
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 17 (2001) 619–632 www.iop.org/Journals/ip PII: S0266-5611(01)17723-3

Small-energy asymptotics for the Schrödinger
equation on the line

Tuncay Aktosun1 and Martin Klaus2

1 Department of Mathematics, North Dakota State University, Fargo, ND 58105, USA
2 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

Received 4 October 2000

Abstract
The one-dimensional Schrödinger equation is considered when the potential
is real valued and integrable and has a finite first moment. The small-
energy asymptotics of the logarithmic spatial derivative of the Jost solutions
are established. Some consequences of these asymptotics are presented,
such as the small-energy limits of the scattering coefficients and a simplified
characterization of the scattering data for the inverse scattering problem. When
the potential also has a finite second moment, some improved results are
given on the small-energy asymptotics of the scattering coefficients and the
logarithmic spatial derivatives of the Jost solutions.

1. Introduction

Consider the one-dimensional Schrödinger equation

ψ ′′(k, x) + k2ψ(k, x) = V (x)ψ(k, x), x ∈ R, (1.1)

where the potential V is real valued and belongs to L1
1(R). Here the prime denotes the

derivative with respect to the spatial variable x, and L1
n(R) is the potential class in which∫∞

−∞ dx (1 + |x|)n |V (x)| is finite.
The Jost solution from the left, fl(k, x), associated withV is the solution of (1.1) satisfying

e−ikx fl(k, x) = 1 + o(1), e−ikx f ′
l (k, x) = ik + o(1), x → +∞. (1.2)

Thus, it can be obtained from the integral equation

fl(k, x) = eikx +
1

k

∫ ∞

x

dy sin k(y − x) V (y) fl(k, y). (1.3)

Similarly, fr(k, x), the Jost solution from the right, is the solution of (1.1) satisfying

eikx fr(k, x) = 1 + o(1), eikx f ′
r (k, x) = −ik + o(1), x → −∞.

For each fixed x ∈ R, the Jost solutions and their x-derivatives are analytic in k ∈ C+ and
continuous in C+. We use C+ to denote the upper-half complex plane and C+ := C+ ∪ R.
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The transmission coefficient T , the reflection coefficient from the left L and the reflection
coefficient from the right R are obtained from the spatial asymptotics

e−ikx fl(k, x) = 1

T (k)
+
L(k)

T (k)
e−2ikx + o(1), x → −∞,

eikx fr(k, x) = 1

T (k)
+
R(k)

T (k)
e2ikx + o(1), x → +∞.

Alternatively, these scattering coefficients can be obtained from

2ik

T (k)
= [fr(k, x); fl(k, x)], k ∈ C+, (1.4)

2ik R(k)

T (k)
= [fl(−k, x); fr(k, x)], k ∈ R, (1.5)

2ik L(k)

T (k)
= [fl(k, x); fr(−k, x)], k ∈ R, (1.6)

where [f ; g] := fg′ −f ′g denotes the Wronskian. It is known that |L(k)| < 1 and |R(k)| < 1
for k ∈ R \ {0}, and hence none of the four functions fl(k, ·), fr(k, ·), f ′

l (k, ·) and f ′
r (k, ·) can

vanish when x ∈ R for k ∈ R \ {0}. We refer the reader to [Fa67,DT79,CS89] for basic facts
on the scattering theory for (1.1).

The potential V is ‘generic’ if fl(0, x) and fr(0, x) are linearly independent, and it is
‘exceptional’ if fl(0, x) and fr(0, x) are linearly dependent. In the exceptional case we have

γ = fl(0, x)

fr(0, x)
, x ∈ R, (1.7)

for some real nonzero constant γ .
The behaviour of the scattering coefficients at k = 0 is related to the behaviour of the

potential as x → ±∞. As we discuss in section 5, these behaviours play a crucial role in
the solution of the inverse scattering problem for (1.1). On the other hand, determining the
behaviour of the scattering coefficients at k = 0, especially in the exceptional case, requires
elaborate and lengthy estimates if one assumes only V ∈ L1

1(R). In this paper we establish
the small-k asymptotics of the logarithmic spatial derivatives of the Jost solutions, from which
the behaviour at k = 0 of the scattering coefficients is easily obtained.

This paper is organized as follows. Section 2 deals with the small-k asymptotics of the Jost
solutions. Our main result is given in theorem 2.3, where by assuming only V ∈ L1

1(R), we
prove that the logarithmic derivativesf ′

l (·, x)/fl(·, x) andf ′
r (·, x)/fr(·, x) can be differentiated

with respect to k at k = 0. In section 3 we discuss two consequences of theorem 2.3; namely,
we show that the small-k asymptotics of the scattering coefficients in the exceptional case
readily follow from theorem 2.3 and that the result of this theorem is closely related to the
result contained in theorem 8.1 and corollary 8.2 of [Ak99] on the small-k asymptotics of the
reflection coefficients associated with potentials whose supports are confined to a half line. In
section 4 we consider the small-k asymptotics when the potential V belongs to L1

