in the bore reconstruction that rises to as much
as 30%.

Indeed, Fig. 2�b� shows that there is good agreement
between the simulated, filtered, plane-wave solution and that
found by experiment. �An experimental cone with a remov-
able flat metal plate at the termination was machined to the

FIG. 2. �a� Conical duct inversion for multimodal impulse response: theo-
retical radius �—�, one mode �-·-�, two mode �¯�, three mode �---�, one
mode filtered at 6 kHz ���. �b� Conical duct inversion for multimodal im-
pulse response: theoretical radius �—�, one mode filtered at 6 kHz �¯�,
experimental ���, experimental open-ended �-·-�. Both reconstructions in-
clude a 34.4 cm lead-in tube.
dimensions of the simulations. The reconstruction for a

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006
closed end agreed with that for an open end, on removal of
the plate, to better than 3%–4% within the main part of the
bore.� Figure 2�b� also shows the experimental reconstruc-
tion of an open-ended cone, in which additional multimodal
effects �albeit evanescent� can be assumed. Despite this, the
closed and open-ended reconstructions are in close agree-
ment in the main part of the cone.

These results therefore suggest that experimental errors
arising from propagation losses may well outweigh those
that would arise from higher mode solutions if high band-
widths could be attained. Thus, it can be concluded that
methods for eliminating the need for control tubing in the
APR apparatus are required.

III. REGULARIZED METHODOLOGY

Although methods for simplifying the APR apparatus
have been proposed,7,11,16 all are constrained by the require-
ment that the impulse response, z�t�, be estimated by direct
measurement of the reflections, y�t�. It is now possible to
present a method that allows y�t� to be derived from nonin-
vasive measurements of the radiated wave. Since multiple
reflections are a natural part of the theoretical model, no
control tubing is required in the experimental methodology
so that propagation losses within the system are dramatically
reduced. The concommitant increase in bandwidth substan-
tially regularizes the deconvolution of Eq. �1� and, hence, the
duct reconstruction problem.

A. Forward problem: The acoustical Klein–Gordon
equation

The results of the previous section suggest that, for
many applications in duct acoustics, a plane-wave approxi-
mation is effective. It can now be shown that a particularly
elegant description exists within the theoretical framework of
the governing Klein–Gordon equation.

It has previously been shown that the Webster equation,
valid for one-dimensional compressible flow in the linear,
adiabatic and nonviscous approximations, can be reduced to
a Klein-Gordon equation,34–38 namely

�2��x,t�
�t2 = c2� �2��x,t�

�x2 − U�x���x,t�� , �3�

for a “wave function,” ��x , t�, such that for p�x , t� the excess
pressure and S�x� the cross-sectional area of the wave front,

��x,t� = p�x,t��S�x� . �4�

The parameter U�x� is defined as

U�x� =
d2�S�x�/dx2

�S�x�
, �5�

and is mathematically analogous to the potential function of
quantum mechanics. Where no confusion is likely to arise,
such as in the present paper, it can thus be referred to as the
“potential function.” Otherwise, since it refers to a geometry
rather than an energy, it should be referred to as the horn

34
function. A unique area function can be found from the
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“potential” function by solution of the homogeneous equa-
tion

d2�S�x�
dx2 − U�x��S�x� = 0, �6�

given two known initial conditions on the area.
Previous work35,36 has considered piecewise constant

potential functions, for which U�x�=U0, and it has been
shown that a wave-mechanical barrier of approximate height
U0=1.0�105 m−2 and width �=1 mm shares the major
characteristics of standard impedance approximations, such
as the infinite baffle. In fact, the square barrier corresponds to
an infinite cone, whose initial radius and slope are continu-
ous with those of the duct and in which the pressure ampli-
tude falls off with 1/x, as for a spherically outgoing wave.
For analytic and numerical modeling purposes, therefore, the
square barrier may be used as a one-dimensional equivalent
to commonly adopted radiation impedances. The main ad-
vantage of this is that the singularity in the plane-wave po-
tential function, as noted by Benade and Jansson,34 can be
approximated by finite parameters. Subsequently, both the
wave function and its first derivative can be matched across
the point of expansion into free space, yielding an analytic
expression35,36 for the radiated wave in which energy is fully
conserved. This is in contrast to the Wertzel–Kramers–
Brillouin approximation adopted by Benade and Jansson,
which neglects backward traveling solutions within the lip
region and is, in fact, known to be quite inappropriate for
changes that occur on scales short in comparison to a
wavelength.39

