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Abstract. Certain exact solutions to the Schrodinger equation on the line are given for 
each positive integer N such that the corresponding transmission coefficient behaves like 
O(k”’) as k + O .  Such solutions form a one-parameter family for each N ,  and all the 
potentials in each family cause the same scattering at  all energies. In each family there are  
infinitely many potentials that do not support any bound states. 

1. Introduction 

The one-dimensional Schrodinger equation 
d’Y 
- ( k ,  x) + k ’ Y ( k ,  x) = V ( x ) Y ( k ,  x), 
dx’ 

assuming the potential V(x ) -0  in some appropriate sense, has two scattering 
solutions from the ‘left’ and ‘right’ respectively, which satisfy the boundary conditions 

as x-+ x. YYi (k ,  x )  = T ( k )  exp(ikx) + o( 1) 

W,(k ,  x )  = T ( k )  exp( - ikx) + o(1) asx-,-m 
where T ( k )  is the transmission coefficient and the subscripts 1 and r are used for ‘left’ 
and ‘right’ respectively. 

The functions m,(k, x ) = T - ’  exp( - ikx)Y,(k, x) and m,(k, x)=T-’exp(ikx)Y,(k, x) 
satisfy 

d2ml ( k ,  x) + 2ik- dmYi ( k ,  x) = V(x)ml(k, x) 
dx- dx 

and 
d’m, dm 
- ( k ,  x )  - 2ik -, ( k ,  x )  = V(x)m,(k, x )  
dx2 dx 

with the boundary conditions 

asx-+m dm1 - ( k ,  x) = o(1) dx mYi(k, x) = 1 + o( 1) 

and 

asx-. - W .  
dmr - ( k ,  x) = o(1) 
dx 

m,(k, x )  = 1 + o(1) 
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In an earlier paper [l], the solutions to (1.1) and (1.2) are obtained which have the 
form 

where 

As mentioned in [l], we cannot expect solutions of the form (1.3) and (1.4) to exist 
or to converge for arbitrary potentials. Note that if fL(x) = 0 for some positive integer 
N, then the series (1.3) terminates because J,(x) = 0 for n B  N .  The same remarks also 
apply to m,(k, x) of (1.4). If the series (1.3) and (1.4) terminate, we obtain exact 
solutions to the Schrodinger equation. In [I] ,  examples of such solutions are given for 
which the series expansions in (1.3) and (1.4) terminate at the second, third, fourth 
and fifth terms. In this paper the form of the exact solutions for an arbitrary positive 
integer N is given. For each N ,  such exact solutions form a one-parameter family, and 
all the potentials in a given family cause the same scattering at all energies. Explicit 
examples of such solutions are known for N =  1, 2[1, 21 and N = 3 ,  4[1, 31. In [2] and 
[3], however, a different method is used to obtain such examples, namely the inverse 
scattering method of Newton [4, 51. Recently Degasperis and Sabatier [6, 71 have 
investigated the scattering theory for potentials of type 

where f f  are non-negative integers, a, and x, are real numbers such that x- < a -  and 
x+ > a + ,  O(x) is the Heaviside function and G(x) is a real function such that 

2. Exact solutions 

For each positive integer N ,  let 

p,(x, a ) = ( x +  1 ) v * \ . + 1 1 / 2 + a ( x +  1)(*\.-X-I)/? 
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where a is a parameter. The  choice of ‘1’ in x + 1 is arbitrary and this causes no loss of 
generality in the following; it can actually be replaced by any positive number. Let us 
assume that the potential has the form 

where the prime denotes the x derivative. From (1.5) we obtain 

where f ; , (x ,  a) = 1 and 

When P,(x, a) has the form given in (2.1), using (2.3) we obtain 

where 

( N  + n)!  c =  
’I 2 “ n ! ( N - n ) !  

0 6 n a N  

( N + n  - 2 ) !  
d 3  O S n s N - 2  

2 ” n ! ( N - n - 2 ) !  

and 

e,, = 0 n > N + l  

d,, = 0 n 2 N - 1 .  