2(R), and
we improve the asymptotic results and present some consequences. In section 5 we provide
a reformulation of necessary and sufficient conditions on the set of scattering data so that
it corresponds to a unique real-valued potential in L1

1(R). Finally, in the appendix we give
an alternative proof of theorem 2.3, which is independent of the proof given in section 2, by
showing that certain solutions of the Riccati equation (A.1) are differentiable in k at k = 0. Note
that all the results in sections 2, 3 and 5 and the appendix hold by assuming only V ∈ L1

1(R),
and the stronger assumption V ∈ L1

2(R) is used only in section 4.
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When V ∈ L1
1(R), for each x ∈ R we can in general only conclude that

fl(k, x) = fl(0, x) + o(1), k → 0 in C+, (1.8)

f ′
l (k, x) = f ′

l (0, x) + o(1), k → 0 in C+, (1.9)

fr(k, x) = fr(0, x) + o(1), k → 0 in C+,

fr(k, x) = f ′
r (0, x) + o(1), k → 0 in C+.

Hence, for example, from (1.8) and (1.9) one would expect to obtain only
f ′

l (k, x)

fl(k, x)
= f ′

l (0, x)

fl(0, x)
+ o(1), k → 0 in C+, (1.10)

resulting in the continuity of f ′
l (·, x)/fl(·, x) in k at k = 0. Thus, as compared to (1.10) the

result in theorem 2.3 is remarkable and unexpected in the sense that it establishes not only the
continuity but also the differentiability of f ′

l (·, x)/fl(·, x) with respect to k at k = 0. This
result is remarkable because it holds for any potential V ∈ L1

1(R) despite the fact that there
exist potentials in this class for which fl(·, x) and fr(·, x) are not differentiable in k at k = 0
for certain values of x. In particular, as shown in corollary 3.3 of [Kl88a], for an arbitrary
potential in L1

1(R), fl(k, x0) is differentiable in k at k = 0 if and only if fl(0, x0) = 0. If
V (x) = V0 x

−2−ε + o(x−2−ε) as x → +∞ with V0 �= 0 and ε ∈ (0, 1), as theorem 3.1
of [Kl88b] indicates, we have fl(k, x0) = fl(0, x0) + c |k|ε + o(|k|ε) as k → 0 in C+, where c
is nonzero and can be computed explicitly; thus fl(k, x0) is not differentiable in k at k = 0.

In this paper we only analyse the small-k behaviour for the one-dimensional Schrödinger
equation when the potential belongs to L1

n(R) for n = 1, 2. It would be interesting to see if
the method here can be adapted to study similar problems for related equations, such as the
Schrödinger equation having potentials with other types of behaviour at infinity, the matrix
Schrödinger equation with a selfadjoint matrix potential whose entries belong to L1

n(R) and
the generalized Schrödinger equation with an energy-dependent potential. For other studies
on related problems, we refer the reader to the literature, for example the analysis [Ya82] of the
small-k behaviour of the spectral and scattering data for the radial Schrödinger equation when
the potential is O(x−β) at infinity with β ∈ (0, 2), the small-k asymptotics of the scattering
coefficients for a generalized Schrödinger equation [AK99] and the Maclaurin expansions of
the scattering coefficients for the one-dimensional Schrödinger equation with an exponentially
decaying potential [BGW85, BGK87].

2. Small-energy asymptotics for potentials in L1
1

For any fixed a ∈ R, let s(k, x) and v(k, x) denote the solutions of (1.1) satisfying

s(k, a) = 1, s ′(k, a) = 0; v(k, a) = 0, v′(k, a) = 1. (2.1)

In fact, these solutions can be obtained from the integral equations

s(k, x) = cos k(x − a) +
1

k

∫ x

a

dy sin k(x − y) V (y) s(k, y), (2.2)

v(k, x) = sin k(x − a)
k

+
1

k

∫ x

a

dy sin k(x − y) V (y) v(k, y). (2.3)

For each fixed x ∈ R, both s(·, x) and v(·, x) are entire in k and hence they are ‘regular’
solutions of (1.1).

Let us define two other regular solutions, φl(k, x) and φr(k, x), of (1.1) using linear
combinations of s(k, x) and v(k, x) as follows:

φl(k, x) := fl(0, a) s(k, x) + f ′
l (0, a) v(k, x), (2.4)

φr(k, x) := fr(0, a) s(k, x) + f ′
r (0, a) v(k, x). (2.5)
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From (2.2)–(2.4) we obtain

φl(k, x) = fl(0, a) cos k(x − a) + f ′
l (0, a)

sin k(x − a)
k

+
∫ x

a

dy
sin k(x − y)

k
V (y) φl(k, y), (2.6)

φl(0, x) = fl(0, a) + f ′
l (0, a) (x − a) +

∫ x

a

dy (x − y) V (y) φl(0, y). (2.7)

From (1.3) we get

fl(0, x) = 1 +
∫ ∞

x

dy (y − x) V (y) fl(0, y). (2.8)

Note that φl(0, x) = fl(0, x) for x ∈ R because both functions are solutions of (1.1) with
k = 0 and they both satisfy the same initial conditions at x = a. Thus, φl(0, x) is bounded for
x � a; moreover, using (1.2) at k = 0 we have

φl(0, x) = 1 + o(1), φ′
l(0, x) = o(1), x → +∞. (2.9)

Letting x → +∞ in (2.7), with the help of (2.9), we obtain

1 = fl(0, a)− a f ′
l (0, a)−

∫ ∞

a

dy y V (y) φl(0, y), (2.10)

0 = f ′
l (0, a) +

∫ ∞

a

dy V (y) φl(0, y). (2.11)

Let us use C to denote a positive constant that does not necessarily assume the same value at
different appearances.