A barrier equivalent to the radiation impedance for a
duct of length l is illustrated in Fig. 3, along with its trans-
mitted, T�k�, and reflected, R�k�, waves, for k the free space
wave number and �=ck. For a single barrier, analytic ex-
pressions for T�k� and R�k� have been found to be35,36

R�k� = e−2ikl �k2 − k̂2�sin k̂�

�k2 + k̂2�sin k̂� − i2kk̂ cos k̂�
, �7�

FIG. 3. Schematic potential-function profile of duct terminated in barrier
equivalent to a radiation impedance, U0=105 m−2, �=1 mm.
and
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T�k� =
− 2ikk̂eik�

�k2 + k̂2�sin k̂� − i2kk̂ cos k̂�
�8�

for k̂=�k2−U0. It is straightforward to show that 	R	2
+ 	T	2=1, as required for conservation of energy.

For a high-impedance source and a duct that is uniform
at the origin, so that dS�x� /dx=0 at x=0, the Euler equation
states the volume velocity excitation, u�0, t�, to be

u�0,t� = 
 −
�S�0�

�0
�

0

t ���x,��
�x



x=0

d� , �9�

for �0 the equilibrium density of air. �For a discussion of the
effects of a bore that is sloped or curved at the input, see Ref.
38.� Setting u�0, t�=ei�t thus yields35,36 the analytic Green’s
function for the impulse response radiated into the free field,
as

Gf�x	0	�� =
�0c

�S�0�
� T�k�

1 − R�k��e−ik�x−�l+���. �10�

The power spectrum is therefore

	Gf�x	0	��	2 =
�0

2c2

S�0�
g�k� , �11�

where

g�k� = 
 T�k�
1 − R�k�


2

. �12�

The time-independent pressure spectrum, 	P�k�	2, a measur-
able quantity at a point x=L in the free field, is then

	P�k�	2 = 	g�k� , �13�

where 	 is a frequency-independent normalization constant,

	 =
�0

2c2

S�0�S�L�
. �14�

It may be noted that 	 is not directly measurable, since it
depends on the area, S�L�, of the virtual infinite cone. For
measurements near the duct mouth, however, it can be ap-
proximated as

	 =
�0

2c2

S�0�S�l�
, �15�

which is measurable. Since the foregoing analysis applies
equally to sequences of potential functions �which may in-
clude, for example, an arbitrary baffle at the termination� for
which R�k� is the matricial reflection coefficient taken at the
origin,35,36 it is now possible to present an inverse solution
for the noninvasive reconstruction of the potential and area
functions of an unknown duct.

B. Inverse problem: Inverse potential scattering in
duct acoustics

By adopting the simplifying assumption of one-
dimensional propagation, it has been possible to derive an
energy-conserving expression for the normalized, radiated

spectrum that is a function of only the transmission and re-
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flection coefficients of the duct potential function. Subse-
quently, since it is known in the quantum mechanical
literature40,41 that the potential function of a scattering sys-
tem can be reconstructed from R�k�, but not from T�k� alone,
it becomes sensible to ask whether the unknown potential
function can be reconstructed from the combined term,
T�k� / �1−R�k��. More specifically, it may be asked whether
R�k� can be obtained from the radiated pressure, g�k� �13�.
An answer in the affirmative would also allow quantities
such as the input impedance to be derived, in situations
where they cannot be measured.