If we replace x by -x and k by - k in the argument given above for m,(k,  x), we 
obtain the solution m,(k ,  x) for x<U to (1.2).  

3. Family of solutions on the line 

Let the potential on the whole axis be given by 

where d(x) is the Dirac delta function, 0(x)  is the Heaviside function, c is a constant 
and P1,(x, a )  is as in (2.1); a and p are  parameters. To avoid potentials with double 
poles, we assume 1 + U > 0 and 1 + /3 > U. 
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The corresponding physical solutions from the ’left’ and ‘right’ are given respecti- 
vely by 

q,(k, x, U ,  P )  = B(x)Texp(ikx)m,(k, x, U )  +e(  -x)[exp(ikx)m,( - k,  x, P )  
+ L exp( - ikx)m,(k, x, P ) ]  

and 

q , ( k ,  x, a ,  P )  = O(x)[exp( - ikx)m/( - k, x, a )  + R exp(ikx)m/(k, x, a ) ]  
+ e( -x)T exp( - ikx)mr(k, x, P )  

where 

is the scattering matrix and T ,  R and L, the transmission and reflection coefficients, 
are to be computed from the boundary conditions 

and where 

and m/(k,  x, a )  is as in (2.2). The above boundary conditions are equivalent to 

1 N - ( N - 1 ) a  
c+- = 0  

1 + p +  l + a  (3.5) 

we can eliminate one of the parameters a and P ,  say p. Thus, if P is chosen as in (3.5), 
then for each N the potentials in (3.1) form a one-parameter family where a is the 
parameter. If P is chosen as in ( 3 . 5 ) ,  D(k, a ,  P )  and E ( K ,  a ,  P )  become independent of 
both a and P ;  using (3.3) and (3.4) they can be obtained explicitly: 

(3.6) 
N ( N - 1 )  ( N + n - l ) !  N-  I 

D(k, a ,  P )  = 2ik + 2 ( i)“(c - ) n + 1 2“n! (N-  n-  l)! 
ti = 0 
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2 - 1  
c - n  ( N + n - l ) !  

E(k, a ,  P )  = (i)"(-) 2"n! ( N - n - l ) ! '  
,'=I1 
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(3.7) 

Hence, from (3 .2) ,  as k - 0  we obtain 

k,\'+ O(k"") 
(2i)"'(N- I ) !  

( C - N +  1)!(2N-2)! 
T(k) = 

L ( k )  = 1 + O ( k )  
R(k) = ( - l)"-' + O ( k ) .  

4. Conclusion 

The bound states correspond to the zeros of the denominator of the transmission 
coefficient T ( k ) ,  and these zeros are all located on the imaginary axis in the upper-half 
complex k-plane [4]. From (3.2) it is seen that if there is a bound state state at k=i1c, 
where K > O ,  then D(i1c, a ,  p)=O. Hence, from ( 3 . 6 )  we obtain 

or equivalently 

We can write ( 3 . 5 )  as 
1 2N-1 

c + N - l + -  +----=U. 1 + p  l + a  

Hence, for O s n s N -  1 ,  we have 
1 2N-1 

c c -  (N- 1) = < 0. 
N(N - 1) 

C -  
n + l  1 + p  l + a  

Therefore, x ' - 'D(k ,  a ,  p) given in (4.1) is an Nth order polynomial in 1c where all the 
coefficients are negative and D(iK, a ,  p )  cannot become zero for any K > O .  Thus the 
potentials given in (3.1) do not support any bound states. 

It is known [2] that the ratio m,(k,  O)/m,(k, 0) at k = O  will uniquely specify the 
parameter a ,  and hence, once this ratio is fixed, the inverse scattering problem 
becomes uniquely solvable for the potentials considered here. 

The non-uniqueness of the scattering matrix for the potentials considered here is 
due to the double or higher-order zeros of the transmission coefficient at k = 0 or due 
to the unit value of the reflection coefficient at k=O [ 6 ,  71. The corresponding 
wavefunction normalisation constant provides the extra parameter which removes the 
ambiguity. 
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