Proposition 2.1. Assume V is real valued and belongs to L1
1(R), and fix a ∈ R. Then, the

solutions φl and φr defined in (2.4) and (2.5), respectively, satisfy

|φl(k, x)− φl(0, x)| � C
( |k(x − a)|

1 + |k(x − a)|
)2

, x � a, k ∈ R, (2.12)

|φr(k, x)− φr(0, x)| � C
( |k(x − a)|

1 + |k(x − a)|
)2

, x � a, k ∈ R.

Proof. The proof is obtained by adapting the proof of lemma 2.2 in [Kl88a]. �
Let us define

Pl(k, a) := f ′
l (0, a) fl(k, a)− fl(0, a) f

′
l (k, a), k ∈ C+, (2.13)

Pr(k, a) := f ′
r (0, a) fr(k, a)− fr(0, a) f

′
r (k, a), k ∈ C+. (2.14)

Theorem 2.2. Assume V is real valued and belongs to L1
1(R). Then, for each fixed a ∈ R,

we have Pl(k, a) = −ik + o(k) and Pr(k, a) = ik + o(k) as k → 0 in C+.

Proof. Recall that the Wronskian of any two solutions of (1.1) is independent of x. Thus,
using (2.1) we get

f ′
l (k, a) = [s(k, x); fl(k, x)], fl(k, a) = [fl(k, x); v(k, x)], (2.15)

and using (2.4), (2.13) and (2.15) we have

Pl(k, a) = [fl(k, x);φl(k, x)], k ∈ C+.

Similarly, with the help of (2.1), (2.5) and (2.14) we obtain

Pr(k, a) = [fr(k, x);φr(k, x)], k ∈ C+.
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Evaluating the Wronskians in (2.15) as x → +∞, and using (2.2) and (2.3), we get

f ′
l (k, a) = ik eika −

∫ ∞

a

dy eiky V (y) s(k, y), (2.16)

fl(k, a) = eika +
∫ ∞

a

dy eiky V (y) v(k, y). (2.17)

From (2.4), (2.13), (2.16) and (2.17) we obtain

Pl(k, a) = eika f ′
l (0, a)− ik eika fl(0, a) +

∫ ∞

a

dy eiky V (y) φl(k, y). (2.18)

Using (2.10) and (2.11) we can write (2.18) as

Pl(k, a) = −ik + J1(k) + J2(k)− ik[eika − 1] fl(0, a) + [eika − 1 − ika] f ′
l (0, a), (2.19)

where

J1(k) :=
∫ ∞

a

dy [eiky − 1 − iky]V (y) φl(0, y), (2.20)

J2(k) :=
∫ ∞

a

dy eiky V (y) [φl(k, y)− φl(0, y)]. (2.21)

Note that eika − 1 − ika = O(k2) and k[eika − 1] = O(k2) as k → 0 in R. Using the
boundedness of φl(0, ·) on [a,+∞) and the inequality

|eiz − iz− 1| � Cz2

1 + z
, z � 0,

from (2.20) we get

|J1(k)| � C|k|
∫ ∞

a

dy
|k(y − a)|

1 + |k(y − a)| (y − a) |V (y)|, (2.22)

and thus J1(k) = o(k) as k → 0. Similarly, using (2.12) in (2.21) we obtain

|J2(k)| � C|k|
∫ ∞

a

dy
|k(y − a)|

1 + |k(y − a)| (y − a) |V (y)|, (2.23)

and hence J2(k) = o(k) as k → 0. Thus, the theorem is proved when k → 0 in R. With the
help of a Phragmén–Lindelöf theorem it follows that the limit is valid also when k → 0 in
C+. �

Our main result is contained in the following theorem.

Theorem 2.3. Assume V is real valued and belongs to L1
1(R). For any fixed x ∈ R, the Jost

solutions satisfy the following.