In fact, it has been been proved by Aktosun,42 in a
quantum-mechanical context that generalizes completely to
the acoustical setting, that g�k� is equivalent to the real part
of the quantity �1+R�k�� / �1−R�k��. Letting R�k�=a+ ib, the
proof is straightforwardly derived since

R�1 + R�k�
1 − R�k�� = R� �1 + a + ib��1 − �a − ib��

�1 − �a + ib���1 − �a − ib��� �16�

so that

R�1 + R�k�
1 − R�k�� =

R�1 − 	R	2 + 2ib�
	1 − R�k�	2

. �17�

Since in an energy-conserving system such as the one pre-
sented here, it must be the case that 	T�k�	2+ 	R�k�	2=1, it can
be immediately seen that

R�1 + R�k�
1 − R�k�� =

	T�k�	2

	1 − R�k�	2
, �18�

cf. Eq. �12�. Beginning from the quantum-mechanical Jost
solution in terms of eikx for a wave propagating in the posi-
tive x direction, Aktosun has gone on to show that the imagi-
nary part, 
�k�, of a complex quantity, ��k�, where

R���k�� = R�1 + R�k�
1 − R�k�

− 1� , �19�

can be obtained by analytic continuation in the complex
plane as


�k� = −
1

�
CPV�

−�

�
R���s��

s − k
ds , �20�

where CPV means that the integral must be evaluated as a
Cauchy principal value. Setting ��k�=R���k��+ i
�k�, sub-
stitution of Eq. �12� into Eq. �19� leads to the derivation of
the reflectance, R�k�, from g�k� as

R�k� =
��− k�

2 + ��− k�
. �21�

�Note that, in contrast to the description given in, Ref. 42 the
right-hand side of Eq. �21� depends on −k rather than k. This
is due to the acoustical convention that a wave propagating
in the positive x direction be represented as e−ikx.� For a duct
that is uniform near the origin,38 the input impedance is im-

mediately identified as
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Z0 =
�c

S�0�
1 + R�k�
1 − R�k�

. �22�

Transformation of R�k� to the time domain then allows the
potential function, U�x�, to be obtained by solution of the
Marchenko integral equation.40 Berryman and Greene28 have
proposed a fast matrix method for the numerical solution that
also allows the area function to be recovered in terms of
cylindrical segments if an initial value of S�0� is supplied.
Otherwise, the area function may be obtained35,36 from Eq.
�6�, given initial values for S�0� and dS�x� /dx �although care
must be taken with conditioning of the solution�.

In this section, it has been shown that by conserving
energy in a one-dimensional approximation to acoustic scat-
tering, the wave-mechanical model of sound propagation al-
lows the reflectance to be derived noninvasively from the
radiated wave without any additional knowledge of the ra-
diation impedance. We may now go on to examine the
method through numerical simulations.

IV. NUMERICAL SIMULATIONS AND VALIDATION

First, the stability of the fast matrix method of Berryman
and Greene28 was affirmed. The method is preferred for com-
putational solution of the Marchenko equation and inversion
to the potential function from a temporal reflectance, L�t�.
R�k� was evaluated from the exact analytic expression of Eq.
�7� at parameters appropriate to the barrier configuration of
Fig. 3, for l=17.5 cm. Inverse Fourier transformation yielded
L�t�. This initial step highlighted the problem of the “Gibbs
phenomenon” in simulated data, since it is known that the
Fourier transformation of band-limited data leads to numeri-
cal errors from windowing convolutions and ripple.43 To
avoid these numerical artifacts, R�k� was first obtained at a
high bandwidth of around 180 kHz and then low-pass fil-
tered using a Gaussian filter over experimental ranges before
transformation. The Berryman–Greene routines28 were then
coded in MATLAB. Figure 4 shows the resulting reconstruc-
tion of the single barrier from data simulated at high band-

FIG. 4. Reconstruction of single barrier �see Fig. 3� from analytic data, at
180 ���, 20 �---� and 5 �—� kHz bandwiths, respectively.
width, and data filtered at half-power points of 20 kHz �the

Forbes et al.: Inverse potential scattering in duct acoustics 69



loudspeaker range� and 5 kHz �around experimental band-
widths and the plane-wave limit in speech acoustics�. At high
bandwidth, the square barrier is reconstructed to within 3%
maximum error �up to a scaling factor of 2�� over three
sample points, agreeing well with the spatial resolution of
0.48 mm predicted by Eq. �2�. The effects of the Gibbs phe-
nomenon manifest as a small amount of ripple around dis-
continuities. In contrast, for filtered data the spatial resolu-
tion falls to around 4 mm at a half-power point of 20 kHz
and to 1.7 cm at 5 kHz, so that the Gibbs ringing is also
smoothed. These results are in precise agreement with the
predictions of Eq. �2� and it was concluded that numerical
errors in the Berryman–Greene routines, and those due to
transformation of simulated data, were effectively controlled.