(i) If fl(0, x) �= 0, then

f ′
l (k, x)

fl(k, x)
= f ′

l (0, x)

fl(0, x)
+

ik

fl(0, x)2
+ o(k), k → 0 in C+. (2.24)

(ii) If f ′
l (0, x) �= 0, then

fl(k, x)

f ′
l (k, x)

= fl(0, x)

f ′
l (0, x)

− ik

f ′
l (0, x)

2
+ o(k), k → 0 in C+. (2.25)

(iii) If fr(0, x) �= 0, then

f ′
r (k, x)

fr(k, x)
= f ′

r (0, x)

fr(0, x)
− ik

fr(0, x)2
+ o(k), k → 0 in C+. (2.26)



624 T Aktosun and M Klaus

(iv) If f ′
r (0, x) �= 0, then

fr(k, x)

f ′
r (k, x)

= fr(0, x)

f ′
r (0, x)

+
ik

f ′
r (0, x)2

+ o(k), k → 0 in C+. (2.27)

Proof. Replacing a by x in (2.13), dividing both sides by fl(0, x) fl(k, x) and using (1.8) and
theorem 2.2, we obtain (2.24). The proof of (2.25)–(2.27) is obtained in a similar manner. �

Note that as the result of theorem 2.3 is a direct consequence of theorem 2.2, the converse
is also true. Using (2.13) we can write (2.24) as

− Pl(k, x)

fl(0, x) fl(k, x)
= ik

fl(0, x)2
+ o(k), k → 0 in C+. (2.28)

Now from (1.8) and (2.28) we get Pl(k, x) = −ik + o(k) as k → 0 in C+. Similarly,
Pr(k, x) = ik + o(k) is a direct consequence of (2.26) and (2.27). An independent proof of
theorem 2.3 is given in the appendix based on the solutions of a Riccati equation. For an
analogue of theorem 2.3 for the radial Schrödinger equation, the reader is referred to [Ak00].

Let us also remark that fl(0, x) and f ′
l (0, x) cannot vanish at the same x-value, and

similarly fr(0, x) and f ′
r (0, x) cannot vanish simultaneously. Furthermore, it is known that

each of fl(0, x) and fr(0, x) has exactly N zeros on R; here N denotes the number of bound
states of V , which is known to be finite when V ∈ L1

1(R). Thus, (2.24) holds for every
x, except for N points at which (2.25) necessarily holds. Similar remarks apply to (2.26)
and (2.27).

3. Applications to potentials in L1
1

Theorem 2.3 can be used to readily evaluate the small-k asymptotics of the scattering
coefficients. We can write (1.4) in the form

2ik

T (k)
= fr(k, x) fl(k, x)

[
f ′

l (k, x)

fl(k, x)
− f ′

r (k, x)

fr(k, x)

]
. (3.1)

For example, in the exceptional case, using (1.7), (2.24) and (2.26) in (3.1), we get

2ik

T (k)
= ik

[
fr(0, x)

fl(0, x)
+
fl(0, x)

fr(0, x)

]
+ o(k), k → 0 in C+,

which gives us

T (k) = 2γ

γ 2 + 1
+ o(1), k → 0 in C+, (3.2)

where γ is the constant defined in (1.7). Similarly, writing (1.5) as

2ik R(k)

T (k)
= fr(k, x) fl(−k, x)

[
f ′

r (k, x)

fr(k, x)
− f ′

l (−k, x)
fl(−k, x)

]
, (3.3)

and using (1.7), (2.24) and (2.26) in (3.3), in the exceptional case we get

2ik R(k)

T (k)
= ik

[
fr(0, x)

fl(0, x)
− fl(0, x)

fr(0, x)

]
+ o(k), k → 0 in R,

which, with the help of (3.2), gives us

R(k) = 1 − γ 2

γ 2 + 1
+ o(1), k → 0 in R. (3.4)
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In a similar manner, (1.7), (2.24) and (2.26) can be used in (1.6) in the exceptional case in
order to obtain

L(k) = γ 2 − 1

γ 2 + 1
+ o(1), k → 0 in R. (3.5)

Next, let us explore the connection between theorem 2.3 and the potentials with supports
contained in a half line. If V vanishes for x < 0, we have

fl(k, x) = eikx

T (k)
+

e−ikx L(k)

T (k)
, x � 0, (3.6)

and if V vanishes for x > 0, we have

fr(k, x) = e−ikx

T (k)
+

eikx R(k)

T (k)
, x � 0. (3.7)

Theorem 3.1. If V is real valued, belongs to L1
1(R) and vanishes for x < 0, then as k → 0

in C+ the corresponding reflection coefficient from the left satisfies

L(k) =




−1 + 2ik
fl(0, 0)

f ′
l (0, 0)

+ 2k2 1 + fl(0, 0)2

f ′
l (0, 0)

2
+ o(k2), f ′

l (0, 0) �= 0,

fl(0, 0)2 − 1

fl(0, 0)2 + 1
+ o(1), f ′

l (0, 0) = 0.
(3.8)

Similarly, if V is real valued, belongs to L1
1(R) and vanishes for x > 0, then as k → 0 in C+

the corresponding reflection coefficient from the right satisfies

R(k) =




−1 − 2ik
fr(0, 0)

f ′
r (0, 0)

+ 2k2 1 + fr(0, 0)2

f ′
r (0, 0)2

+ o(k2), f ′
r (0, 0) �= 0,

fr(0, 0)2 − 1

fr(0, 0)2 + 1
+ o(1), f ′

r (0, 0) = 0.
(3.9)

We refer the reader to theorem 8.1 of [Ak99] for a proof of (3.8) when f ′
l (0, 0) �= 0; the

case f ′
l (0, 0) = 0 follows from (3.5) and (3.6) using γ = fl(0, 0). Similarly, the proof of (3.9)

when f ′
r (0, 0) �= 0 was given in corollary 8.2 of [Ak99], and the case f ′

r (0, 0) = 0 follows
from (3.4) and (3.7) using γ = 1/fr(0, 0).