Subsequently, the Aktosun integral equation �20� was
solved by trapezium rule implemented in MATLAB, the two
major numerical considerations being the avoidance of the
poles at s=k and the effect of truncating the limits of inte-
gration. The frequency-dependent part of the radiated power
spectrum, g�k�, was obtained from Eq. �12� at a resolution of
=10 Hz and integrated up to k�. A significantly narrower

FIG. 5. Log�g�k�� for configuration of Fig. 3 taken up to 20 kHz bandwidth.

FIG. 6. R�k�: analytic �—� and derived by Aktosun method �¯� at 20 kHz

bandwidth.
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discretization will tend to lead to “divide by zero” errors
around the poles and a wider discretization fails to resolve
rapid variation in the spectrum. Equation �21� was then
solved for varying limits in Eq. �20� to yield R�k�. At an
effectively infinite bandwidth of 180 kHz, by which limits
g�k�=1, it was found that the rms error in the derived reflec-
tance �in comparison to the exact analytic solution �7�� was
just 1.4�10−3. Figure 5 shows that the oscillations in g�k�
are still evident at 20 kHz and thus, on truncation to these
limits, the rms error rose slightly to 6.1�10−3. Figure 6
demonstrates the nevertheless-close correspondence between
the derived and analytic data. At 5 kHz truncation limits, the
rms error increased to 7.5�10−3, still only 0.8% of the maxi-
mum, however. Figure 7 shows that the potential-function
reconstructions obtained from analytic and derived data
agree to better than 1% maximum error, affirming the valid-
ity of the Aktosun proofs and numerical integration routines.

FIG. 7. Reconstruction of single barrier at 180 kHz bandwidth, from ana-
lytic data ��� and that obtained by Aktosun method �-·-�. Reconstruction of
single barrier at 20 kHz bandwidth, from analytic data �—� and that ob-
tained by Aktosun method �¯�.

FIG. 8. Reconstruction of conical bore at 180 �¯�, 20 �---�, and 5 ��� kHz

bandwidths. Also shown: nominal radius �—�.
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�At experimental limits below 20 kHz, it was found that the
integral can be performed more or less in real time on a
3.2 GHz PC with 2 Gbytes RAM.�

Figure 8 illustrates the area functions obtained from the
reconstructed potential functions by solution of Eq. �6� for
initial conditions r0=4.8 mm, rl=3 cm, and 	dr�x� /dx	x=0

= �rl−r0� / l. The expansion into the infinite conical baffle is
narrowly resolved to around 0.5 mm at high bandwidth, with
slight Gibbs ringing evident as before. The spatial resolution
falls to around 4 mm and 1.7 cm at 20 and 5 kHz, respec-
tively, again in full agreement with the predictions of Eq. �2�.

Figure 9 illustrates a schematic well-barrier pair, a con-
figuration generally corresponding to a negative curvature
and duct constriction that will lower or raise a resonance
depending on its position relative to the standing wave
pattern.37 Figure 10 illustrates the stability and narrow local-
ization of this potential function reconstruction over space,
affirming that cumulative errors found in other recursive
layer-peeling algorithms25 are well controlled in the March-
enko inversion. Figure 11 gives a magnified view; the errors
and spatial resolutions at ideal and experimental bandwidths

FIG. 9. Schematic potential-function profile of well-barrier pair, U0=6.0
�104 m−2, �=1 mm, a=17.1 cm, l=17.5 cm.

FIG. 10. Reconstruction of well-barrier corresponding to Fig. 9, from data

derived by Aktosun method at 180 kHz bandwidth.

J. Acoust. Soc. Am., Vol. 119, No. 1, January 2006
are completely in line with previous results. On assumption
of a cylindrical discretization of the duct and for a given
value of S�0�, the Berryman–Greene also yields an area func-
tion in the equivalence set corresponding to any potential
function. Figure 12 illustrates one such area function, recon-
structed at various bandwidths and shown against the exact
analytic solution defined by Eq. �6�. As before, the resolution
of the rapid changes in curvature is around 4 mm at 20 kHz
bandwidth, falling to 1.7 cm at 5 kHz. It is clearly seen that
the 4 mm resolution yields the bore profile rather accurately,
in fact to better than 2.5% at the point of maximum constric-
tion.

In this section, an analytic proof for deriving the wave-
mechanical reflectance from the Jost solution has been vali-
dated in a one-dimensional approximation to duct acoustics.
From the reflectance, the Marchenko equation for inversion
to the potential function has been solved by the fast matrix
method of Berryman and Greene and related area functions
have also been obtained. The “wave mechanical” method has

FIG. 11. Magnified view of Fig. 10. Nominal solution ���; data derived at
180 kHz �---� and 20 kHz �¯� bandwidths.

FIG. 12. Reconstruction of radius function corresponding to Figs. 9 and 11.
Nominal solution ���, and from data derived at 180 �—�, 20 �¯�, and 5 �---�

kHz bandwidths.
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been tested on both barriers and wells and so generalizes
completely to compound potential functions that characterize
highly localized constrictions and expansions,37 which may
correspond to leaks and blockages in a pipe.

V. DISCUSSION

Although the wave-mechanical method for the noninva-
sive measurement of the shape of an acoustical duct has been
validated in principle, the experimental implementation will
require consideration of several, familiar, details. First, the
method assumes a high-impedance, flat spectrum, source.
Recent work has described44 such a source in terms of the
maximum length sequence excitation of a piezoelectric
driver mounted in a rigid plate, for example. Alternatively
the “sine-wave packet” technique, already in use for APR
measurements,13 could be tried. Nevertheless, deconvolution
of the input pulse from the measured data, a well-known
problem,1 will be necessary, requiring initial measurements
with a nonreflecting tube.

Second, the scale factor 	 �14� must be calibrated and
normalized. As discussed, it may be estimated from Eq. �15�
for measurements near the mouth. Subsequently, a short
lead-in tube of known dimensions could be reconstructed by
iterative adjustment of 	 to an acceptable level of accuracy.
Indeed, a similar procedure is currently standard practice in
the control of pressure offsets.15

Third, the Marchenko equation does not allow for propa-
gation losses and so the Berryman–Greene method is un-
likely to be suitable for the reconstruction of long or very
narrow objects in which boundary layer viscous and thermal
effects, described by a complex wave number,27 become sig-
nificant. However, it is a great advantage of the Aktosun
method that it does, in fact, generalize to a wave number in
the upper half of the complex plane. Further work can, there-
fore, examine the derivation of the lossy reflectance, which
would allow the application of standard lossy layer peeling
algorithms.

Finally, the method is especially promising for applica-
tion to the “classic” low-frequency problem of the inversion
to the vocal tract shape from the speech signal,45 although
further consideration must be given to the deconvolution of
the glottal wave form46,47 and to calibration of the scale fac-
tor.

VI. CONCLUSIONS

The proposed wave-mechanical method for reconstruc-
tion of the potential and area functions of an unknown object
from the radiated wave demonstrates highly satisfactory nu-
merical stability and accuracy on simulated data, and is a
promising technique for noninvasive acoustical measure-
ments. In particular, it indicates how the long lengths of con-
trol tubing necessary for direct measurement of the reflec-
tance can be eliminated, substantially reducing propagation
losses at high frequency. Although the technique promises up
to a fourfold improvement in spatial resolution, improve-
ments will be limited in practice as the one-dimensional ap-
proximation to the radiation impedance becomes less appro-

priate over the increased frequency range. A more detailed
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examination of the trade off between improved losses and
limits of the one-dimensional model remains to be under-
taken. Nevertheless, the results presented here are likely be
immediately relevant to many narrow bore applications, and
to be particularly interesting for the speech inverse problem.
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