Let us also remark that f ′
l (0, 0) = 0 in (3.8) corresponds to the exceptional case and

f ′
l (0, 0) �= 0 to the generic case; similarly, f ′

r (0, 0) = 0 in (3.9) corresponds to the exceptional
case and f ′

r (0, 0) �= 0 to the generic case.
Next, we show that theorems 2.3 and 3.1 are closely related to each other.

Theorem 3.2. The result of theorem 3.1 can be directly derived from that of theorem 2.3 and
vice versa.

Proof. If V vanishes for x < 0, from (3.6) we get

L(k) = −1 + ik fl(k, 0)/f ′
l (k, 0)

1 + ik fl(k, 0)/f ′
l (k, 0)

. (3.10)

If V is generic, then f ′
l (0, 0) �= 0, and hence using (2.25) in (3.10) we obtain the first case

in (3.8). If f ′
l (0, 0) = 0, then we have (3.5), and hence the second case in (3.8) holds.

In a similar manner, if V vanishes for x > 0, then from (3.7) we get

R(k) = 1 + ik fr(k, 0)/f ′
r (k, 0)

−1 + ik fr(k, 0)/f ′
r (k, 0)

. (3.11)
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If V is generic, then f ′
r (0, 0) �= 0, and hence using (2.27) in (3.11) we obtain the first case

in (3.9). If f ′
r (0, 0) = 0, then we have (3.4), and thus the second case in (3.9) holds.

In order to show that (3.8) of theorem 3.1 implies (2.24) and (2.25) of theorem 2.3, let us
choose

V2(x) :=
{
V (x), x � max{0, a},
0, x < max{0, a},

so that V2 vanishes when x < 0. Denoting the corresponding Jost solution from the left by
fl2(k, x), we have

fl(k, a) = fl2(k, a), f ′
l (k, a) = f ′

l2(k, a), k ∈ C+, (3.12)

f ′
l (k, a)

fl(k, a)
= f ′

l2(k, a)

fl2(k, a)
, (3.13)

fl2(0, a) = fl2(0, 0) + a f ′
l2(0, 0). (3.14)

Using (3.6) we get

f ′
l2(k, a)

fl2(k, a)
= ik

e2ika − L2(k)

e2ika + L2(k)
. (3.15)

As k → 0 in C+, using (3.8) we get

ik
e2ika − L2(k)

e2ika + L2(k)

=




f ′
l2(0, 0)

fl2(0, 0) + a f ′
l2(0, 0)

+
ik

[fl2(0, 0) + a f ′
l2(0, 0)]

2
+ o(k), f ′

l2(0, 0) �= 0,

ik

fl2(0, 0)2
+ o(k), f ′

l2(0, 0) = 0.

(3.16)

From (3.14)–(3.16) we obtain

f ′
l2(k, a)

fl2(k, a)
=



f ′

l2(0, a)

fl2(0, a)
+

ik

fl2(0, a)2
+ o(k), f ′

l2(0, a) �= 0,

ik

fl2(0, a)2
+ o(k), f ′

l2(0, a) = 0.
(3.17)

Because of (3.12) and (3.13), (3.17) is equivalent to (2.24) and (2.25). The proof that the result
in (3.9) implies those in (2.26) and (2.27) is obtained in a similar manner by choosing

V1(x) :=
{
V (x), x � min{0, a},
0, x > min{0, a},

so that V1 vanishes when x > 0, and by using the fact that fr(k, a) = fr1(k, a) and
f ′

r (k, a) = f ′
r1(k, a), where fr1(k, x) denotes the Jost solution from the right corresponding

to V1. �

4. Small-energy asymptotics for potentials in L1
2

The proofs given in sections 2 and 3 can be modified to study the small-k asymptotics when
the potential is real valued and belongs to the more restrictive class L1

2(R).
Our first result is the analogue of theorem 2.2.
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Theorem 4.1. Assume V is real valued and belongs to L1
2(R). Then, for each fixed

a ∈ R, the functions Pl(k, a) and Pr(k, a) defined in (2.13) and (2.14), respectively, satisfy
Pl(k, a) = −ik + O(k2) and Pr(k, a) = ik + O(k2) as k → 0 in C+.

Proof. The proof of theorem 2.2 can easily be modified. From (2.19) it is clear that we only
need to show that J1(k) = O(k2) and J2(k) = O(k2) as k → 0 in R, which follow from (2.22)
and (2.23) by taking the factor |k| in the numerators of the integrands outside the integrals; the
resulting integrals remain finite because

∫∞
a

dy (y − a)2 |V (y)| converges if V ∈ L1
2(R). �

The next result is the analogue of theorem 2.3.

Theorem 4.2. Assume V is real valued and belongs to L1
2(R). For any fixed x ∈ R, the Jost

solutions satisfy (2.24)–(2.27) but with o(k) replaced by O(k2).

Proof. The proof is given by modifying the proof of theorem 2.3, i.e. by showing that the
results stated are implied by theorem 4.1. When V ∈ L1

2(R), instead of (1.8) one has [DT79]

fl(k, x) = fl(0, x) + k ḟl(0, x) + o(k), k → 0 in C+, (4.1)

where the overdot denotes the derivative with respect to k. Dividing both sides of (2.13) by
fl(0, a) fl(k, a) and by using theorem 4.1, we get

f ′
l (k, x)

fl(k, x)
= f ′

l (0, x)

fl(0, x)
+

ik

fl(0, x)2
+ O(k2), k → 0 in C+. (4.2)

Similarly, with the help of

fr(k, x) = fr(0, x) + k ḟr(0, x) + o(k), k → 0 in C+, (4.3)

we obtain
f ′

r (k, x)

fr(k, x)
= f ′

r (0, x)

fr(0, x)
− ik

fr(0, x)2
+ O(k2), k → 0 in C+. (4.4)

The analogues of (2.25) and (2.27) are obtained similarly. �
In the next theorem the small-energy asymptotics of the scattering coefficients are obtained.

Theorem 4.3. Assume V is real valued and belongs toL1
2(R). Then, as k → 0 in C+ we have

T (k) =




2ik

W0
+

2k2(A1 + A2)

W 2
0

+ o(k2), generic case,

2γ

γ 2 + 1
+ O(k), exceptional case,

(4.5)

and as k → 0 in R we have

L(k) =




−1 +
2ikA1

W0
+ o(k), generic case,

γ 2 − 1

γ 2 + 1
+ O(k), exceptional case,

(4.6)

R(k) =




−1 +
2ikA2

W0
+ o(k), generic case,

1 − γ 2

γ 2 + 1
+ O(k), exceptional case,

(4.7)

where γ is the constant in (1.7),W0 is the real nonzero constant given by

W0 := [fr(0, x); fl(0, x)],

and A1 and A2 are the real constants (independent of x) defined as

A1 := fl(0, x)− iW0 ḟr(0, x)

fr(0, x)
, A2 := fr(0, x)− iW0 ḟl(0, x)

fl(0, x)
. (4.8)
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Proof. The proof of (4.5) is obtained by using (4.1)–(4.4) in (3.1). The proof of (4.7) is given
in a similar manner with the help of (3.3). Analogously, (4.6) is proved. �

The result given in theorem 4.3 can actually be improved further in the exceptional case;
the O(k)-terms in (4.5)–(4.7) can be explicitly evaluated, and it can be shown that T (k), L(k)
and R(k) are all differentiable at k = 0 when V ∈ L1

2(R). We refer the reader to theorem 4.10
and example 5.1 of [AKV00] for the explicit expressions for Ṫ (0), L̇(0) and Ṙ(0).

It may be surprising at a first sight that the right-hand sides in (4.8) are independent of
x. This x-independence can be seen as follows. In the generic case, fl(0, x) and fr(0, x) are
linearly independent solutions of (1.1) with k = 0. Thus, any other solutions, among which
are ḟl(0, x) and ḟr(0, x), can be expressed as linear combinations of fl(0, x) and fr(0, x),
which gives us (4.8).

The following theorem is the analogue of theorem 3.1.

Theorem 4.4. Assume V is real valued, belongs to L1
2(R) and vanishes for x < 0; then as

k → 0 in C+ the corresponding reflection coefficient from the left satisfies

L(k) =




−1 + 2ik
fl(0, 0)

f ′
l (0, 0)

+ 2k2 1 + fl(0, 0)2

f ′
l (0, 0)

2
+ O(k3), f ′

l (0, 0) �= 0,

fl(0, 0)2 − 1

fl(0, 0)2 + 1
+ O(k), f ′

l (0, 0) = 0.

Similarly, assume V is real valued, belongs to L1
2(R) and vanishes for x > 0; then as k → 0

in C+ the corresponding reflection coefficient from the right satisfies

R(k) =




−1 − 2ik
fr(0, 0)

f ′
r (0, 0)

+ 2k2 1 + fr(0, 0)2

f ′
r (0, 0)2

+ O(k3), f ′
r (0, 0) �= 0,

fr(0, 0)2 − 1

fr(0, 0)2 + 1
+ O(k), f ′

r (0, 0) = 0.

Proof. The proof is obtained as in the first two paragraphs of the proof of theorem 3.2. �
Let us remark that, by proceeding as in the proof of theorem 3.2, it is possible to prove

the result of theorem 4.4 directly by using the result of theorem 4.2 and vice versa.

5. Characterization problem revisited

In this section we discuss some implications of the results of section 3 for the characterization
problem of inverse scattering theory for real-valued potentialsV ∈ L1

1(R). By this we mean the
problem of finding necessary and sufficient conditions on the scattering data which guarantee
that there is exactly one real-valued potential V ∈ L1

1(R) corresponding to those data. Such
characterizations were given by Melin [Me85] and Marchenko [Ma86]. It is known that
one can construct V uniquely from either the left scattering data {R, {κj }, {clj }} or the right
scattering data {L, {κj }, {crj }}. Here R and L are the reflection coefficients given for k ∈ R,
κj for j = 1, . . . , N are N distinct positive numbers such that −κ2

j represent the bound-state
energies for V and clj and crj are positive constants called bound-state norming constants;
clj and crj are the reciprocals of the norms of the eigenfunctions fl(iκj , ·) and fr(iκj , ·),
respectively.

Among the characterization conditions listed in theorem 6.1 of [Me85] and theorem 3.5.1
of [Ma86] is the condition

lim
k→0

k

T (k)
[R(k) + 1] = 0, k ∈ R, (5.1)
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and it plays an important role in the reconstruction ofV from the scattering data. Condition (5.1)
provides a way of proving the characterization theorem without using the continuity of R(k)
and T (k) at k = 0, which was not known at the time (cf p 303 of [Ma86]). For V ∈ L1

1(R),
the continuity of the scattering coefficients at k = 0 was later proved in [Kl88a]. Since the
continuity of R for k ∈ R \ {0} is already listed in both [Me85] and [Ma86] among the
characterization conditions, and since we now know that R(k) is continuous at k = 0, it is
worth asking whether condition (5.1) can simply be omitted and replaced by the condition that
R(k) be continuous at k = 0. As our next theorem shows, this is indeed the case.

Recall the formulae [Fa67, DT79, CS89]

T (k) =




(
N∏
j=1

k + iκj
k − iκj

)
exp

(
1

2π i

∫ ∞

−∞
dt

log(1 − |R(t)|2)
t − k

)
, k ∈ C+,

lim
ε→0+

T (k + iε), k ∈ R,
(5.2)

L(k) = −R(k)
∗ T (k)

T (k)∗
, k ∈ R, (5.3)

where the asterisk denotes complex conjugation, and define

R̂(α) := 1

2π

∫ ∞

−∞
dk R(k) eikα, L̂(α) := 1

2π

∫ ∞

−∞
dk L(k) eikα. (5.4)

We propose the following simplified list of necessary and sufficient conditions as a
characterization of real-valued potentials in L1

1(R).

Theorem 5.1. In order for the data {R, {κj }, {clj }} to be the left scattering data for (1.1) with
a real-valued potential V ∈ L1

1(R), it is necessary and sufficient that the following conditions
hold.

(i) R(−k) = R(k)∗ for k ∈ R.
(ii) R(k) is continuous for k ∈ R.

(iii) −1 � R(0) < 1.
(iv) The function k/T (k), where T (k) is given by (5.2), is continuous in C+.
(v) |R(k)| � 1 − Ck2(1 + k2)−1 on R for some positive constant C.

(vi) R(k) = o(1/k) as k → ±∞.
(vii) The functions R̂ and L̂ defined in (5.4), where L(k) is obtained from (5.3), are absolutely

continuous. Moreover, R̂′ ∈ L1
1(a,+∞) and L̂′ ∈ L1

1(−∞, a) for every a ∈ R.

Proof. In view of theorem 3.5.1 of [Ma86], it suffices to show that (5.1) is a consequence
of (ii)–(iv). Note that (5.2) implies the unitarity relation |T (k)|2 = 1−|R(k)|2 for k ∈ R\{0}.
IfR(0) = −1, then (5.1) follows from (iv) and the continuity ofR at k = 0. IfR(0) ∈ (−1, 1),
then the continuity ofR at k = 0 and the aforementioned unitarity relation imply the existence
of a positive constant c0 such that |T (k)| � c0 for k ∈ (−1, 1) \ {0}; thus, k/T (k) → 0 as
k → 0 and (5.1) follows. �

Note that into the characterization conditions in theorem 5.1 we have incorporated the
continuity of R at k = 0 and R(0) ∈ [−1, 1). The necessity of the latter condition can also
be seen from (3.4) in the exceptional case and from the fact that R(0) = −1 in the generic
case. Because of (ii) it is also possible to require (i) and (v) only for k ∈ R \ {0}. Moreover,
it suffices to require (iv) only for C+ \ {0} because (v) implies that k/|T (k)| is bounded near
k = 0. Furthermore, in view of (vii), it is possible to replace o(1/k) in (vi) by O(1/k).
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Appendix: An alternative proof of theorem 2.3

Proof. We will prove only (2.24) because the proof for (2.25)–(2.27) is similar. There is no loss
of generality in giving the proof of (2.24) at x = 0 only, and hence we assume fl(0, 0) �= 0.
It is enough to give the proof for real k because, as in the proof of theorem 2.2, the result
can be extended to k ∈ C+ with the help of a Phragmén–Lindelöf theorem. Furthermore, it
is sufficient to assume k > 0 because replacing a real k by −k amounts to taking complex
conjugation in all the terms with which we will deal.

The logarithmic spatial derivatives of the solutions of (1.1) satisfy the Riccati equation

η′(k, x) + η(k, x)2 + k2 = V (x), x ∈ R. (A.1)

Define ηl(k, x) := f ′
l (k, x)/fl(k, x). Then, ηl is a solution of (A.1) satisfying the boundary

condition

ηl(k, x) = ik + o(1), x → +∞.
From (1.3) we infer that

ηl(k, x) = ik + O

(∫ ∞

x

dy |V (y)|
)

= ik + o(1/x), x → +∞.

Let h(k, x) := ηl(k, x)− ik and note that h(k, x) obeys the Riccati equation

h′(k, x) + 2ik h(k, x) = V (x)− h(k, x)2, x ∈ R. (A.2)

We solve (A.2) by iteration so that h(k, x) = limn→+∞ hn(k, x), where h0(k, x) = 0 and

hn(k, x) = e−2ikx
∫ ∞

x

dy [−V (y) + hn−1(k, y)
2] e2iky, n � 1. (A.3)

We first construct the solution h(k, x) on the x-interval [ρ,+∞) with ρ > 0 and so large
that ∫ ∞

ρ

dy y |V (y)| < 1

4
. (A.4)

On this interval we have the estimate

|hn(k, x)| � 2
∫ ∞

x

dy |V (y)|, x � ρ, n � 0. (A.5)

Obviously, (A.5) holds for n = 0; assuming it is true for hn(k, x), by using (A.3) and (A.4),
we conclude that

|hn+1(k, x)| �
∫ ∞

x

dy |V (y)| + 4
∫ ∞

x

dy

(∫ ∞

y

dz |V (z)|
)2

�
(∫ ∞

x

dy |V (y)|
)[

1 + 4
∫ ∞

x

dy y |V (y)|
]

� 2
∫ ∞

x

dy |V (y)|,
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where during the computation we have dropped a nonpositive term because x � 0. Note also
that (A.4) guarantees that fl(0, x) > 0 when x � ρ, which can be seen with the help of (2.8).
Using (A.5) and arguing by induction we get

|hn+1(k, x)− hn(k, x)| � 2

(
4
∫ ∞

x

dy y |V (y)|
)n ∫ ∞

x

dt |V (t)|, x � ρ, n � 0.

Thus (A.4) guarantees that the sequence {hn(k, x)} converges, uniformly in x for x � ρ and
uniformly in k for k � 0. From the integral equation for h(k, x) obtained by letting n→ +∞
in (A.3) we infer that

h(k, x)− h(0, x)
=
∫ ∞

x

dy [−V (y) + h(k, y)2] [e2ik(y−x) − 1]

+
∫ ∞

x

dy [h(k, y)2 − h(0, y)2]. (A.6)

Hence, using (A.4), (A.5) when n→ +∞, and the estimate∫ ∞

x

dy y

(∫ ∞

y

dz |V (z)|
)2

�
(∫ ∞

x

dy y |V (y)|
)2

,

we obtain

|h(k, x)− h(0, x)|

� 2k

[∫ ∞

x

dy y |V (y)| + 4
∫ ∞

x

dy y

(∫ ∞

y

dz |V (z)|
)2
]

+ 4
∫ ∞

x

dy

(∫ ∞

y

dz |V (z)|
)

|h(k, y)− h(0, y)|

� k + 4
∫ ∞

x

dy

(∫ ∞

y

dz |V (z)|
)

|h(k, y)− h(0, y)|. (A.7)

Applying Gronwall’s lemma to (A.7) we get

|h(k, x)− h(0, x)| � k exp

(
4
∫ ∞

x

dy y |V (y)|
)
. (A.8)

Then, for x � ρ, the existence of ḣ(0, x) and hence that of η̇l(0, x) follow from (A.6), (A.8),
and the Lebesgue dominated convergence theorem.

When x < ρ we proceed as follows. Differentiating (A.1) with respect to k, multiplying
the resulting equation on both sides by fl(k, x) and integrating over (x, ρ), we get

η̇l(k, x) = fl(k, ρ)
2 fl(k, x)

−2 η̇l(k, ρ) + 2k fl(k, x)
−2
∫ ρ

x

dy fl(k, y)
2, (A.9)

where k �= 0. Note that, as stated in section 1, we have fl(k, x) �= 0 when k ∈ R \ {0}. Since
we assume fl(0, x) �= 0, we can let k → 0 in (A.9) so that

η̇l(0, x) = fl(0, ρ)2

fl(0, x)2
η̇l(0, ρ). (A.10)

Letting ρ → +∞ in (A.10), and using fl(0, ρ) → 1 and η̇l(0, ρ) → i, we obtain
η̇l(0, 0) = i/fl(0, 0)2. This proves (2.24). �
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